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• Introduction to uncertainty quantification.

• Estimation of the probability of a rare event (such as the failure of a complex

system).

• Standard methods (quadrature, Monte Carlo).

• Advanced Monte Carlo methods (variance reduction techniques).

• Interacting particle systems.

• Quantile estimation.
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Uncertainty quantification

• General problem:

• How can we model the uncertainties in physical and numerical models ?

• How can we estimate (quantify) the variability of the output of a code or an

experiment as a function of the variability of the input parameters ?

• How can we estimate quantify the sensitivity or the variability of the output of a

code or an experiment with respect to one particular parameter ?
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Uncertainty propagation

• Context: numerical code (black box) or experiment

Y = f(X)

with Y = output

X = random input parameters, with known distribution (with pdf p(x))

P(X ∈ A) =

∫

A

p(x)dx for any A ∈ B(Rd)

f = deterministic function R
d → R (computationally expensive).

• Goal: estimation of a quantity of the form

E[g(Y )]

with an “error bar” and the minimal number of simulations.

Examples (for a real-valued output Y ):

• g(y) = y → mean of Y , i.e. E[Y ]

• g(y) = y2 → variance of Y , i.e. Var(Y ) = E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2

• g(y) = 1[a,∞)(y) → probability P(Y ≥ a).
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Analytic method

• The quantity to be estimated is a d-dimensional integral:

I = E[g(Y )] = E[h(X)] =

∫

Rd

h(x)p(x)dx

where p(x) is the pdf of X and h(x) = g(f(x)).

• In simple cases (when the pdf p and the function h have explicit expressions),

one can sometimes evaluate the integral exactly (exceptional situation).
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Quadrature method

• The quantity to be estimated is a d-dimensional integral:

I = E[g(Y )] = E[h(X)] =

∫

Rd

h(x)p(x)dx

where p(x) is the pdf of X and h(x) = g(f(x)).

• If p(x) =
∏d

i=1 p0(xi), then it is possible to apply Gaussian quadrature with a

tensorized grid with nd points:

Î =
n∑

j1=1

· · ·
n∑

jd=1

ρj1 · · · ρjdh(ξj1 , . . . , ξjd)

with the weights (ρj)j=1,...,n and the points (ξj)j=1,...,n associated to the

quadrature with weighting function p0.

• There exist quadrature methods with sparse grids (cf Smolyak).

• Quadrature methods are efficient when:

- the function x → h(x) is smooth (and not only f),

- the dimension d is “small” (even with sparse grids).

They require many calls.
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Monte Carlo method

Principle: replace the statistical expectation E[g(Y )] by an empirical mean.
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Monte Carlo method: “head and tail” model

A code gives a real-valued output Y = f(X). For a given a we want to estimate

P = P(f(X) ≥ a)

• Monte Carlo method:

1) n simulations are carried out with n independent realizations X1, . . . ,Xn (with

the distribution of X).

2) let us define

Zk = 1[a,∞)(f(Xk)) =





1 if f(Xk) ≥ a (head)

0 if f(Xk) < a (tail)

• Intuition: when n is large, the empirical proportion of “1”s is close to P

Z1 + · · ·+ Zn

n
≃ P

Therefore the empirical proportion of “1”s can be used to estimate P .

• Empirical estimator of P :

P̂n :=
1

n

n∑

k=1

Zk
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• Empirical estimator of P :

P̂n :=
1

n

n∑

k=1

Zk

• The estimator is unbiased:

E

[
P̂n

]
= E

[
1

n

n∑

k=1

Zk

]
=

1

n

n∑

k=1

E[Zk] = E[Z1]= P

• The law of large numbers shows that the estimator is convergent:

P̂n =
1

n

n∑

k=1

Zk
n→∞−→ E[Z1] = P

because the variables Zk are independent and identically distributed (i.i.d.).

• Result (law of large numbers): Let (Zn)n∈N∗ be a sequence of i.i.d. random

variables. If E[|Z1|] < ∞, then

1

n

n∑

k=1

Zk
n→∞−→ m with probability 1, with m = E[Z1]

“The empirical mean converges to the statistical mean”.
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Error analysis: we want to quantify the fluctuations of P̂n around P .

