Interacting particle systems
 for the analysis of rare events

> Josselin Garnier (Université Paris Diderot) http://www.proba.jussieu.fr/~garnier

Cf http://www.proba.jussieu.fr/~garnier/expo2.pdf

Problem: estimation of the probability of occurence of a rare event.
Simulation by an Interacting Particle System.
Two versions:

- a rare event in terms of the final state of a Markov chain,
- a rare event in terms of a random variable, whose distribution is seen as the stationary distribution of a Markov chain.

Rare events

- Description of the system: Let E be a measurable space.
- $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$: a E-valued Markov chain:

$$
\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}, \ldots, \boldsymbol{X}_{0}=\boldsymbol{x}_{0}\right)=\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}\right)
$$

$-V: E \rightarrow \mathbb{R}$: the risk function.
$-a \in \mathbb{R}$: the threshold level.

- Problem: estimation of the probability

$$
P=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)
$$

when a is large $\Longrightarrow P \ll 1$.
We know how to simulate the Markov chain $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$.

Rare events

- Description of the system: Let E be a measurable space.
- $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$: a E-valued Markov chain:

$$
\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}, \ldots, \boldsymbol{X}_{0}=\boldsymbol{x}_{0}\right)=\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}\right)
$$

$-V: E \rightarrow \mathbb{R}$: the risk function.
$-a \in \mathbb{R}$: the threshold level.

- Problem: estimation of the probability

$$
P=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)
$$

when a is large $\Longrightarrow P \ll 1$.
We know how to simulate the Markov chain $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$.

- Example: $X_{p}=X_{p-1}+\theta_{p}, X_{0}=0$, where θ_{p} is a sequence of independent Gaussian random variables with mean zero and variance one. Here
$-E=\mathbb{R}$,
$-V(x)=x$,
- solution known: $X_{M}=V\left(X_{M}\right) \sim \mathcal{N}(0, M)$.

Example: Optical communication in transoceanic optical fibers

Optical fiber transmission principle:

- a binary message is encoded as a train of short light pulses.
- the pulse train propagates in a long optical fiber.
- the message is read at the output of the fiber.

Input pulse train

Output pulse train

Transmission is perturbed by different random phenomena (amplifier noise, random dispersion, random birefringence, ...).

Question: estimation of the bit-error-rate (probability of error), typically 10^{-6} or 10^{-8}.

Answer: use of a big numerical code (but brute-force Monte Carlo too expensive).

Example: Optical communication in transoceanic optical fibers

- Physical model:
$\left(u_{0}(t)\right)_{t \in \mathbb{R}}=$ initial pulse profile.
$(u(z, t))_{t \in \mathbb{R}}=$ pulse profile after a propagation distance z.
$(u(Z, t))_{t \in \mathbb{R}}=$ output pulse profile (after a propagation distance Z).

Propagation from $z=0$ to $z=Z$ governed by two coupled nonlinear Schrödinger equations with randomly z-varying coefficients (code OCEAN, Alcatel).
\hookrightarrow black box.
\rightarrow Truncation of $[0, Z]$ into M segments $\left[z_{p-1}, z_{p}\right), z_{p}=p Z / M, 1 \leq p \leq M$.
$\rightarrow \boldsymbol{X}_{p}=u\left(z_{p}, t\right)_{t \in \mathbb{R}}$ is the pulse profile at distance z_{p}.
Here $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$ is Markov with state space $E=H_{0}^{2}(\mathbb{R}) \cap L_{2}^{2}(\mathbb{R})$.

