Rare events: models and simulations

Josselin Garnier (Université Paris Diderot) http://www.proba.jussieu.fr/~garnier

Cf: http://www.proba.jussieu.fr/~garnier/expo1.pdf

- Introduction to uncertainty quantification.
- Estimation of the probability of a rare event (such as the failure of a complex system).
- Standard methods (quadrature, Monte Carlo).
- Advanced Monte Carlo methods (variance reduction techniques).
- Interacting particle systems.
- Quantile estimation.

Uncertainty quantification

- General problem:
- How can we model the uncertainties in physical and numerical models?
- How can we estimate (quantify) the variability of the output of a code or an experiment as a function of the variability of the input parameters ?
- How can we estimate quantify the sensitivity or the variability of the output of a code or an experiment with respect to one particular parameter ?

Uncertainty propagation

- Context: numerical code (black box) or experiment

$$
Y=f(\boldsymbol{X})
$$

with $\quad Y=$ output
$\boldsymbol{X}=$ random input parameters, with known distribution (with pdf $p(\boldsymbol{x})$)

$$
\mathbb{P}(\boldsymbol{X} \in A)=\int_{A} p(\boldsymbol{x}) d \boldsymbol{x} \quad \text { for any } A \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

$f=$ deterministic function $\mathbb{R}^{d} \rightarrow \mathbb{R}$ (computationally expensive).

- Goal: estimation of a quantity of the form

$$
\mathbb{E}[g(Y)]
$$

with an "error bar" and the minimal number of simulations.
Examples (for a real-valued output Y):

- $g(y)=y \rightarrow$ mean of Y, i.e. $\mathbb{E}[Y]$
- $g(y)=y^{2} \rightarrow$ variance of Y, i.e. $\operatorname{Var}(Y)=\mathbb{E}\left[(Y-\mathbb{E}[Y])^{2}\right]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}$
- $g(y)=\mathbf{1}_{[a, \infty)}(y) \rightarrow$ probability $\mathbb{P}(Y \geq a)$.

Analytic method

- The quantity to be estimated is a d-dimensional integral:

$$
I=\mathbb{E}[g(Y)]=\mathbb{E}[h(\boldsymbol{X})]=\int_{\mathbb{R}^{d}} h(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}
$$

where $p(\boldsymbol{x})$ is the pdf of \boldsymbol{X} and $h(\boldsymbol{x})=g(f(\boldsymbol{x}))$.

- In simple cases (when the pdf p and the function h have explicit expressions), one can sometimes evaluate the integral exactly (exceptional situation).

Quadrature method

- The quantity to be estimated is a d-dimensional integral:

$$
I=\mathbb{E}[g(Y)]=\mathbb{E}[h(\boldsymbol{X})]=\int_{\mathbb{R}^{d}} h(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}
$$

where $p(\boldsymbol{x})$ is the pdf of \boldsymbol{X} and $h(\boldsymbol{x})=g(f(\boldsymbol{x}))$.

- If $p(\boldsymbol{x})=\prod_{i=1}^{d} p_{0}\left(x_{i}\right)$, then it is possible to apply Gaussian quadrature with a tensorized grid with n^{d} points:

$$
\hat{I}=\sum_{j_{1}=1}^{n} \cdots \sum_{j_{d}=1}^{n} \rho_{j_{1}} \cdots \rho_{j_{d}} h\left(\xi_{j_{1}}, \ldots, \xi_{j_{d}}\right)
$$

with the weights $\left(\rho_{j}\right)_{j=1, \ldots, n}$ and the points $\left(\xi_{j}\right)_{j=1, \ldots, n}$ associated to the quadrature with weighting function p_{0}.

- There exist quadrature methods with sparse grids (cf Smolyak).
- Quadrature methods are efficient when:
- the function $\boldsymbol{x} \rightarrow h(\boldsymbol{x})$ is smooth (and not only f),
- the dimension d is "small" (even with sparse grids).

They require many calls.

Monte Carlo method

Principle: replace the statistical expectation $\mathbb{E}[g(Y)]$ by an empirical mean.

Monte Carlo method: "head and tail" model

A code gives a real-valued output $Y=f(\boldsymbol{X})$. For a given a we want to estimate

$$
P=\mathbb{P}(f(\boldsymbol{X}) \geq a)
$$

- Monte Carlo method:

1) n simulations are carried out with n independent realizations $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ (with the distribution of \boldsymbol{X}).
2) let us define

$$
Z_{k}=\mathbf{1}_{[a, \infty)}\left(f\left(\boldsymbol{X}_{k}\right)\right)=\left\{\begin{array}{cc}
1 & \text { if } f\left(\boldsymbol{X}_{k}\right) \geq a \text { (head) } \\
0 & \text { if } f\left(\boldsymbol{X}_{k}\right)<a \text { (tail) }
\end{array}\right.
$$

- Intuition: when n is large, the empirical proportion of " 1 "s is close to P

$$
\frac{Z_{1}+\cdots+Z_{n}}{n} \simeq P
$$

Therefore the empirical proportion of " 1 "s can be used to estimate P.

- Empirical estimator of P :

$$
\hat{P}_{n}:=\frac{1}{n} \sum_{k=1}^{n} Z_{k}
$$

- Empirical estimator of P :

$$
\hat{P}_{n}:=\frac{1}{n} \sum_{k=1}^{n} Z_{k}
$$

- The estimator is unbiased:

$$
\mathbb{E}\left[\hat{P}_{n}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{k=1}^{n} Z_{k}\right]=\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[Z_{k}\right]=\mathbb{E}\left[Z_{1}\right]=P
$$

- The law of large numbers shows that the estimator is convergent:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{k=1}^{n} Z_{k} \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[Z_{1}\right]=P
$$

because the variables Z_{k} are independent and identically distributed (i.i.d.).

- Result (law of large numbers): Let $\left(Z_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of i.i.d. random variables. If $\mathbb{E}\left[\left|Z_{1}\right|\right]<\infty$, then

$$
\frac{1}{n} \sum_{k=1}^{n} Z_{k} \xrightarrow{n \rightarrow \infty} m \text { with probability } 1, \text { with } m=\mathbb{E}\left[Z_{1}\right]
$$

"The empirical mean converges to the statistical mean".

Error analysis: we want to quantify the fluctuations of \hat{P}_{n} around P.