• Variance calculation:

Var[P̂n] = E

[
(P̂n − P )2

]
(mean square error)

= E

[(
n∑

k=1

(
Zk − P

n

))2]
=

n∑

k=1

E

[(
Zk − P

n

)2
]

=
1

n2

n∑

k=1

E
[
(Zk − P )2

]
=

1

n
E
[
(Z1 − P )2

]

=
1

n

(
E
[
Z2

1

]
− P 2)

=
1

n
(P − P 2)

• The relative error is therefore:

Error =

√
Var(P̂n)

E[P̂n]
=

√
Var(P̂n)

P
=

1√
n

(
1

P
− 1

)1/2
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Confidence intervals

• Question: The estimator P̂n gives an approximate value of P , all the better as n

is larger. How to quantify the error ?

• Answer: We build a confidence interval at the level 0.95, i.e. an empirical

interval [ân, b̂n] such that

P

(
P ∈ [ân, b̂n]

)
≥ 0.95

Construction based on the De Moivre theorem:

P

(∣∣∣P̂n − P
∣∣∣ < c

√
P − P 2

√
n

)
n→∞−→ 2√

2π

∫ c

0

e−x2/2dx

The right member is 0.05 if c = 1.96. Therefore

P

(
P ∈

[
P̂n − 1.96

√
P − P 2

√
n

, P̂n + 1.96

√
P − P 2

√
n

])
≃ 0.95

• Result (central limit theorem): Let (Zn)n∈N∗ be a sequence of i.i.d. random

variables. If E[Z2
1 ] < ∞, then

√
n
( 1
n

n∑

k=1

Zk −m
)

n→∞−→ N (0, σ2) in distribution

where m = E[Z1] and σ2 = Var(Z1).

“For large n, the error 1
n

∑n
k=1 Zk −m has Gaussian distribution N (0, σ2/n).”
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P

(
P ∈

[
P̂n − 1.96

√
P − P 2

√
n

, P̂n + 1.96

√
P − P 2

√
n

])
≃ 0.95

The unknown parameter P is still in the bounds of the interval ! Two solutions:

- P ∈ [0, 1], therefore
√
P − P 2 < 1/2 and

P

(
P ∈

[
P̂n − 0.98

1√
n
, P̂n + 0.98

1√
n

])
≥ 0.95

- asymptotically, we can replace P in the bounds by P̂n (OK if nP > 10 and

n(1− P ) > 10):

P



P ∈



P̂n − 1.96

√
P̂n − P̂ 2

n√
n

, P̂n + 1.96

√
P̂n − P̂ 2

n√
n







 ≃ 0.95

Conclusion: There is no bounded interval of R that contains P with probability

one. There are bounded intervals (called confidence intervals) that contain P with

probability close to one (chosen by the user).
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Monte Carlo estimation: black box model

• Black box model (numerical code)

Y = f(X)

We want to estimate I = E[g(Y )], for some function g : R → R.

• Empirical estimator:

În =
1

n

n∑

k=1

g(f(Xk))

where (Xk)k=1,...,n is a n-sample of X.

This is the empirical mean of a sequence of i.i.d. random variables.

• The estimator În is unbiased: E[În] = I.

• The law of large numbers gives the convergence of the estimator:

În
n→∞−→ I with probability 1
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• Error:

Var(În) =
1

n
Var(g(Y ))

Proof: the variance of a sum of i.i.d. random variables if the sum of the variances.

• Asymptotic confidence interval:

P

(
I ∈

[
În − 1.96

σ̂n√
n
, În + 1.96

σ̂n√
n

])
≃ 0.95

where

σ̂n =

(
1

n

n∑

k=1

g(f(Xk))
2 − Î2n

)1/2

• Advantages of the MC method:

1) no regularity condition for f , g (condition: E[g(f(X))2] < ∞).

2) convergence rate 1/
√
n in any dimension.

3) can be applied for any quantity that can be expressed as an expectation.

• One needs to simulate samples of X.
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Simulation of random variables

• How do we generate random numbers with a computer ? There is nothing

random in a computer !

• Strategy:

- find a pseudo random number generator that can generate a sequence of numbers

that behave like independant copies of a random variable with uniform

distribution over (0, 1).

- use deterministic transforms to generate numbers with any prescribed

distribution using only the uniform pseudo random number generator.
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• Pseudo random number generator

A 32-bit multiplicative congruential generator:

xn+1 = axn mod b,

with a = 75, b = 231 − 1, and some integer x0.

This gives a sequence of integer numbers in {0, 1, ..., 231 − 2}.
The sequence un = xn/(2

31 − 1) gives a “quasi-real” number between 0 and 1.