Example: Optical communication in transoceanic optical fibers

Question: estimation of the probability of anomalous pulse spreading.
Rms pulse width after propagation distance z :

$$
\tau(z)^{2}=\int|u(z, t)|^{2} t^{2} d t / \int|u(z, t)|^{2} d t
$$

The potential function is $V: \left\lvert\, \begin{aligned} & E \rightarrow \mathbb{R} \\ & V(\boldsymbol{X})=\int t^{2}|\boldsymbol{X}(t)|^{2} d t / \int|\boldsymbol{X}(t)|^{2} d t\end{aligned}\right.$
Problem: estimation of the probability

$$
P=\mathbb{P}(\tau(Z) \geq a)=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)
$$

Monte Carlo method

- n independent copies $\left(\left(\boldsymbol{X}_{0}^{i}, \ldots, \boldsymbol{X}_{M}^{i}\right)\right)_{1 \leq i \leq n}$ of $\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)$ distributed with the original \mathbb{P}.
- Proposed estimator:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{V\left(\boldsymbol{X}_{M}^{i}\right) \geq a}
$$

Unbiased estimator:

$$
\mathbb{E}\left[\hat{P}_{n}\right]=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)=P
$$

Variance:

$$
\mathbb{E}\left[\left(\hat{P}_{n}-P\right)^{2}\right]=\frac{1}{n} P(1-P)^{P} \xlongequal{\cong} \frac{P}{n}
$$

The absolute error $\operatorname{Std}\left(\hat{P}_{n}\right) \simeq \sqrt{P} / \sqrt{n}$.
The relative error

$$
\frac{\operatorname{Std}\left(\hat{P}_{n}\right)}{P} \simeq \frac{1}{\sqrt{P n}}
$$

\hookrightarrow We should have $n>P^{-1}$ to get a relative error smaller than one.
Of course: P^{-1} is the minimum size of the sample required for one element to reach the rare level!

Importance Sampling method

- n independent copies $\left(\left(\boldsymbol{X}_{0}^{i}, \ldots, \boldsymbol{X}_{M}^{i}\right)\right)_{1 \leq i \leq n}$ of $\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)$ distributed with a biased distribution \mathbb{Q}.
- Proposed estimator:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{V\left(\boldsymbol{X}_{M}^{i}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(\boldsymbol{X}_{0}^{i}, \ldots, \boldsymbol{X}_{M}^{i}\right)
$$

Unbiased estimator:

$$
\mathbb{E}_{\mathbb{Q}}\left[\hat{P}_{n}\right]=\mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)\right]=P
$$

Variance:

$$
\mathbb{E}_{\mathbb{Q}}\left[\left(\hat{P}_{n}-P\right)^{2}\right]=\frac{1}{n}\left\{\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)\right]-P^{2}\right\}
$$

\hookrightarrow With a proper choice of \mathbb{Q}, the error-variance can be dramatically reduced.
Optimal choice: $d \mathbb{Q}=\frac{\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a}}{\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)} d \mathbb{P}$. Impossible to apply! But this result gives ideas (adaptive strategy, ...)

- Critical points: choice of the biased distribution + evaluation of the likelihood ratio + simulation of the biased dynamics (intrusive method).

Importance Sampling method driven by Large Deviations Principle

- Consider the family of twisted distributions, $\lambda>0$:

$$
d \mathbb{P}^{(\lambda)}=\frac{1}{\mathbb{E}_{\mathbb{P}}\left(e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right)} e^{\lambda V\left(\boldsymbol{X}_{M}\right)} d \mathbb{P}
$$

$\mathbb{P}^{(\lambda)}$ favors random evolutions with high potential values $V\left(\boldsymbol{X}_{M}\right)$.

- n independent copies $\left(\boldsymbol{X}_{M}^{i}\right)_{1 \leq i \leq n}$ distributed with $\mathbb{P}^{(\lambda)}$.
- Estimator:

$$
\hat{P}_{n, \lambda}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{V\left(\boldsymbol{X}_{M}^{i}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{P}^{(\lambda)}}\left(\boldsymbol{X}_{0}^{i}, \ldots, \boldsymbol{X}_{M}^{i}\right)
$$