- Variance calculation:

$$
\begin{aligned}
\operatorname{Var}\left[\hat{P}_{n}\right] & =\mathbb{E}\left[\left(\hat{P}_{n}-P\right)^{2}\right] \quad \text { (mean square error) } \\
& =\mathbb{E}\left[\left(\sum_{k=1}^{n}\left(\frac{Z_{k}-P}{n}\right)\right)^{2}\right]=\sum_{k=1}^{n} \mathbb{E}\left[\left(\frac{Z_{k}-P}{n}\right)^{2}\right] \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left(Z_{k}-P\right)^{2}\right]=\frac{1}{n} \mathbb{E}\left[\left(Z_{1}-P\right)^{2}\right] \\
& =\frac{1}{n}\left(\mathbb{E}\left[Z_{1}^{2}\right]-P^{2}\right) \\
& =\frac{1}{n}\left(P-P^{2}\right)
\end{aligned}
$$

- The relative error is therefore:

$$
\text { Error }=\frac{\sqrt{\operatorname{Var}\left(\hat{P}_{n}\right)}}{\mathbb{E}\left[\hat{P}_{n}\right]}=\frac{\sqrt{\operatorname{Var}\left(\hat{P}_{n}\right)}}{P}=\frac{1}{\sqrt{n}}\left(\frac{1}{P}-1\right)^{1 / 2}
$$

Confidence intervals

- Question: The estimator \hat{P}_{n} gives an approximate value of P, all the better as n is larger. How to quantify the error ?
- Answer: We build a confidence interval at the level 0.95 , i.e. an empirical interval $\left[\hat{a}_{n}, \hat{b}_{n}\right]$ such that

$$
\mathbb{P}\left(P \in\left[\hat{a}_{n}, \hat{b}_{n}\right]\right) \geq 0.95
$$

Construction based on the De Moivre theorem:

$$
\mathbb{P}\left(\left|\hat{P}_{n}-P\right|<c \frac{\sqrt{P-P^{2}}}{\sqrt{n}}\right) \xrightarrow{n \rightarrow \infty} \frac{2}{\sqrt{2 \pi}} \int_{0}^{c} e^{-x^{2} / 2} d x
$$

The right member is 0.05 if $c=1.96$. Therefore

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n}-1.96 \frac{\sqrt{P-P^{2}}}{\sqrt{n}}, \hat{P}_{n}+1.96 \frac{\sqrt{P-P^{2}}}{\sqrt{n}}\right]\right) \simeq 0.95
$$

- Result (central limit theorem): Let $\left(Z_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of i.i.d. random variables. If $\mathbb{E}\left[Z_{1}^{2}\right]<\infty$, then

$$
\sqrt{n}\left(\frac{1}{n} \sum_{k=1}^{n} Z_{k}-m\right) \xrightarrow{n \rightarrow \infty} \mathcal{N}\left(0, \sigma^{2}\right) \text { in distribution }
$$

where $m=\mathbb{E}\left[Z_{1}\right]$ and $\sigma^{2}=\operatorname{Var}\left(Z_{1}\right)$.
"For large n, the error $\frac{1}{n} \sum_{k=1}^{n} Z_{k}-m$ has Gaussian distribution $\mathcal{N}\left(0, \sigma^{2} / n\right)$."

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n}-1.96 \frac{\sqrt{P-P^{2}}}{\sqrt{n}}, \hat{P}_{n}+1.96 \frac{\sqrt{P-P^{2}}}{\sqrt{n}}\right]\right) \simeq 0.95
$$

The unknown parameter P is still in the bounds of the interval! Two solutions:

- $P \in[0,1]$, therefore $\sqrt{P-P^{2}}<1 / 2$ and

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n}-0.98 \frac{1}{\sqrt{n}}, \hat{P}_{n}+0.98 \frac{1}{\sqrt{n}}\right]\right) \geq 0.95
$$

- asymptotically, we can replace P in the bounds by \hat{P}_{n} (OK if $n P>10$ and $n(1-P)>10)$:

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n}-1.96 \frac{\sqrt{\hat{P}_{n}-\hat{P}_{n}^{2}}}{\sqrt{n}}, \hat{P}_{n}+1.96 \frac{\sqrt{\hat{P}_{n}-\hat{P}_{n}^{2}}}{\sqrt{n}}\right]\right) \simeq 0.95
$$

Conclusion: There is no bounded interval of \mathbb{R} that contains P with probability one. There are bounded intervals (called confidence intervals) that contain P with probability close to one (chosen by the user).

Monte Carlo estimation: black box model

- Black box model (numerical code)

$$
Y=f(\boldsymbol{X})
$$

We want to estimate $I=\mathbb{E}[g(Y)]$, for some function $g: \mathbb{R} \rightarrow \mathbb{R}$.

- Empirical estimator:

$$
\widehat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} g\left(f\left(\boldsymbol{X}_{k}\right)\right)
$$

where $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is a n-sample of \boldsymbol{X}.
This is the empirical mean of a sequence of i.i.d. random variables.

- The estimator \widehat{I}_{n} is unbiased: $\mathbb{E}\left[\widehat{I}_{n}\right]=I$.
- The law of large numbers gives the convergence of the estimator:

$$
\widehat{I}_{n} \xrightarrow{n \rightarrow \infty} I \quad \text { with probability } 1
$$

- Error:

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)=\frac{1}{n} \operatorname{Var}(g(Y))
$$

Proof: the variance of a sum of i.i.d. random variables if the sum of the variances.

- Asymptotic confidence interval:

$$
\mathbb{P}\left(I \in\left[\widehat{I}_{n}-1.96 \frac{\hat{\sigma}_{n}}{\sqrt{n}}, \widehat{I}_{n}+1.96 \frac{\hat{\sigma}_{n}}{\sqrt{n}}\right]\right) \simeq 0.95
$$

where

$$
\hat{\sigma}_{n}=\left(\frac{1}{n} \sum_{k=1}^{n} g\left(f\left(\boldsymbol{X}_{k}\right)\right)^{2}-\widehat{I}_{n}^{2}\right)^{1 / 2}
$$

- Advantages of the MC method:

1) no regularity condition for f, g (condition: $\left.\mathbb{E}\left[g(f(\boldsymbol{X}))^{2}\right]<\infty\right)$.
2) convergence rate $1 / \sqrt{n}$ in any dimension.
3) can be applied for any quantity that can be expressed as an expectation.

- One needs to simulate samples of \boldsymbol{X}.

Simulation of random variables

- How do we generate random numbers with a computer ? There is nothing random in a computer !
- Strategy:
- find a pseudo random number generator that can generate a sequence of numbers that behave like independant copies of a random variable with uniform distribution over $(0,1)$.
- use deterministic transforms to generate numbers with any prescribed distribution using only the uniform pseudo random number generator.
- Pseudo random number generator

A 32-bit multiplicative congruential generator:

$$
x_{n+1}=a x_{n} \bmod b,
$$

with $a=7^{5}, b=2^{31}-1$, and some integer x_{0}.
This gives a sequence of integer numbers in $\left\{0,1, \ldots, 2^{31}-2\right\}$.
The sequence $u_{n}=x_{n} /\left(2^{31}-1\right)$ gives a "quasi-real" number between 0 and 1 .
Note: the sequence is periodic, with period $2^{31}-1$.
This is the generator mcg16807 of matlab (used in early versions).
Today: matlab uses mt19937ar (the period is $2^{19937}-1$).

- Inversion method.

A little bit of theory:
Result: Let X be a real random variable with the cumulative distribution function $(c d f) F(x):$

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Let U be a random variable with the distribution $\mathcal{U}(0,1)$. If F is one-to-one, then X and $F^{-1}(U)$ have the same distribution.
Proof: Set $Y=F^{-1}(U)$.

$$
\mathbb{P}(Y \leq x)=\mathbb{P}\left(F^{-1}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=F(x)
$$

which shows that the cdf of Y is F.