Note: the sequence is periodic, with period 231 − 1.

This is the generator mcg16807 of matlab (used in early versions).

Today: matlab uses mt19937ar (the period is 219937 − 1).
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• Inversion method.

A little bit of theory:

Result: Let X be a real random variable with the cumulative distribution function

(cdf) F (x):

F (x) = P(X ≤ x) =

∫ x

−∞
p(y)dy

Let U be a random variable with the distribution U(0, 1). If F is one-to-one, then

X and F−1(U) have the same distribution.

Proof: Set Y = F−1(U).

P(Y ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) ,

which shows that the cdf of Y is F .

CEMRACS 2013 Rare events



• Extension: Let F be a cdf. The generalized inverse of F is F−1 : (0, 1) → R

defined by:

F−1(u) := inf Au, where Au := {x ∈ R such that F (x) ≥ u}

The generalized inverse always exists because, for any u ∈ (0, 1):

(i) limx→+∞ F (x) = 1, therefore Au 6= ∅.
(ii) limx→−∞ F (x) = 0, therefore Au is bounded from below.

Result: Let X be a random variable with the cdf F (x). Let U be a random variable

with the distribution U(0, 1). Then X and F−1(U) have the same distribution.
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• Example. Let us write a simulator of an exponential random variable:

p(x) = e−x
1[0,∞)(x)

Its cdf is

F (x) =





0 if x < 0,
∫ x

0
e−ydy = 1− e−x if x ≥ 0

whose reciprocal is:

F−1(u) = − ln(1− u) .

Therefore if U is a uniform random variable on [0, 1], then the random variable

X := − ln(1− U) obeys the exponential distribution.

Moreover, U and 1− U have the same distribution, therefore − ln(U) also obeys

the exponential distribution.
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• Simulation of Gaussian random variables.

The inversion method requires the knowledge of the reciprocal cdf F−1.

We do not always have the explicit expression of this reciprocal function.

An important example is the Gaussian distribution such that

F (x) = 1√
2π

∫ x

−∞ e−s2/2ds for x ∈ R.

Box-Muller algorithm:

Let U1, U2 two independent random variables with uniform distribution over [0, 1].

If

X = (−2 lnU1)
1/2 cos(2πU2)

Y = (−2 lnU1)
1/2 sin(2πU2)

then the random variables X and Y are independent and distributed according to

N (0, 1).

Proof: for any test function f : Rd → R, write E[f(X, Y )] as a two-dimensional

integral and use polar coordinates.
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• Rejection method for uniform distributions.

• Goal: build a generator of a random variable with uniform distribution over

D ⊂ R
d.

• Preliminary: Find a rectangular domain B such that D ⊂ B.

• Algorithm:

Sample M1, M2, . . . independent and identically distributed with the uniform

distribution over B, until the first time T when Mi ∈ D.

• Result: MT is a random variable with the uniform distribution over D.

• Warning: the distribution of MT is not the distribution of M1, because T is

random !

The time T obeys a geometric distribution with mean |B|/|D| (→ it is better to

look for the smallest domain B).
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• Rejection method for continuous distributions.

• Goal: build a generator of a random variable with pdf p(x).

• Preliminary: find a pdf q(x) such that we know a generator of a random variable

with pdf q(x) and we know C ≥ 1 such that p(x) ≤ Cq(x) for all x ∈ R
d.

• Algorithm:

Sample X1, X2, . . . with pdf q(x) and U1, U2, . . . with distribution U(0, 1) until
the first time T when Uk < p(Xk)/[Cq(Xk)].

• Result: XT is a random variable with the pdf p(x).

The time T obeys a geometric distribution with mean C.
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Proof: for any Borel set A:

P(XT ∈ A) =
∞∑

k=1

P(Xk ∈ A, T = k)

=

∞∑

k=1

P

(
Xk ∈ A,Uk <

p(Xk)

Cq(Xk)
, Uk−1 ≥ p(Xk−1)

Cq(Xk−1)
, . . . , U1 ≥ p(X1)

Cq(X1)

)

=

∞∑

k=1

P

(
X1 ∈ A,U1 <

p(X1)

Cq(X1)

)
P

(
U1 ≥ p(X1)

Cq(X1)

)k−1

=
P
(
X1 ∈ A,U1 < p(X1)

Cq(X1)
)