Variance:

$$
\begin{aligned}
n \mathbb{E}_{\mathbb{P}(\lambda)}\left[\left(\hat{P}_{n, \lambda}-P\right)^{2}\right] & =\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} e^{-\lambda V\left(\boldsymbol{X}_{M}\right)}\right] \mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]-P^{2} \\
& \leq e^{-\left[\lambda a-\Lambda_{M}(\lambda)\right]} P-P^{2}
\end{aligned}
$$

where $\Lambda_{M}(\lambda)=\log \mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]$. For a judicious choice of λ, $\lambda^{*} a-\Lambda_{M}\left(\lambda^{*}\right)=\sup _{\lambda>0}\left[\lambda a-\Lambda_{M}(\lambda)\right] \simeq-\ln P$ (large deviations principle), so

$$
\mathbb{E}_{\mathbb{P}(\lambda)}\left[\left(\hat{P}_{n, \lambda}-P\right)^{2}\right] \lesssim \frac{P^{2}}{n}
$$

Almost optimal: the relative error is $1 / \sqrt{n}$ (compare with MC: $1 / \sqrt{P n}$).

Twisted Feynman-Kac path measures

Question: How to simulate the twisted distribution $\mathbb{P}^{(\lambda)}$?
Answer: We will show a way to simulate the distribution \mathbb{Q} :

$$
d \mathbb{Q}=\frac{1}{\mathcal{Z}_{M}}\left\{\prod_{p=1}^{M} G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right\} d \mathbb{P}
$$

where $\left(G_{p}\right)_{1 \leq p \leq M}$ is a sequence of positive potential functions on the path spaces E^{p}, and $\mathcal{Z}_{M}=\mathbb{E}_{\mathbb{P}}\left[\Pi G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right]>0$ is a normalization constant.
Examples:

- $G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)=1, p<M, \quad G_{M}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)=e^{\lambda V\left(\boldsymbol{X}_{M}\right)}$.
- $G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)=e^{\lambda\left(V\left(\boldsymbol{X}_{p}\right)-V\left(\boldsymbol{X}_{p-1}\right)\right)}$.
- What is a "good" choice for G_{p} ?
- How to simulate \mathbb{Q} directly from \mathbb{P} ?

Original measures

- $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$: a E-valued Markov chain, starting from $\boldsymbol{X}_{0}=\boldsymbol{x}_{0}$, with transition $K_{p}\left(\boldsymbol{x}_{p-1}, d \boldsymbol{x}_{p}\right):$
$\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}, \ldots, \boldsymbol{X}_{0}=\boldsymbol{x}_{0}\right)=\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}\right)=\int_{A} K_{p}\left(\boldsymbol{x}_{p-1}, d \boldsymbol{x}_{p}\right)$
where $K_{p}\left(\boldsymbol{x}_{p-1}, \cdot\right)$ is a probability measure on (E, \mathcal{E}) for any $\boldsymbol{x}_{p-1} \in E$.
- Denote the (partial) path

$$
\boldsymbol{Y}_{p}=_{\text {def. }}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right) \in E^{p+1}, \quad p=0, \ldots, M
$$

The measure μ_{p} on E^{p+1} is the distribution of \boldsymbol{Y}_{p} :

$$
\mu_{p}\left(f_{p}\right)=\text { def. } \int_{E^{p+1}} f_{p}\left(\boldsymbol{y}_{p}\right) \mu_{p}\left(d \boldsymbol{y}_{p}\right)=\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right)\right], \quad f_{p} \in L^{\infty}\left(E^{p+1}\right)
$$

- Expression of P in terms of μ_{M} :

$$
\begin{gathered}
P=\mu_{M}(f) \\
f\left(\boldsymbol{y}_{M}\right)=f\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a}
\end{gathered}
$$

\rightarrow If one can compute/estimate μ_{M}, then one can compute/estimate P.