- Extension: Let F be a cdf. The generalized inverse of F is $F^{-1}:(0,1) \rightarrow \mathbb{R}$ defined by:

$$
F^{-1}(u):=\inf A_{u}, \quad \text { where } A_{u}:=\{x \in \mathbb{R} \text { such that } F(x) \geq u\}
$$

The generalized inverse always exists because, for any $u \in(0,1)$:
(i) $\lim _{x \rightarrow+\infty} F(x)=1$, therefore $A_{u} \neq \emptyset$.
(ii) $\lim _{x \rightarrow-\infty} F(x)=0$, therefore A_{u} is bounded from below.

Result: Let X be a random variable with the cdf $F(x)$. Let U be a random variable with the distribution $\mathcal{U}(0,1)$. Then X and $F^{-1}(U)$ have the same distribution.

- Example. Let us write a simulator of an exponential random variable:

$$
p(x)=e^{-x} \mathbf{1}_{[0, \infty)}(x)
$$

Its cdf is

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \int_{0}^{x} e^{-y} d y=1-e^{-x} & \text { if } x \geq 0\end{cases}
$$

whose reciprocal is:

$$
F^{-1}(u)=-\ln (1-u) .
$$

Therefore if U is a uniform random variable on $[0,1]$, then the random variable $X:=-\ln (1-U)$ obeys the exponential distribution.
Moreover, U and $1-U$ have the same distribution, therefore $-\ln (U)$ also obeys the exponential distribution.

- Simulation of Gaussian random variables.

The inversion method requires the knowledge of the reciprocal cdf F^{-1}.
We do not always have the explicit expression of this reciprocal function.
An important example is the Gaussian distribution such that
$F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-s^{2} / 2} d s$ for $x \in \mathbb{R}$.
Box-Muller algorithm:
Let U_{1}, U_{2} two independent random variables with uniform distribution over $[0,1]$. If

$$
\begin{aligned}
& X=\left(-2 \ln U_{1}\right)^{1 / 2} \cos \left(2 \pi U_{2}\right) \\
& Y=\left(-2 \ln U_{1}\right)^{1 / 2} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

then the random variables X and Y are independent and distributed according to $\mathcal{N}(0,1)$.

Proof: for any test function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write $\mathbb{E}[f(X, Y)]$ as a two-dimensional integral and use polar coordinates.

- Rejection method for uniform distributions.
- Goal: build a generator of a random variable with uniform distribution over $D \subset \mathbb{R}^{d}$.
- Preliminary: Find a rectangular domain B such that $D \subset B$.
- Algorithm:

Sample M_{1}, M_{2}, \ldots independent and identically distributed with the uniform distribution over B, until the first time T when $M_{i} \in D$.

- Result: M_{T} is a random variable with the uniform distribution over D.
- Warning: the distribution of M_{T} is not the distribution of M_{1}, because T is random!

The time T obeys a geometric distribution with mean $|B| /|D|$ (\rightarrow it is better to look for the smallest domain B).

- Rejection method for continuous distributions.
- Goal: build a generator of a random variable with pdf $p(\boldsymbol{x})$.
- Preliminary: find a pdf $q(\boldsymbol{x})$ such that we know a generator of a random variable with pdf $q(\boldsymbol{x})$ and we know $C \geq 1$ such that $p(\boldsymbol{x}) \leq C q(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^{d}$.
- Algorithm:

Sample $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ with pdf $q(\boldsymbol{x})$ and U_{1}, U_{2}, \ldots with distribution $\mathcal{U}(0,1)$ until the first time T when $U_{k}<p\left(\boldsymbol{X}_{k}\right) /\left[C q\left(\boldsymbol{X}_{k}\right)\right]$.

- Result: \boldsymbol{X}_{T} is a random variable with the $\operatorname{pdf} p(\boldsymbol{x})$.

The time T obeys a geometric distribution with mean C.

Proof: for any Borel set A :

$$
\begin{aligned}
\mathbb{P}\left(\boldsymbol{X}_{T} \in A\right) & =\sum_{k=1}^{\infty} \mathbb{P}\left(\boldsymbol{X}_{k} \in A, T=k\right) \\
& =\sum_{k=1}^{\infty} \mathbb{P}\left(\boldsymbol{X}_{k} \in A, U_{k}<\frac{p\left(\boldsymbol{X}_{k}\right)}{C q\left(\boldsymbol{X}_{k}\right)}, U_{k-1} \geq \frac{p\left(\boldsymbol{X}_{k-1}\right)}{C q\left(\boldsymbol{X}_{k-1}\right)}, \ldots, U_{1} \geq \frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right) \\
& =\sum_{k=1}^{\infty} \mathbb{P}\left(\boldsymbol{X}_{1} \in A, U_{1}<\frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right) \mathbb{P}\left(U_{1} \geq \frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right)^{k-1} \\
& =\frac{\mathbb{P}\left(\boldsymbol{X}_{1} \in A, U_{1}<\frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right)}{\mathbb{P}\left(U_{1}<\frac{p\left(\boldsymbol{X}_{1}\right)}{\left.C q \boldsymbol{X}_{1}\right)}\right)} \\
& =\frac{\mathbb{E}_{\boldsymbol{X}}\left[\mathbf { 1 } _ { \boldsymbol { X } _ { 1 } \in A } \mathbb { E } _ { U } \left[\mathbf{1}_{\left.U_{1}<\frac{p\left(\boldsymbol{X}_{1}\right)}{}\right)}^{C q\left(\boldsymbol{X}_{1}\right)}\right.\right.}{\mathbb{E}_{\boldsymbol{X}}\left[\mathbb{E}_{U}\left[\mathbf{1}_{\left.U_{1}<\frac{p\left(\boldsymbol{X}_{1}\right)}{}\right]}^{C q\left(\boldsymbol{X}_{1}\right)}\right]\right.} \\
& =\frac{\mathbb{E}_{\boldsymbol{X}}\left[\mathbf{1}_{\boldsymbol{X}_{1} \in A} \frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right]}{\mathbb{E}_{\boldsymbol{X}}\left[\frac{p\left(\boldsymbol{X}_{1}\right)}{C q\left(\boldsymbol{X}_{1}\right)}\right]} \\
& =\frac{\int \mathbf{1}_{\boldsymbol{x} \in A} \frac{p(\boldsymbol{x})}{C q(\boldsymbol{x})} q(\boldsymbol{x}) d \boldsymbol{x}}{\int \frac{p(\boldsymbol{x})}{C(\boldsymbol{x})} d \boldsymbol{x}} \\
& =\int \mathbf{1}_{\boldsymbol{x} \in A} p(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Estimation of the probability of a rare event

- We look for an estimator for

$$
P=\mathbb{P}(f(\boldsymbol{X}) \geq a)
$$

where a is large (so that $P \ll 1$).