P
(
U1 < p(X1)

Cq(X1)

)

=

EX

[
1X1∈AEU [1

U1<
p(X1)

Cq(X1)

]
]

EX

[
EU [1

U1<
p(X1)

Cq(X1)

]
]

=
EX

[
1X1∈A

p(X1)
Cq(X1)

]

EX

[ p(X1)
Cq(X1)

]

=

∫
1x∈A

p(x)
Cq(x)

q(x)dx
∫ p(x)

Cq(x)
q(x)dx

=

∫
1x∈Ap(x)dx

CEMRACS 2013 Rare events



Estimation of the probability of a rare event

• We look for an estimator for

P = P(f(X) ≥ a)

where a is large (so that P ≪ 1).

• Possible by Monte Carlo:

P̂n =
1

n

n∑

k=1

1f(Xk)≥a

where (Xk)k=1,...,n is a n-sample of X.

Relative error:

E[(P̂n − P )2]1/2

P
=

1√
n

Var(1f(X)≥a)
1/2

P
=

1√
n

√
1− P√
P

P≪1≃ 1√
nP

→֒ We need nP > 1 so that the relative error is smaller than 1 (not surprising) !

→֒ We need variance reduction techniques.
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Uncertainty propagation by metamodels

The complex code/experiment f is replaced by a metamodel (reduced model) fr

and one of the previous techniques is applied with fr (analytic, quadrature, Monte

Carlo).

→ It is possible to call many times the metamodel.

→ The choice of the metamodel is critical.

→ The error control is not simple.
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Taylor expansions

• We approximate the output Y = f(X) by a Taylor series expansion Yr = fr(X).

• Example:

- We want to estimate E[Y ] and Var(Y ) for Y = f(X) with Xi uncorrelated,

E[Xi] = µi and Var(Xi) = σ2
i known, σ2

i small.

- We approximate Y = f(X) by Yr = fr(X) = f(µ) +∇f(µ) · (X − µ). We find:

E[Y ] ≃ E[Yr] = f(µ), Var(Y ) ≃ Var(Yr) =

d∑

i=1

∂xif(µ)
2σ2

i

We just need to compute f(µ) and ∇f(µ) (evaluation of the gradient by finite

differences, about d+ 1 calls to f).

• Rapid, analytic, allows to evaluate approximately central trends of the output

(mean, variance).

• Suitable for small variations of the input parameters and a smooth model (that

can be linearized).

• Local approach. In general, no error control.
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Reliability method for estimation of the probability of a rare event:

P = P(f(X) ≥ a) = P(X ∈ F) =

∫

F
p(x)dx, F = {x ∈ R

d, f(x) ≥ a}

• The FORM-SORM method is analytic but approximate, without control error.

• The Xi are assumed to be independent and with Gaussian distribution with

mean zero and variance one (or we use an isoprobabilist transform to deal with

this situation): p(x) = 1

(2π)d/2
exp(− |x|2

2
).

• One gets by optimization (with contraint) the “design point” xa (the most

probable failure point), i.e. xa = argmin{‖x‖2 s.t. f(x) ≥ a}.
• One approximates the failure surface {x ∈ R

d, f(x) = a} by a smooth surface F̂
that allows for an analytic calculation P̂ =

∫
F̂ p(x)dx:

- a quadratic form for SORM

(and then P̂ = 1
2
erfc

( |xa|√
2

)
),

- a hyperplane for FORM

(and then P̂ = Breitung’s formula).

Cf: O. Ditlevsen et H.O. Madsen,

Structural reliability methods, Wiley, 1996. 0 2 4 6

0

1

2

3

4

5

x
a

f(x)>a

f(x)<a

FORM

SORM
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Variance reduction techniques

Goal: reduce the variance of the Monte Carlo estimator:

E
[
(În − I)2

]
=

1

n
Var(h(X))

where h(x) = g(f(x)), I = E[h(X)], În = 1
n

∑n
k=1 h(Xk).

• The methods

- Importance sampling

- Control variates

- Antithetic variables

- Stratification

reduce the constant without changing 1/n, stay close to the Monte Carlo method

(parallelizable).

• The methods

- Quasi-Monte Carlo

aim at changing 1/n.

• The methods

- Interacting particle systems (genetic algorithms, subset sampling,. . .)

are more different from Monte Carlo (sequential).
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Importance sampling

• The goal is to estimate I = E[h(X)] for X a random vector and h(x) = g(f(x))

a deterministic function.