- Recursive relation:

$$
\mu_{p}=\Theta_{p}\left(\mu_{p-1}\right)=\text { def. } . \int_{E^{p}} \mu_{p-1}\left(d \boldsymbol{y}_{p-1}\right) \mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, \cdot\right)
$$

with $\mu_{0}=\delta_{x_{0}}$.
$\mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, d \boldsymbol{y}_{p}^{\prime}\right)$: Markov transitions associated to the chain \boldsymbol{Y}_{p} :

$$
\mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, d \boldsymbol{y}_{p}^{\prime}\right)=\delta_{\boldsymbol{y}_{p-1}}\left(d \boldsymbol{y}_{p, 0}^{\prime}, \ldots, d \boldsymbol{y}_{p, p-1}^{\prime}\right) K_{p}\left(\boldsymbol{y}_{p-1, p-1}, d \boldsymbol{y}_{p, p}^{\prime}\right)
$$

Here $\left.\boldsymbol{y}_{p-1}=\left(\boldsymbol{y}_{p-1,0}, \ldots \boldsymbol{y}_{p-1, p-1}\right) \in E^{p}, \boldsymbol{y}_{p}^{\prime}=\left(\boldsymbol{y}_{p, 0}^{\prime}, \ldots \boldsymbol{y}_{p, p}^{\prime}\right) \in E^{p+1}\right)$:
\hookrightarrow Linear evolution.
Proof:

$$
\begin{aligned}
\mu_{p}\left(f_{p}\right) & =\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p-1}, \boldsymbol{X}_{p}\right)\right] \\
& =\int_{E^{p}} \mu_{p-1}\left(d \boldsymbol{y}_{p-1}\right) \mathbb{E}\left[f_{p}\left(\boldsymbol{y}_{p-1}, \boldsymbol{X}_{p}\right) \mid \boldsymbol{Y}_{p-1}=\boldsymbol{y}_{p-1}\right] \\
& =\int_{E^{p}} \mu_{p-1}\left(d \boldsymbol{y}_{p-1}\right) \int_{E} K_{p}\left(\boldsymbol{y}_{p-1, p-1}, d \boldsymbol{x}_{p}\right) f_{p}\left(\boldsymbol{y}_{p-1}, \boldsymbol{x}_{p}\right) \\
& =\int_{E^{p}} \mu_{p-1}\left(d \boldsymbol{y}_{p-1}\right) \int_{E^{p+1}} d \boldsymbol{y}_{p}^{\prime} \mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, d \boldsymbol{y}_{p}^{\prime}\right) f_{p}\left(\boldsymbol{y}_{p}^{\prime}\right) \\
& =\Theta_{p}\left(\mu_{p-1}\right)\left(f_{p}\right)
\end{aligned}
$$

Unnormalized measures

$$
\boldsymbol{Y}_{p}={ }_{\text {def. }}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right) \in E^{p+1}, \quad p=0, \ldots, M
$$

FK measure γ_{p} associated to the pair potentials/transitions $\left(G_{p}, K_{p}\right)$:

$$
\gamma_{p}\left(f_{p}\right)=\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right) \prod_{1 \leq k<p} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]
$$

- Expression of P in terms of γ_{M} :

$$
\begin{gathered}
P=\gamma_{M}(g) \\
g\left(\boldsymbol{y}_{M}\right)=g\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a} \prod_{1 \leq p<M} G_{p}^{-1}\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{p}\right)
\end{gathered}
$$

\rightarrow If one can compute/estimate γ_{M}, then one can compute/estimate P.

- Recursive relation:

$$
\gamma_{p}=\Psi_{p}\left(\gamma_{p-1}\right)=\text { def. } \int_{E^{p}} \gamma_{p-1}\left(d \boldsymbol{y}_{p-1}\right) G_{p-1}\left(\boldsymbol{y}_{p-1}\right) \mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, \cdot\right)
$$

$\mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, d \boldsymbol{y}_{p}^{\prime}\right)$: Markov transitions associated to the chain \boldsymbol{Y}_{p}

$$
\mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, d \boldsymbol{y}_{p}^{\prime}\right)=\delta_{\boldsymbol{y}_{p-1}}\left(d \boldsymbol{y}_{p, 0}^{\prime}, \ldots, d \boldsymbol{y}_{p, p-1}^{\prime}\right) K_{p}\left(\boldsymbol{y}_{p-1, p-1}, d \boldsymbol{y}_{p, p}^{\prime}\right)
$$

\hookrightarrow Linear evolution.