- Possible by Monte Carlo:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{f\left(\boldsymbol{X}_{k}\right) \geq a}
$$

where $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is a n-sample of \boldsymbol{X}.
Relative error:

$$
\frac{\mathbb{E}\left[\left(\hat{P}_{n}-P\right)^{2}\right]^{1 / 2}}{P}=\frac{1}{\sqrt{n}} \frac{\operatorname{Var}\left(\mathbf{1}_{f(\boldsymbol{X}) \geq a}\right)^{1 / 2}}{P}=\frac{1}{\sqrt{n}} \frac{\sqrt{1-P}}{\sqrt{P}}{ }^{P}<1 \frac{1}{\sqrt{n P}}
$$

\hookrightarrow We need $n P>1$ so that the relative error is smaller than 1 (not surprising)!
\hookrightarrow We need variance reduction techniques.

Uncertainty propagation by metamodels

The complex code/experiment f is replaced by a metamodel (reduced model) f_{r} and one of the previous techniques is applied with f_{r} (analytic, quadrature, Monte Carlo).
\rightarrow It is possible to call many times the metamodel.
\rightarrow The choice of the metamodel is critical.
\rightarrow The error control is not simple.

Taylor expansions

- We approximate the output $Y=f(\boldsymbol{X})$ by a Taylor series expansion $Y_{\mathrm{r}}=f_{\mathrm{r}}(\boldsymbol{X})$.
- Example:
- We want to estimate $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$ for $Y=f(\boldsymbol{X})$ with X_{i} uncorrelated, $\mathbb{E}\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$ known, σ_{i}^{2} small.
- We approximate $Y=f(\boldsymbol{X})$ by $Y_{\mathrm{r}}=f_{\mathrm{r}}(\boldsymbol{X})=f(\boldsymbol{\mu})+\nabla f(\boldsymbol{\mu}) \cdot(\boldsymbol{X}-\boldsymbol{\mu})$. We find:

$$
\mathbb{E}[Y] \simeq \mathbb{E}\left[Y_{\mathrm{r}}\right]=f(\boldsymbol{\mu}), \quad \operatorname{Var}(Y) \simeq \operatorname{Var}\left(Y_{\mathrm{r}}\right)=\sum_{i=1}^{d} \partial_{x_{i}} f(\boldsymbol{\mu})^{2} \sigma_{i}^{2}
$$

We just need to compute $f(\boldsymbol{\mu})$ and $\nabla f(\boldsymbol{\mu})$ (evaluation of the gradient by finite differences, about $d+1$ calls to f).

- Rapid, analytic, allows to evaluate approximately central trends of the output (mean, variance).
- Suitable for small variations of the input parameters and a smooth model (that can be linearized).
- Local approach. In general, no error control.

Reliability method for estimation of the probability of a rare event:

$$
P=\mathbb{P}(f(\boldsymbol{X}) \geq a)=\mathbb{P}(\boldsymbol{X} \in \mathcal{F})=\int_{\mathcal{F}} p(\boldsymbol{x}) d \boldsymbol{x}, \quad \mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{d}, f(\boldsymbol{x}) \geq a\right\}
$$

- The FORM-SORM method is analytic but approximate, without control error.
- The X_{i} are assumed to be independent and with Gaussian distribution with mean zero and variance one (or we use an isoprobabilist transform to deal with this situation): $p(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{|\boldsymbol{x}|^{2}}{2}\right)$.
- One gets by optimization (with contraint) the "design point" \boldsymbol{x}_{a} (the most probable failure point), i.e. $\boldsymbol{x}_{a}=\operatorname{argmin}\left\{\|\boldsymbol{x}\|^{2}\right.$ s.t. $\left.f(\boldsymbol{x}) \geq a\right\}$.
- One approximates the failure surface $\left\{\boldsymbol{x} \in \mathbb{R}^{d}, f(\boldsymbol{x})=a\right\}$ by a smooth surface $\hat{\mathcal{F}}$ that allows for an analytic calculation $\hat{P}=\int_{\hat{\mathcal{F}}} p(\boldsymbol{x}) d \boldsymbol{x}$:
- a hyperplane for FORM
(and then $\hat{P}=\frac{1}{2} \operatorname{erfc}\left(\frac{\left|\boldsymbol{x}_{a}\right|}{\sqrt{2}}\right)$),
- a quadratic form for SORM (and then $\hat{P}=$ Breitung's formula).

Cf: O. Ditlevsen et H.O. Madsen,
Structural reliability methods, Wiley, 1996.

Variance reduction techniques

Goal: reduce the variance of the Monte Carlo estimator:

$$
\mathbb{E}\left[\left(\hat{I}_{n}-I\right)^{2}\right]=\frac{1}{n} \operatorname{Var}(h(\boldsymbol{X}))
$$

where $h(\boldsymbol{x})=g(f(\boldsymbol{x})), I=\mathbb{E}[h(\boldsymbol{X})], \widehat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right)$.

- The methods
- Importance sampling
- Control variates
- Antithetic variables
- Stratification
reduce the constant without changing $1 / n$, stay close to the Monte Carlo method (parallelizable).
- The methods
- Quasi-Monte Carlo
aim at changing $1 / n$.
- The methods
- Interacting particle systems (genetic algorithms, subset sampling,...)
are more different from Monte Carlo (sequential).

Importance sampling

- The goal is to estimate $I=\mathbb{E}[h(\boldsymbol{X})]$ for \boldsymbol{X} a random vector and $h(\boldsymbol{x})=g(f(\boldsymbol{x}))$ a deterministic function.
- Observation: the representation of I as an expectation is not unique. If \boldsymbol{X} has the pdf $p(\boldsymbol{x})$:

$$
I=\mathbb{E}_{p}[h(\boldsymbol{X})]=\int h(\boldsymbol{x}) p(\boldsymbol{x}) d x=\int \frac{h(\boldsymbol{x}) p(\boldsymbol{x})}{q(\boldsymbol{x})} q(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{q}\left[\frac{h(\boldsymbol{X}) p(\boldsymbol{X})}{q(\boldsymbol{X})}\right]
$$

The choice of the pdf q depends on the user.

- Idea: when we know that $h(\boldsymbol{X})$ is sensitive to certain values of \boldsymbol{X}, instead of sampling \boldsymbol{X}_{k} with the original pdf $p(\boldsymbol{x})$ of \boldsymbol{X}, a biased pdf $q(\boldsymbol{x})$ is used that makes more likely the "important" realizations.
- Using the representation

$$
I=\mathbb{E}_{p}[h(\boldsymbol{X})]=\mathbb{E}_{q}\left[h(\boldsymbol{X}) \frac{p(\boldsymbol{X})}{q(\boldsymbol{X})}\right]
$$

we can propose the estimator:

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right) \frac{p\left(\boldsymbol{X}_{k}\right)}{q\left(\boldsymbol{X}_{k}\right)}
$$

where $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is a n-sample with the distribution with pdf q.