• Observation: the representation of I as an expectation is not unique. If X has

the pdf p(x):

I = Ep[h(X)] =

∫
h(x)p(x)dx =

∫
h(x)p(x)

q(x)
q(x)dx = Eq

[h(X)p(X)

q(X)

]

The choice of the pdf q depends on the user.

• Idea: when we know that h(X) is sensitive to certain values of X, instead of

sampling Xk with the original pdf p(x) of X, a biased pdf q(x) is used that

makes more likely the “important” realizations.

• Using the representation

I = Ep[h(X)] = Eq

[
h(X)

p(X)

q(X)

]

we can propose the estimator:

În =
1

n

n∑

k=1

h(Xk)
p(Xk)

q(Xk)

where (Xk)k=1,...,n is a n-sample with the distribution with pdf q.
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• The estimator is unbiased:

Eq[În] =
1

n

n∑

k=1

Eq

[
h(Xk)

p

q
(Xk)

]
= Eq

[
h(X)

p

q
(X)

]

=

∫
h(x)

p

q
(x)q(x)dx =

∫
h(x)p(x)dx = Ep

[
h(X)

]
= I

• The estimator is convergent:

În =
1

n

n∑

k=1

h(Xk)
p(Xk)

q(Xk)

n→∞−→ Eq

[
h(X)

p(X)

q(X)

]
= Ep

[
h(X)

]
= I

• The variance of the estimator is:

Var(În) =
1

n
Varq

(
h(X)

p(X)

q(X)

)
=

1

n

(
Ep

[
h(X)2

p(X)

q(X)

]
− Ep [h(X)]2

)

By a judicious choice of q the variance can be dramatically reduced.

• Critical points: it is necessary to know the likelihood ratio
p(x)

q(x)
and to know

how to simulate X with the pdf q.
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• Optimal importance sampling.

The best importance distribution is the one that minimizes the variance Var(În).

It is the solution of the minimization problem: find the pdf q(x) minimizing

Ep

[
h(X)2

p(X)

q(X)

]
=

∫
h(x)2

p2(x)

q(x)
dx

Solution (when h is nonnegative-valued):

qopt(x) =
h(x)p(x)∫

h(x′)p(x′)dx′

We then find

Var(În) =
1

n

(
Ep

[
h(X)2

p(X)

qopt(X)

]
− Ep [h(X)]2

)
= 0 !

Pratically: the denominator of qopt(x) is the desired quantity E[h(X)], which is

unknown. Therefore the optimal importance distribution is unknown (principle for

an adaptive method).
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• Example: We want to estimate

I = E[h(X)]

with X ∼ N (0, 1) and h(x) = 1[4,∞)(x).

I =
1√
2π

∫ ∞

−∞
1[4,∞)(x)e

− x2

2 dx =
1

2
erfc

( 4√
2

)
≃ 3.17 10−5

Monte Carlo: With a sample (Xk)k=1,...,n with the original distribution N (0, 1).

În =
1

n

n∑

k=1

1Xk≥4, Xk ∼ N (0, 1)

We have Var(În) =
1
n
3.17 10−5.

Importance sampling: With a sample (Xk)k=1,...,n with the distribution

N (4, 1).

În =
1

n

n∑

k=1

1Xk≥4
e−

X2
k
2

e−
(Xk−4)2

2

=
1

n

n∑

k=1

1Xk≥4e
−4Xk+8, Xk ∼ N (4, 1)

We have Var(În) =
1
n
5.53 10−8.

The IS method needs 1000 times less simulations to reach the same precision as

MC !
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Warning: we should not bias too much.

Importance sampling: With a sample (Xk)k=1,...,n with the distribution

N (µ, 1).

În =
1

n

n∑

k=1

1Xk≥4
e−

X2
k
2

e−
(Xk−µ)2

2

=
1

n

n∑

k=1

1Xk≥4e
−µXk+µ2

2 , Xk ∼ N (µ, 1)

We have Var(În) =
1
n

eµ
2

2
erfc

(
4+µ√

2

)
− 1

n
I2, which gives the normalized relative

error
√
nE[(În − I)2]1/2/I :

0 2 4 6 8
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If the bias is too large, the fluctuations of the likelihood ratios become large.
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• Example: we want to estimate

I = E[h(X)]

with X ∼ N (0, 1) and h(x) = exp(x).