Normalized measures

Introduce the normalized measure η_{p} :

$$
\eta_{p}\left(f_{p}\right)=\gamma_{p}\left(f_{p}\right) / \gamma_{p}(1), \quad p=0, \ldots, M
$$

- Expression of P in terms of η_{p} :

$$
P=\eta_{M}(g) \prod_{1 \leq p<M} \eta_{p}\left(G_{p}\right)
$$

Proof:

$$
P=\mathbb{E}\left[g\left(\boldsymbol{Y}_{M}\right) \prod_{1 \leq k<M} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]=\gamma_{M}(g)=\eta_{M}(g) \gamma_{M}(1)
$$

Normalizing constant:

$$
\gamma_{M}(1)=\gamma_{M-1}\left(G_{M-1}\right)=\eta_{M-1}\left(G_{M-1}\right) \gamma_{M-1}(1)=\prod_{1 \leq p<M} \eta_{p}\left(G_{p}\right)
$$

\rightarrow If one can compute/estimate $\left(\eta_{p}\right)_{p=1, \ldots, M}$, then one can compute/estimate P.

- Recursive relation:

$$
\eta_{p}=\Phi_{p}\left(\eta_{p-1}\right)={ }_{\text {def. }} \int_{E^{p}} \eta_{p-1}\left(d \boldsymbol{y}_{p-1}\right) G_{p-1}\left(\boldsymbol{y}_{p-1}\right) \mathcal{K}_{p}\left(\boldsymbol{y}_{p-1}, \cdot\right) / \eta_{p-1}\left(G_{p-1}\right)
$$

\hookrightarrow Nonlinear evolution.

Interacting path-particle system

- Goal: simulate the original measures

$$
\mu_{p}=\Theta_{p}\left(\mu_{p-1}\right)
$$

- Easy: Let $\left(\boldsymbol{Y}_{p}^{1}, \ldots, \boldsymbol{Y}_{p}^{n}\right) \in\left(E^{p+1}\right)^{n}$ be independent Markov chains simulated with \mathbb{P}. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{Y}_{p}^{i}}=\mu_{p}
$$

Interacting path-particle system

- Goal: simulate the original measures

$$
\mu_{p}=\Theta_{p}\left(\mu_{p-1}\right)
$$

- Easy: Let $\left(\boldsymbol{Y}_{p}^{1}, \ldots, \boldsymbol{Y}_{p}^{n}\right) \in\left(E^{p+1}\right)^{n}$ be independent Markov chains simulated with \mathbb{P}. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{Y}_{p}^{i}}=\mu_{p}
$$

- Goal: simulate the normalized measures

$$
\eta_{p}=\Phi_{p}\left(\eta_{p-1}\right)
$$

- Idea: $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{1}, \ldots, \boldsymbol{Y}_{p}^{n}\right) \in\left(E^{p+1}\right)^{n}$ particle system s.t.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{p}^{i}}=\eta_{p}
$$

- Key points:
- Nonlinear $\Phi_{p} \rightarrow$ interacting particle system
- Simulation technique
- Fixed number of particles $\left(\eta_{p}(1)=1\right)$

Interacting path-particle system

Question: How to simulate η_{M} directly from \mathbb{P} ?

$$
d \eta_{M}=\frac{1}{\mathcal{Z}_{M}}\left\{\prod_{p=1}^{M-1} G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right\} d \mathbb{P}
$$

Answer: System of path-particles, whose empirical measure will be approximately \mathbb{Q}.