- The estimator is unbiased:

$$
\begin{aligned}
\mathbb{E}_{q}\left[\widehat{I}_{n}\right] & =\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{q}\left[h\left(\boldsymbol{X}_{k}\right) \frac{p}{q}\left(\boldsymbol{X}_{k}\right)\right]=\mathbb{E}_{q}\left[h(\boldsymbol{X}) \frac{p}{q}(\boldsymbol{X})\right] \\
& =\int h(\boldsymbol{x}) \frac{p}{q}(\boldsymbol{x}) q(\boldsymbol{x}) d \boldsymbol{x}=\int h(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}=\mathbb{E}_{p}[h(\boldsymbol{X})]=I
\end{aligned}
$$

- The estimator is convergent:

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right) \frac{p\left(\boldsymbol{X}_{k}\right)}{q\left(\boldsymbol{X}_{k}\right)} \xrightarrow{n \rightarrow \infty} \mathbb{E}_{q}\left[h(\boldsymbol{X}) \frac{p(\boldsymbol{X})}{q(\boldsymbol{X})}\right]=\mathbb{E}_{p}[h(\boldsymbol{X})]=I
$$

- The variance of the estimator is:

$$
\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n} \operatorname{Var}_{q}\left(h(\boldsymbol{X}) \frac{p(\boldsymbol{X})}{q(\boldsymbol{X})}\right)=\frac{1}{n}\left(\mathbb{E}_{p}\left[h(\boldsymbol{X})^{2} \frac{p(\boldsymbol{X})}{q(\boldsymbol{X})}\right]-\mathbb{E}_{p}[h(\boldsymbol{X})]^{2}\right)
$$

By a judicious choice of q the variance can be dramatically reduced.

- Critical points: it is necessary to know the likelihood ratio $\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}$ and to know how to simulate \boldsymbol{X} with the pdf q.

- Optimal importance sampling.

The best importance distribution is the one that minimizes the variance $\operatorname{Var}\left(\hat{I}_{n}\right)$.
It is the solution of the minimization problem: find the $\operatorname{pdf} q(\boldsymbol{x})$ minimizing

$$
\mathbb{E}_{p}\left[h(\boldsymbol{X})^{2} \frac{p(\boldsymbol{X})}{q(\boldsymbol{X})}\right]=\int h(\boldsymbol{x})^{2} \frac{p^{2}(\boldsymbol{x})}{q(\boldsymbol{x})} d \boldsymbol{x}
$$

Solution (when h is nonnegative-valued):

$$
q_{\mathrm{opt}}(\boldsymbol{x})=\frac{h(\boldsymbol{x}) p(\boldsymbol{x})}{\int h\left(\boldsymbol{x}^{\prime}\right) p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}}
$$

We then find

$$
\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n}\left(\mathbb{E}_{p}\left[h(\boldsymbol{X})^{2} \frac{p(\boldsymbol{X})}{q_{\mathrm{opt}}(\boldsymbol{X})}\right]-\mathbb{E}_{p}[h(\boldsymbol{X})]^{2}\right)=0!
$$

Pratically: the denominator of $q_{\text {opt }}(\boldsymbol{x})$ is the desired quantity $\mathbb{E}[h(\boldsymbol{X})]$, which is unknown. Therefore the optimal importance distribution is unknown (principle for an adaptive method).

- Example: We want to estimate

$$
I=\mathbb{E}[h(X)]
$$

with $X \sim \mathcal{N}(0,1)$ and $h(x)=1_{[4, \infty)}(x)$.

$$
I=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathbf{1}_{[4, \infty)}(x) e^{-\frac{x^{2}}{2}} d x=\frac{1}{2} \operatorname{erfc}\left(\frac{4}{\sqrt{2}}\right) \simeq 3.1710^{-5}
$$

Monte Carlo: With a sample $\left(X_{k}\right)_{k=1, \ldots, n}$ with the original distribution $\mathcal{N}(0,1)$.

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{k} \geq 4}, \quad X_{k} \sim \mathcal{N}(0,1)
$$

We have $\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n} 3.1710^{-5}$.

Importance sampling: With a sample $\left(X_{k}\right)_{k=1, \ldots, n}$ with the distribution $\mathcal{N}(4,1)$.

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{k} \geq 4} \frac{e^{-\frac{X_{k}^{2}}{2}}}{e^{-\frac{\left(X_{k}-4\right)^{2}}{2}}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{k} \geq 4} e^{-4 X_{k}+8}, \quad X_{k} \sim \mathcal{N}(4,1)
$$

We have $\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n} 5.5310^{-8}$.
The IS method needs 1000 times less simulations to reach the same precision as MC!

Warning: we should not bias too much.
Importance sampling: With a sample $\left(X_{k}\right)_{k=1, \ldots, n}$ with the distribution $\mathcal{N}(\mu, 1)$.

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{k} \geq 4} \frac{e^{-\frac{X_{k}^{2}}{2}}}{e^{-\frac{\left(X_{k}-\mu\right)^{2}}{2}}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{k} \geq 4} e^{-\mu X_{k}+\frac{\mu^{2}}{2}}, \quad X_{k} \sim \mathcal{N}(\mu, 1)
$$

We have $\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n} \frac{e^{\mu^{2}}}{2} \operatorname{erfc}\left(\frac{4+\mu}{\sqrt{2}}\right)-\frac{1}{n} I^{2}$, which gives the normalized relative error $\sqrt{n} \mathbb{E}\left[\left(\hat{I}_{n}-I\right)^{2}\right]^{1 / 2} / I$:

If the bias is too large, the fluctuations of the likelihood ratios become large.

- Example: we want to estimate

$$
I=\mathbb{E}[h(X)]
$$

with $X \sim \mathcal{N}(0,1)$ and $h(x)=\exp (x)$.

$$
I=\frac{1}{\sqrt{2 \pi}} \int e^{x} e^{-\frac{x^{2}}{2}} d x=e^{\frac{1}{2}}
$$

The large values of X are important.
Importance sampling: With a sample $\left(X_{k}\right)_{k=1, \ldots, n}$ with the distribution $\mathcal{N}(\mu, 1)$, $\mu>0$.

$$
\begin{gathered}
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(X_{k}\right) \frac{e^{-\frac{\left[X_{k}\right]^{2}}{2}}}{e^{-\frac{\left[X_{k}-\mu\right]^{2}}{2}}}=\frac{1}{N} \sum_{k=1}^{n} h\left(X_{k}\right) e^{-\mu X_{k}+\frac{\mu^{2}}{2}} \\
\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n}\left(e^{\mu^{2}-2 \mu+2}-e^{1}\right)
\end{gathered}
$$

Monte Carlo $\mu=0: \operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n}\left(e^{2}-e^{1}\right)$
Optimal importance sampling $\mu=1: \operatorname{Var}\left(\hat{I}_{n}\right)=0$.