I =
1√
2π

∫
exe−

x2

2 dx = e
1
2

The large values of X are important.

Importance sampling: With a sample (Xk)k=1,...,n with the distribution N (µ, 1),

µ > 0.

În =
1

n

n∑

k=1

h(Xk)
e−

[Xk]2

2

e−
[Xk−µ]2

2

=
1

N

n∑

k=1

h(Xk)e
−µXk+µ2

2

Var(În) =
1

n

(
eµ

2−2µ+2 − e1
)

Monte Carlo µ = 0: Var(În) =
1
n

(
e2 − e1

)

Optimal importance sampling µ = 1: Var(În) = 0.
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Control variates

• The goal is to estimate I = E[h(X)] for X a random vector and h(x) = g(f(x))

a deterministic function.

• Assume that we have a reduced model fr(X).

• Importance sampling method: first we evaluate (we approximate) the optimal

density qopt,r(x) =
g(fr(x))p(x)

Ir
, with Ir =

∫
g(fr(x))p(x)dx, then we use it as a

biased density for estimating I (dangerous, use conservative version).

• Control variates method:

We denore h(x) = g(f(x)), hr(x) = g(fr(x)).

We assume that we know Ir = E[hr(X)].

By considering the representation

I = E[h(X)] = Ir + E[h(X)− hr(X)]

we propose the estimator:

În = Ir +
1

n

n∑

k=1

h(Xk)− hr(Xk),

where (Xk)k=1,...,n is a n-sample (with the pdf p).
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• Estimator:

În = Ir +
1

n

n∑

k=1

h(Xk)− hr(Xk)

• The estimator is unbiased:

E
[
În
]

= Ir +
1

n

n∑

k=1

E
[
h(Xk)− hr(Xk)

]
= Ir + E[h(X)]− E[hr(X)]

= Ir + E[h(X)]− Ir = I

• The estimator is convergent:

În
n→∞−→ Ir + E

[
h(X)− hr(X)

]
= I

• The variance of the estimator is:

Var(În) =
1

n
Var
[
h(X)− hr(X)

]

→֒ The use of a reduced model can reduce the variance.
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• Example: we want to estimate

I = E[h(X)]

with X ∼ U(0, 1), h(x) = exp(x).

Result: I = e− 1 ≃ 1.72.

Monte Carlo.

În =
1

n

n∑

k=1

exp[Xk]

Variance of the MC estimator= 1
n
(2e− 1) ≃ 1

n
4.44.

Control variates. Reduced model: hr(x) = 1 + x (here Ir =
3
2
). CV estimator:

În = Ir +
1

n

n∑

k=1

{exp[Xk]− 1−Xk}

Variance of the CV estimator = 1
n
(3e− e2

2
− 53

12
) ≃ 1

n
0.044.

The CV method needs 100 times less simulations to reach the same precision as

MC !
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• Application: estimation of

I = E[g(f(X))]

We have a reduced model fr of the full code f . The ratio between the

computational cost of one call of f and one call of fr is q > 1.

Estimator

În =
1

nr

nr∑

k=1

hr(X̃k) +
1

n

n∑

k=1

h(Xk)− hr(Xk)

with nr > n, h(x) = g(f(x)), hr(x) = g(fr(x)).

Allocation between calls to the full code and calls to the reduced model can be

optimized with the contraint nr/q + n(1 + 1/q) = ntot.

Classical trade-off between approximation error and estimation error.

Used when f(X) is the solution of an ODE or PDE with fine grid, while fr(X) is

the solution obtained with a coarse grid (MultiLevel Monte Carlo).
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• Not very useful for the estimation of the probability of a rare event.

Example: we want to estimate

I = P(f(X) ≥ 2.7)

with X ∼ U(0, 1), f(x) = exp(x).

Result: I = 1− ln(2.7) ≃ 6.7 10−3.

The reduced model fr(x) = 1 + x is here useless.

The reduced model should be good in the important region.
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Stratification

Principle: The sample (Xk)k=1,...,n is enforced to obey theoretical distributions in

some “strata”.

Method used in polls (representative sample).

Here: we want to estimate E[g(f(X))], X with values in D.