- Path-particle: $\boldsymbol{Y}_{p}=\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)$ taking values in $E^{p+1}, 1 \leq p \leq M$.
- System with n path-particles: $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{i}\right)_{1 \leq i \leq n}$ taking values in $\left(E^{p+1}\right)^{n}$.
- Initialization: $p=0: \boldsymbol{Y}_{0}^{i}=\boldsymbol{x}_{0}$ for all $i=1, \ldots, n$.
- Dynamics: Evolution from generation p to $p+1$ as follows:

$$
\mathbb{Y}_{p} \in\left(E^{p+1}\right)^{n} \xrightarrow{\text { selection }} \widehat{\mathbb{Y}}_{p} \in\left(E^{p+1}\right)^{n} \xrightarrow{\text { mutation }} \mathbb{Y}_{p+1} \in\left(E^{p+2}\right)^{n}
$$

$$
\mathrm{n}=3 \text { particles }
$$

3 particles $\boldsymbol{Y}_{p}^{1}, \boldsymbol{Y}_{p}^{2}, \boldsymbol{Y}_{p}^{3}$ at generation p, with potential weights $G\left(\boldsymbol{Y}_{p}^{1}\right)=1, G\left(\boldsymbol{Y}_{p}^{2}\right)=2, G\left(\boldsymbol{Y}_{p}^{3}\right)=3$.

n=3 particles

Probability to select particle $j: \frac{G\left(\boldsymbol{Y}_{p}^{j}\right)}{G\left(\boldsymbol{Y}_{p}^{1}\right)+G\left(\boldsymbol{Y}_{p}^{2}\right)+G\left(\boldsymbol{Y}_{p}^{3}\right)}=\left\{\begin{array}{l}\frac{1}{6} \text { if } j=1 \\ \frac{1}{3} \text { if } j=2 \\ \frac{1}{2} \text { if } j=3\end{array}\right.$

n=3 particles

Probability to select particle $j: \frac{G\left(\boldsymbol{Y}_{p}^{j}\right)}{G\left(\boldsymbol{Y}_{p}^{1}\right)+G\left(\boldsymbol{Y}_{p}^{2}\right)+G\left(\boldsymbol{Y}_{p}^{3}\right)}=\left\{\begin{array}{l}\frac{1}{6} \text { if } j=1 \\ \frac{1}{3} \text { if } j=2 \\ \frac{1}{2} \text { if } j=3\end{array}\right.$

n=3 particles

Probability to select particle $j: \frac{G\left(\boldsymbol{Y}_{p}^{j}\right)}{G\left(\boldsymbol{Y}_{p}^{1}\right)+G\left(\boldsymbol{Y}_{p}^{2}\right)+G\left(\boldsymbol{Y}_{p}^{3}\right)}=\left\{\begin{array}{l}\frac{1}{6} \text { if } j=1 \\ \frac{1}{3} \text { if } j=2 \\ \frac{1}{2} \text { if } j=3\end{array}\right.$

$$
\mathrm{n}=3 \text { particles }
$$

Each particle evolve independently from p to $p+1$.

$\mathrm{n}=3$ particles

3 particles are selected at generation $p+1$.

$$
\mathrm{n}=3 \text { particles }
$$

Each particle evolve independently from $p+1$ to $p+2$.

At each generation $p=0, \ldots, M-1$:
Selection: from the system $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{i}\right)_{1 \leq i \leq n}$, choose randomly and independently n path-particles

$$
\widehat{\boldsymbol{Y}}_{p}^{i}=\left(\widehat{\boldsymbol{Y}}_{0, p}^{i}, \widehat{\boldsymbol{Y}}_{1, p}^{i}, \ldots, \widehat{\boldsymbol{Y}}_{p, p}^{i}\right) \in E^{p+1}
$$

according to the Boltzmann-Gibbs particle measure

$$
\sum_{i=1}^{n} \frac{G_{p}\left(\boldsymbol{Y}_{p}^{i}\right)}{\sum_{j=1}^{n} G_{p}\left(\boldsymbol{Y}_{p}^{j}\right)} \delta_{\boldsymbol{Y}_{p}^{i}}
$$