Control variates

- The goal is to estimate $I=\mathbb{E}[h(\boldsymbol{X})]$ for \boldsymbol{X} a random vector and $h(\boldsymbol{x})=g(f(\boldsymbol{x}))$ a deterministic function.
- Assume that we have a reduced model $f_{\mathrm{r}}(\boldsymbol{X})$.
- Importance sampling method: first we evaluate (we approximate) the optimal density $q_{\text {opt, } \mathrm{r}}(\boldsymbol{x})=\frac{g\left(f_{\mathrm{r}}(\boldsymbol{x})\right) p(\boldsymbol{x})}{I_{\mathrm{r}}}$, with $I_{\mathrm{r}}=\int g\left(f_{\mathrm{r}}(\boldsymbol{x})\right) p(\boldsymbol{x}) d \boldsymbol{x}$, then we use it as a biased density for estimating I (dangerous, use conservative version).
- Control variates method:

We denore $h(\boldsymbol{x})=g(f(\boldsymbol{x})), h_{\mathrm{r}}(\boldsymbol{x})=g\left(f_{\mathrm{r}}(\boldsymbol{x})\right)$.
We assume that we know $I_{\mathrm{r}}=\mathbb{E}\left[h_{\mathrm{r}}(\boldsymbol{X})\right]$.
By considering the representation

$$
I=\mathbb{E}[h(\boldsymbol{X})]=I_{\mathrm{r}}+\mathbb{E}\left[h(\boldsymbol{X})-h_{\mathrm{r}}(\boldsymbol{X})\right]
$$

we propose the estimator:

$$
\hat{I}_{n}=I_{\mathrm{r}}+\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right)-h_{\mathrm{r}}\left(\boldsymbol{X}_{k}\right)
$$

where $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is a n-sample (with the pdf p).

- Estimator:

$$
\hat{I}_{n}=I_{\mathrm{r}}+\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right)-h_{\mathrm{r}}\left(\boldsymbol{X}_{k}\right)
$$

- The estimator is unbiased:

$$
\begin{aligned}
\mathbb{E}\left[\widehat{I}_{n}\right] & =I_{\mathrm{r}}+\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[h\left(\boldsymbol{X}_{k}\right)-h_{\mathrm{r}}\left(\boldsymbol{X}_{k}\right)\right]=I_{\mathrm{r}}+\mathbb{E}[h(\boldsymbol{X})]-\mathbb{E}\left[h_{\mathrm{r}}(\boldsymbol{X})\right] \\
& =I_{\mathrm{r}}+\mathbb{E}[h(\boldsymbol{X})]-I_{\mathrm{r}}=I
\end{aligned}
$$

- The estimator is convergent:

$$
\widehat{I}_{n} \xrightarrow{n \rightarrow \infty} I_{\mathrm{r}}+\mathbb{E}\left[h(\boldsymbol{X})-h_{\mathrm{r}}(\boldsymbol{X})\right]=I
$$

- The variance of the estimator is:

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)=\frac{1}{n} \operatorname{Var}\left[h(\boldsymbol{X})-h_{\mathrm{r}}(\boldsymbol{X})\right]
$$

\hookrightarrow The use of a reduced model can reduce the variance.

- Example: we want to estimate

$$
I=\mathbb{E}[h(X)]
$$

with $X \sim \mathcal{U}(0,1), h(x)=\exp (x)$.
Result: $I=e-1 \simeq 1.72$.

Monte Carlo.

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \exp \left[X_{k}\right]
$$

Variance of the MC estimator $=\frac{1}{n}(2 e-1) \simeq \frac{1}{n} 4.44$.

Control variates. Reduced model: $h_{\mathrm{r}}(x)=1+x$ (here $I_{\mathrm{r}}=\frac{3}{2}$). CV estimator:

$$
\hat{I}_{n}=I_{\mathrm{r}}+\frac{1}{n} \sum_{k=1}^{n}\left\{\exp \left[X_{k}\right]-1-X_{k}\right\}
$$

Variance of the CV estimator $=\frac{1}{n}\left(3 e-\frac{e^{2}}{2}-\frac{53}{12}\right) \simeq \frac{1}{n} 0.044$.
The CV method needs 100 times less simulations to reach the same precision as MC!

- Application: estimation of

$$
I=\mathbb{E}[g(f(\boldsymbol{X}))]
$$

We have a reduced model f_{r} of the full code f. The ratio between the computational cost of one call of f and one call of f_{r} is $q>1$.

Estimator

$$
\hat{I}_{n}=\frac{1}{n_{\mathrm{r}}} \sum_{k=1}^{n_{\mathrm{r}}} h_{\mathrm{r}}\left(\tilde{\boldsymbol{X}}_{k}\right)+\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right)-h_{\mathrm{r}}\left(\boldsymbol{X}_{k}\right)
$$

with $n_{\mathrm{r}}>n, h(\boldsymbol{x})=g(f(\boldsymbol{x})), h_{\mathrm{r}}(\boldsymbol{x})=g\left(f_{\mathrm{r}}(\boldsymbol{x})\right)$.
Allocation between calls to the full code and calls to the reduced model can be optimized with the contraint $n_{\mathrm{r}} / q+n(1+1 / q)=n_{\text {tot }}$.
Classical trade-off between approximation error and estimation error.

Used when $f(\boldsymbol{X})$ is the solution of an ODE or PDE with fine grid, while $f_{\mathrm{r}}(\boldsymbol{X})$ is the solution obtained with a coarse grid (MultiLevel Monte Carlo).

- Not very useful for the estimation of the probability of a rare event.

Example: we want to estimate

$$
I=\mathbb{P}(f(X) \geq 2.7)
$$

with $X \sim \mathcal{U}(0,1), f(x)=\exp (x)$.
Result: $I=1-\ln (2.7) \simeq 6.710^{-3}$.
The reduced model $f_{\mathrm{r}}(x)=1+x$ is here useless.
The reduced model should be good in the important region.

Stratification

Principle: The sample $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is enforced to obey theoretical distributions in some "strata".
Method used in polls (representative sample).
Here: we want to estimate $\mathbb{E}[g(f(\boldsymbol{X}))]$, \boldsymbol{X} with values in D.

- Two ingredients:
i) A partition of the state space $D: D=\bigcup_{i=1}^{m} D_{i}$. We know $p_{i}=\mathbb{P}\left(\boldsymbol{X} \in D_{i}\right)$.
ii) Total probability formula:

$$
I=\mathbb{E}[g(f(\boldsymbol{X}))]=\sum_{i=1}^{m} \underbrace{\mathbb{E}\left[g(f(\boldsymbol{X})) \mid \boldsymbol{X} \in D_{i}\right]}_{J^{(i)}} \underbrace{\mathbb{P}\left(\boldsymbol{X} \in D_{i}\right)}_{p_{i}}
$$

- Estimation:

1) For all $i=1, \ldots, m, I_{i}$ is estimated by Monte Carlo with n_{i} simulations:

$$
\widehat{J}_{n_{i}}^{(i)}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} g\left(f\left(\boldsymbol{X}_{j}^{(i)}\right)\right), \quad \boldsymbol{X}_{j}^{(i)} \sim \mathcal{L}\left(\boldsymbol{X} \mid \boldsymbol{X} \in D_{i}\right)
$$

2) The estimator is

$$
\widehat{I}_{n}=\sum_{i=1}^{m} \widehat{J}_{n_{i}}^{(i)} p_{i}
$$

$$
\widehat{I}_{n}=\sum_{i=1}^{m} p_{i} \widehat{J}_{n_{i}}^{(i)}, \quad \widehat{J}_{n_{i}}^{(i)}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} g\left(f\left(\boldsymbol{X}_{j}^{(i)}\right)\right), \quad \boldsymbol{X}_{j}^{(i)} \sim \mathcal{L}\left(\boldsymbol{X} \mid \boldsymbol{X} \in D_{i}\right)
$$

The total number of simulations is $n=\sum_{i=1}^{m} n_{i}$.