• Two ingredients:

i) A partition of the state space D: D =
⋃m

i=1 Di. We know pi = P(X ∈ Di).

ii) Total probability formula:

I = E[g(f(X))] =
m∑

i=1

E[g(f(X))|X ∈ Di]︸ ︷︷ ︸
J(i)

P(X ∈ Di)︸ ︷︷ ︸
pi

• Estimation:

1) For all i = 1, . . . ,m, Ii is estimated by Monte Carlo with ni simulations:

Ĵ (i)
ni

=
1

ni

ni∑

j=1

g(f(X
(i)
j )), X

(i)
j ∼ L(X|X ∈ Di)

2) The estimator is

În =

m∑

i=1

Ĵ (i)
ni

pi
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În =

m∑

i=1

piĴ
(i)
ni

, Ĵ (i)
ni

=
1

ni

ni∑

j=1

g(f(X
(i)
j )), X

(i)
j ∼ L(X|X ∈ Di)

The total number of simulations is n =
∑m

i=1 ni.

• The estimator is unbiased, convergent and its variance is

Var
(
ĝn
)
S
=

m∑

i=1

p2iVar
(
Ĵ (i)
ni

)
=

m∑

i=1

p2i
σ2
i

ni
, with σ2

i = Var
(
g(f(X))|X ∈ Di

)

The user is free to choose the allocations ni (with the constraint
∑m

i=1 ni = n).

• Proportional stratification: ni = pin.

În =
m∑

i=1

pi
ni

ni∑

j=1

g(f(X
(i)
j )) =

1

n

m∑

i=1

ni∑

j=1

g(f(X
(i)
j )), X

(i)
j ∼ L(X|X ∈ Di)

Then

Var
(
În
)
SP

=
1

n

m∑

i=1

piσ
2
i

We have:

Var
(
În
)
MC

=
1

n
Var
(
g(f(X))

)
≥ 1

n

m∑

i=1

piσ
2
i = Var

(
În
)
SP
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Proof: We have

E[h(X)]2 =
( m∑

i=1

piE[h(X)|X ∈ Di]
)2

≤
( m∑

i=1

pi
)( m∑

i=1

piE[h(X)|X ∈ Di]
2
)

=

m∑

i=1

piE[h(X)|X ∈ Di]
2

Therefore

m∑

i=1

piσ
2
i =

m∑

i=1

pi
(
E[h(X)2|X ∈ Di]− E[h(X)|X ∈ Di]

2
)

= E[h(X)2]−
m∑

i=1

piE[h(X)|X ∈ Di]
2

≤ E[h(X)2]− E[h(X)]2 = Var(h(X))
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However, the proportional allocation is not optimal !

• The optimal allocation is the one that minimizes the variance

Var(În)S =
∑m

i=1 p
2
i
σ2
i

ni
.

It is the solution of the minimization problem: find (ni)i=1,...,m minimizing

m∑

i=1

p2i
σ2
i

ni
with the constraint

m∑

i=1

ni = n

Solution (optimal allocation, obtained with Lagrange multiplier method):

ni = n
piσi∑m
l=1 plσl

The minimal variance is

Var
(
În
)
SO

=
1

n

(
m∑

i=1

piσi

)2

,

We have:

Var
(
În
)
SO

≤ Var
(
În
)
SP

≤ Var
(
În
)
MC

Practically: the σi’s are unknown, therefore the optimal allocation is unknown

(principle of an adaptive method).
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• Example: we want to estimate

E[g(f(X))]

with X ∼ U(−1, 1), f(x) = exp(x) and g(y) = y.

Result: E[f(X)] = sinh(1) ≃ 1.18.

Monte Carlo. With a sample X1, ..., Xn with the distribution U(−1, 1)

În =
1

n

n∑

k=1

exp[Xk]

Variance of the estimator = 1
n
( 1
2
− e−2

2
) ≃ 1

n
0.43.

Proportional stratification. With a sample

- X1, ..., Xn/2 with the distribution U(−1, 0),

- Xn/2+1, ..., Xn with the distribution U(0, 1).

În =
1

n

n/2∑

k=1

exp[Xk] +
1

n

n∑

k=n/2+1

exp[Xk] =
1

n

n∑

k=1

exp[Xk]

Variance of the PS estimator ≃ 1
n
0.14.

The PS method needs 3 times less simulations to reach the same precision as MC.
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Nonproportional stratification. With a sample

- X1, ..., Xn/4 with the distribution U(−1, 0),

- Xn/4+1, ..., Xn with the distribution U(0, 1).