Mutation: each selected path-particle \widehat{Y}_{p}^{i} is extended by an elementary unbiased K_{p}-transition:

$$
\begin{aligned}
\boldsymbol{Y}_{p+1}^{i} & =\left(\left(\boldsymbol{Y}_{0, p+1}^{i}, \ldots, \boldsymbol{Y}_{p, p+1}^{i}\right) \quad, \boldsymbol{Y}_{p+1, p+1}^{i}\right) \\
& =\left(\left(\widehat{\boldsymbol{Y}}_{0, p}^{i}, \ldots, \widehat{\boldsymbol{Y}}_{p, p}^{i}\right), \boldsymbol{Y}_{p+1, p+1}^{i}\right) \in E^{p+1}
\end{aligned}
$$

where $\boldsymbol{Y}_{p+1, p+1}^{i}$ is a random variable with distribution $K_{p}\left(\widehat{\boldsymbol{Y}}_{p, p}^{i}, \cdot\right)$. The mutations are performed independently.

- The occupation measures of the ancestral lines converge to the desired twisted measures:

$$
\eta_{p}^{n}=\text { def. } \frac{1}{n} \sum_{i=1}^{n} \delta_{\left(Y_{0, p}^{i}, \ldots, Y_{p, p}^{i}\right)} \xrightarrow{n \rightarrow \infty} \eta_{p}
$$

In addition, several propagation-of-chaos estimates ensure that the ancestral lines $\boldsymbol{Y}_{p}^{i}=\left(\boldsymbol{Y}_{0, p}^{i}, \ldots, \boldsymbol{Y}_{p, p}^{i}\right)$ are asymptotically i.i.d. with common distribution η_{p}.

- Estimator of $P=\eta_{M}(g) \prod_{0 \leq p<M} \eta_{p}\left(G_{p}\right)$:

$$
\begin{gathered}
\hat{P}_{n}=\eta_{M}^{n}(g) \prod_{1 \leq p<M} \eta_{p}^{n}\left(G_{p}\right) \\
g\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a} \prod_{1 \leq p<M} G_{p}^{-1}\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{p}\right)
\end{gathered}
$$

Proof. asymptotic analysis of genealogical particle models.
cf P. Del Moral, Feynman-Kac formulae, genealogical and interacting particle systems with applications, Springer, New York, 2004.
cf P. Del Moral and J. Garnier, Ann. Appl. Probab. 15 (2005), 2496-2534.

Estimator of the probability of the rare event

Let
$\hat{P}_{n}=\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{V\left(\boldsymbol{Y}_{M, M}^{i}\right) \geq a} \prod_{1 \leq p<M} G_{p}^{-1}\left(\boldsymbol{Y}_{0, p}^{i}, \ldots, \boldsymbol{Y}_{p, p}^{i}\right)\right] \times \prod_{1 \leq p<M}\left[\frac{1}{n} \sum_{i=1}^{n} G_{p}\left(\boldsymbol{Y}_{0, p}^{i}, \ldots, \boldsymbol{Y}_{p, p}^{i}\right)\right]$
\hat{P}_{n} is an unbiased estimator of P :

$$
\mathbb{E}\left[\hat{P}_{n}\right]=P
$$

such that

$$
\hat{P}_{n} \xrightarrow{n \rightarrow \infty} P \quad \text { a.s. }
$$

Central limit theorem

- The estimator \hat{P}_{n} satisfies the central limit theorem

$$
\sqrt{n}\left[\hat{P}_{n}-P\right] \xrightarrow{n \rightarrow \infty} \mathcal{N}\left(0, \sigma^{2}\right)
$$

with the asymptotic variance

$$
\sigma^{2}=\sum_{p=1}^{M} \mathbb{E}\left[\prod_{j=1}^{p} G_{j}\right] \mathbb{E}\left[\prod_{j=1}^{p} G_{j}^{-1}\left(P_{p, M}^{a}\right)^{2}\right]-P^{2}
$$