- The estimator is unbiased, convergent and its variance is

$$
\operatorname{Var}\left(\widehat{g_{n}}\right)_{S}=\sum_{i=1}^{m} p_{i}^{2} \operatorname{Var}\left(\widehat{J}_{n_{i}}^{(i)}\right)=\sum_{i=1}^{m} p_{i}^{2} \frac{\sigma_{i}^{2}}{n_{i}}, \text { with } \sigma_{i}^{2}=\operatorname{Var}\left(g(f(\boldsymbol{X})) \mid \boldsymbol{X} \in D_{i}\right)
$$

The user is free to choose the allocations n_{i} (with the constraint $\sum_{i=1}^{m} n_{i}=n$).

- Proportional stratification: $n_{i}=p_{i} n$.

$$
\widehat{I}_{n}=\sum_{i=1}^{m} \frac{p_{i}}{n_{i}} \sum_{j=1}^{n_{i}} g\left(f\left(\boldsymbol{X}_{j}^{(i)}\right)\right)=\frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} g\left(f\left(\boldsymbol{X}_{j}^{(i)}\right)\right), \quad \boldsymbol{X}_{j}^{(i)} \sim \mathcal{L}\left(\boldsymbol{X} \mid \boldsymbol{X} \in D_{i}\right)
$$

Then

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)_{S P}=\frac{1}{n} \sum_{i=1}^{m} p_{i} \sigma_{i}^{2}
$$

We have:

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)_{M C}=\frac{1}{n} \operatorname{Var}(g(f(\boldsymbol{X}))) \geq \frac{1}{n} \sum_{i=1}^{m} p_{i} \sigma_{i}^{2}=\operatorname{Var}\left(\widehat{I}_{n}\right)_{S P}
$$

Proof: We have

$$
\begin{aligned}
\mathbb{E}[h(\boldsymbol{X})]^{2} & =\left(\sum_{i=1}^{m} p_{i} \mathbb{E}\left[h(\boldsymbol{X}) \mid \boldsymbol{X} \in D_{i}\right]\right)^{2} \\
& \leq\left(\sum_{i=1}^{m} p_{i}\right)\left(\sum_{i=1}^{m} p_{i} \mathbb{E}\left[h(\boldsymbol{X}) \mid \boldsymbol{X} \in D_{i}\right]^{2}\right) \\
& =\sum_{i=1}^{m} p_{i} \mathbb{E}\left[h(\boldsymbol{X}) \mid \boldsymbol{X} \in D_{i}\right]^{2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{i=1}^{m} p_{i} \sigma_{i}^{2} & =\sum_{i=1}^{m} p_{i}\left(\mathbb{E}\left[h(\boldsymbol{X})^{2} \mid \boldsymbol{X} \in D_{i}\right]-\mathbb{E}\left[h(\boldsymbol{X}) \mid \boldsymbol{X} \in D_{i}\right]^{2}\right) \\
& =\mathbb{E}\left[h(\boldsymbol{X})^{2}\right]-\sum_{i=1}^{m} p_{i} \mathbb{E}\left[h(\boldsymbol{X}) \mid \boldsymbol{X} \in D_{i}\right]^{2} \\
& \leq \mathbb{E}\left[h(\boldsymbol{X})^{2}\right]-\mathbb{E}[h(\boldsymbol{X})]^{2}=\operatorname{Var}(h(\boldsymbol{X}))
\end{aligned}
$$

However, the proportional allocation is not optimal !

- The optimal allocation is the one that minimizes the variance
$\operatorname{Var}\left(\widehat{I}_{n}\right)_{S}=\sum_{i=1}^{m} p_{i}^{2} \frac{\sigma_{i}^{2}}{n_{i}}$.
It is the solution of the minimization problem: find $\left(n_{i}\right)_{i=1, \ldots, m}$ minimizing

$$
\sum_{i=1}^{m} p_{i}^{2} \frac{\sigma_{i}^{2}}{n_{i}} \text { with the constraint } \sum_{i=1}^{m} n_{i}=n
$$

Solution (optimal allocation, obtained with Lagrange multiplier method):

$$
n_{i}=n \frac{p_{i} \sigma_{i}}{\sum_{l=1}^{m} p_{l} \sigma_{l}}
$$

The minimal variance is

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)_{S O}=\frac{1}{n}\left(\sum_{i=1}^{m} p_{i} \sigma_{i}\right)^{2}
$$

We have:

$$
\operatorname{Var}\left(\widehat{I}_{n}\right)_{S O} \leq \operatorname{Var}\left(\widehat{I}_{n}\right)_{S P} \leq \operatorname{Var}\left(\widehat{I}_{n}\right)_{M C}
$$

Practically: the σ_{i} 's are unknown, therefore the optimal allocation is unknown (principle of an adaptive method).

- Example: we want to estimate

$$
\mathbb{E}[g(f(X))]
$$

with $X \sim \mathcal{U}(-1,1), f(x)=\exp (x)$ and $g(y)=y$.
Result: $\mathbb{E}[f(X)]=\sinh (1) \simeq 1.18$.
Monte Carlo. With a sample X_{1}, \ldots, X_{n} with the distribution $\mathcal{U}(-1,1)$

$$
\widehat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \exp \left[X_{k}\right]
$$

Variance of the estimator $=\frac{1}{n}\left(\frac{1}{2}-\frac{e^{-2}}{2}\right) \simeq \frac{1}{n} 0.43$.

Proportional stratification. With a sample

- $X_{1}, \ldots, X_{n / 2}$ with the distribution $\mathcal{U}(-1,0)$,
- $X_{n / 2+1}, \ldots, X_{n}$ with the distribution $\mathcal{U}(0,1)$.

$$
\widehat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n / 2} \exp \left[X_{k}\right]+\frac{1}{n} \sum_{k=n / 2+1}^{n} \exp \left[X_{k}\right]=\frac{1}{n} \sum_{k=1}^{n} \exp \left[X_{k}\right]
$$

Variance of the PS estimator $\simeq \frac{1}{n} 0.14$.
The PS method needs 3 times less simulations to reach the same precision as MC.

Nonproportional stratification. With a sample

- $X_{1}, \ldots, X_{n / 4}$ with the distribution $\mathcal{U}(-1,0)$,
- $X_{n / 4+1}, \ldots, X_{n}$ with the distribution $\mathcal{U}(0,1)$.

$$
\widehat{I}_{n}=\frac{2}{n} \sum_{k=1}^{n / 4} \exp \left[X_{k}\right]+\frac{1}{2 n} \sum_{k=n / 4+1}^{n} \exp \left[X_{k}\right]
$$

Variance of the estimator $\simeq \frac{1}{n} 0.048$.
The stratification method needs 9 times less simulations to reach the same precision as MC.