În =
2

n

n/4∑

k=1

exp[Xk] +
1

2n

n∑

k=n/4+1

exp[Xk]

Variance of the estimator ≃ 1
n
0.048.

The stratification method needs 9 times less simulations to reach the same

precision as MC.
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Antithetic variables

• We want to compute

I =

∫

[0,1]d
h(x)dx

Monte Carlo with a n-sample (X1, . . . ,Xn) with the distribution U([0, 1]d):

În =
1

n

n∑

k=1

h(Xk)

E
[
(În − I)2

]
=

1

n
Var(h(X)) =

1

n

(∫

[0,1]d
h2(x)dx− I2

)

• We consider the representations

I =

∫

[0,1]d
h(1− x)dx and I =

∫

[0,1]d

h(x) + h(1− x)

2
dx

Monte Carlo with a n/2-sample (X1, . . . ,Xn/2) with the distribution U([0, 1]d) :

Ĩn =
1

n

n/2∑

k=1

h(Xk) + h(1−Xk)

CEMRACS 2013 Rare events



• Monte Carlo estimator with the sample

(X̃1, . . . , X̃n) := (X1, . . . ,Xn/2, 1−X1, . . . , 1−Xn/2) that is not i.i.d.:

Ĩn =
1

n

n∑

k=1

h(X̃k)

The function f is called n times.

• Error:

E
[
(Ĩn − I)2

]
=

1

n

(
Var(h(X)) + Cov(h(X), h(1−X))

)

=
1

n

(∫

[0,1]d
h2(x) + h(x)h(1− x)dx− 2I2

)

The variance is reduced if Cov(h(X), h(1−X)) < 0. Sufficient condition: h is
monotoneous.
Proof: If X,X ′ i.i.d.

[h(X)− h(X ′)][−h(1−X) + h(1−X
′)] ≥ 0 a.s.

−2E
[

h(X)h(1−X)
]

+ 2E
[

h(X)
]2

≥ 0
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• Example:

I =

∫ 1

0

1

1 + x
dx

Result: I = ln 2.

Monte Carlo:

În =
1

n

n∑

k=1

1

1 +Xk

Var(În) =
1
n

( ∫ 1

0
(1 + x)−2dx− ln 22

)
= 1

n

(
1
2
− ln 22

)
≃ 1

n
1.95 10−2.

Antithetic variables:

Ĩn =
1

n

n/2∑

k=1

1

1 +Xk
+

1

2−Xk

Var(Ĩn) =
2
n

( ∫ 1

0

(
1

2(1+x)
+ 1

2(2−x)

)2
dx− ln 22

)
≃ 1

n
1.2 10−3.

The AV method requires 15 times less simulations than MC.
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• More generally: one needs to find a pair (X, X̃) such that h(X) and h(X̃) have

the same distribution and Cov(h(X), h(X̃)) < 0.

• Monte Carlo with an i.i.d. sample ((X1, X̃1), . . . , (Xn/2, X̃n/2)) :

Ĩn =
1

n

n/2∑

k=1

h(Xk) + h(X̃k)

E
[
(Ĩn − I)2

]
=

1

n

(
Var(h(X)) + Cov(h(X), h(X̃))

)

• Recent application: computation of effective tensors in stochastic

homogenization (the effective tensor is the expectation of a functional of the

solution of an elliptic PDE with random coefficients; antithetic pairs of the

realizations of the composite medium are sampled; gain by a factor 3; in fact,

better results with control variates; cf C. Le Bris, F. Legoll).

• Not very useful for the estimation of probabilities of rare events.
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Low-discrepancy sequences (quasi Monte Carlo)

• The sample (Xk)k=1,...,n is selected so as to fill the (random) gaps that appear

in a MC sample (for a uniform sampling of an hypercube).

• This technique

- can reduce the variance if h has good properties (bounded variation in the sense

of Hardy and Krause); the asymptotic variance can be of the form

Cd(logn)
s(d)/n2,

- can be applied in low-moderate dimension,

- can be viewed as a compromise between quadrature and MC.

• A few properties:

- the error estimate is deterministic, but often not precise (Koksma-Hlawka

inequality),

- the independence property is lost (→ it is not easy to add points),

- the method is not adapted for the estimation of the probability of a rare event.

Cf lecture by G. Pagès.
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Example: Monte Carlo sample.
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n = 100 n = 1000 n = 10000
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Example: Sobol sequence in dimension 2.

n = 100 n = 1000 n = 10000
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