Antithetic variables

- We want to compute

$$
I=\int_{[0,1]^{d}} h(\boldsymbol{x}) d \boldsymbol{x}
$$

Monte Carlo with a n-sample $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$ with the distribution $\mathcal{U}\left([0,1]^{d}\right)$:

$$
\begin{gathered}
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(\boldsymbol{X}_{k}\right) \\
\mathbb{E}\left[\left(\hat{I}_{n}-I\right)^{2}\right]=\frac{1}{n} \operatorname{Var}(h(\boldsymbol{X}))=\frac{1}{n}\left(\int_{[0,1]^{d}} h^{2}(\boldsymbol{x}) d \boldsymbol{x}-I^{2}\right)
\end{gathered}
$$

- We consider the representations

$$
I=\int_{[0,1]^{d}} h(1-\boldsymbol{x}) d \boldsymbol{x} \text { and } I=\int_{[0,1]^{d}} \frac{h(\boldsymbol{x})+h(1-\boldsymbol{x})}{2} d \boldsymbol{x}
$$

Monte Carlo with a $n / 2$-sample $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n / 2}\right)$ with the distribution $\mathcal{U}\left([0,1]^{d}\right)$:

$$
\tilde{I}_{n}=\frac{1}{n} \sum_{k=1}^{n / 2} h\left(\boldsymbol{X}_{k}\right)+h\left(1-\boldsymbol{X}_{k}\right)
$$

- Monte Carlo estimator with the sample
$\left(\tilde{\boldsymbol{X}}_{1}, \ldots, \tilde{\boldsymbol{X}}_{n}\right):=\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n / 2}, 1-\boldsymbol{X}_{1}, \ldots, 1-\boldsymbol{X}_{n / 2}\right)$ that is not i.i.d.:

$$
\tilde{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} h\left(\tilde{\boldsymbol{X}}_{k}\right)
$$

The function f is called n times.

- Error:

$$
\begin{aligned}
\mathbb{E}\left[\left(\tilde{I}_{n}-I\right)^{2}\right] & =\frac{1}{n}(\operatorname{Var}(h(\boldsymbol{X}))+\operatorname{Cov}(h(\boldsymbol{X}), h(1-\boldsymbol{X}))) \\
& =\frac{1}{n}\left(\int_{[0,1]^{d}} h^{2}(\boldsymbol{x})+h(\boldsymbol{x}) h(1-\boldsymbol{x}) d \boldsymbol{x}-2 I^{2}\right)
\end{aligned}
$$

The variance is reduced if $\operatorname{Cov}(h(\boldsymbol{X}), h(1-\boldsymbol{X}))<0$. Sufficient condition: h is monotoneous.
Proof: If $\boldsymbol{X}, \boldsymbol{X}^{\prime}$ i.i.d.

$$
\begin{aligned}
{\left[h(\boldsymbol{X})-h\left(\boldsymbol{X}^{\prime}\right)\right]\left[-h(1-\boldsymbol{X})+h\left(1-\boldsymbol{X}^{\prime}\right)\right] } & \geq 0 \text { a.s. } \\
-2 \mathbb{E}[h(\boldsymbol{X}) h(1-\boldsymbol{X})]+2 \mathbb{E}[h(\boldsymbol{X})]^{2} & \geq 0
\end{aligned}
$$

- Example:

$$
I=\int_{0}^{1} \frac{1}{1+x} d x
$$

Result: $I=\ln 2$.

Monte Carlo:

$$
\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+X_{k}}
$$

$\operatorname{Var}\left(\hat{I}_{n}\right)=\frac{1}{n}\left(\int_{0}^{1}(1+x)^{-2} d x-\ln 2^{2}\right)=\frac{1}{n}\left(\frac{1}{2}-\ln 2^{2}\right) \simeq \frac{1}{n} 1.9510^{-2}$.

Antithetic variables:

$$
\tilde{I}_{n}=\frac{1}{n} \sum_{k=1}^{n / 2} \frac{1}{1+X_{k}}+\frac{1}{2-X_{k}}
$$

$\operatorname{Var}\left(\tilde{I}_{n}\right)=\frac{2}{n}\left(\int_{0}^{1}\left(\frac{1}{2(1+x)}+\frac{1}{2(2-x)}\right)^{2} d x-\ln 2^{2}\right) \simeq \frac{1}{n} 1.210^{-3}$.
The AV method requires 15 times less simulations than MC.

- More generally: one needs to find a pair $(\boldsymbol{X}, \tilde{\boldsymbol{X}})$ such that $h(\boldsymbol{X})$ and $h(\tilde{\boldsymbol{X}})$ have the same distribution and $\operatorname{Cov}(h(\boldsymbol{X}), h(\tilde{\boldsymbol{X}}))<0$.
- Monte Carlo with an i.i.d. sample $\left(\left(\boldsymbol{X}_{1}, \tilde{\boldsymbol{X}}_{1}\right), \ldots,\left(\boldsymbol{X}_{n / 2}, \tilde{\boldsymbol{X}}_{n / 2}\right)\right)$:

$$
\begin{gathered}
\tilde{I}_{n}=\frac{1}{n} \sum_{k=1}^{n / 2} h\left(\boldsymbol{X}_{k}\right)+h\left(\tilde{\boldsymbol{X}}_{k}\right) \\
\mathbb{E}\left[\left(\tilde{I}_{n}-I\right)^{2}\right]=\frac{1}{n}(\operatorname{Var}(h(\boldsymbol{X}))+\operatorname{Cov}(h(\boldsymbol{X}), h(\tilde{\boldsymbol{X}})))
\end{gathered}
$$

- Recent application: computation of effective tensors in stochastic homogenization (the effective tensor is the expectation of a functional of the solution of an elliptic PDE with random coefficients; antithetic pairs of the realizations of the composite medium are sampled; gain by a factor 3 ; in fact, better results with control variates; cf C. Le Bris, F. Legoll).
- Not very useful for the estimation of probabilities of rare events.

Low-discrepancy sequences (quasi Monte Carlo)

- The sample $\left(\boldsymbol{X}_{k}\right)_{k=1, \ldots, n}$ is selected so as to fill the (random) gaps that appear in a MC sample (for a uniform sampling of an hypercube).
- This technique
- can reduce the variance if h has good properties (bounded variation in the sense
of Hardy and Krause); the asymptotic variance can be of the form
$C_{d}(\log n)^{s(d)} / n^{2}$,
- can be applied in low-moderate dimension,
- can be viewed as a compromise between quadrature and MC.
- A few properties:
- the error estimate is deterministic, but often not precise (Koksma-Hlawka inequality),
- the independence property is lost (\rightarrow it is not easy to add points),
- the method is not adapted for the estimation of the probability of a rare event.

Cf lecture by G. Pagès.

Example: Monte Carlo sample.

$$
n=100
$$

$n=1000$

$$
n=10000
$$

Example: Sobol sequence in dimension 2.