Here the functions $P_{p, M}^{a}$ are defined by

$$
\boldsymbol{x}_{p} \in E \mapsto P_{p, M}^{a}\left(\boldsymbol{x}_{p}\right)=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a \mid \boldsymbol{X}_{p}=\boldsymbol{x}_{p}\right)
$$

- Useful for

1) the choice of "good" functions G_{p} (variance reduction)
2) the design of an estimator of the asymptotic variance.

Sketch of proof

Local errors: introduce the random field \mathcal{W}_{p}^{n} given by

$$
\mathcal{W}_{p}^{n}\left(f_{p}\right)=\sqrt{n}\left[\eta_{p}^{n}-\Phi_{p}\left(\eta_{p-1}^{n}\right)\right]\left(f_{p}\right), \quad \text { for } f_{p} \in L^{\infty}(E)
$$

Central limit theorem: The sequence $\left(\mathcal{W}_{p}^{n}\right)_{1 \leq p \leq M}$ converges in law, as $n \rightarrow \infty$, to a sequence of M independent, Gaussian and centered random fields $\left(\mathcal{W}_{p}\right)_{1 \leq p \leq M}$

$$
\mathbb{E}\left[\mathcal{W}_{p}\left(f_{p}\right) \mathcal{W}_{p}\left(g_{p}\right)\right]=\eta_{p}\left(\left[f_{p}-\eta_{p}\left(f_{p}\right)\right]\left[g_{p}-\eta_{p}\left(g_{p}\right)\right]\right)
$$

Global error: Let $Q_{p, M}$, with $1 \leq p \leq M$, be the FK semi-group associated to the flow $\gamma_{M}=\gamma_{p} Q_{p, M}$. Using the Markov property,

$$
Q_{p, M}\left(f_{M}\right)\left(\boldsymbol{y}_{p}\right)=\mathbb{E}\left[f_{M}\left(\boldsymbol{Y}_{M}\right) \prod_{p \leq k<M} G_{k}\left(\boldsymbol{Y}_{k}\right) \mid \boldsymbol{Y}_{p}=\boldsymbol{y}_{p}\right]
$$

Telescopic decomposition

$$
\gamma_{M}^{n}-\gamma_{M}=\sum_{p=1}^{M}\left[\gamma_{p}^{n} Q_{p, M}-\gamma_{p-1}^{n} Q_{p-1, M}\right]=\sum_{p=1}^{M}\left[\gamma_{p}^{n}-\gamma_{p-1}^{n} Q_{p-1, p}\right] Q_{p, M}
$$

Use $\gamma_{p-1}^{n} Q_{p-1, p}=\gamma_{p-1}^{n}\left(G_{p-1}\right) \Phi_{p-1}\left(\eta_{p-1}^{n}\right)$ and $\gamma_{p-1}^{n}\left(G_{p-1}\right)=\gamma_{p}^{n}(1)$.

$$
\gamma_{M}^{n}-\gamma_{M}=\sum_{p=1}^{M} \gamma_{p}^{n}(1)\left[\eta_{p}^{n}-\Phi_{p-1}\left(\eta_{p-1}^{n}\right)\right] Q_{p, M}
$$

As a result:

$$
\mathcal{W}_{M}^{\gamma, n}\left(f_{M}\right)={ }_{\text {def. }} \sqrt{n}\left[\gamma_{M}^{n}-\gamma_{M}\right]\left(f_{M}\right)=\sum_{p=1}^{M} \gamma_{p}^{n}(1) \mathcal{W}_{p}^{n}\left(Q_{p, M} f_{M}\right)
$$

Consider

$$
\sqrt{n}\left[\hat{P}_{n}-P\right]=\mathcal{W}_{M}^{\gamma, n}(g)
$$

Thus $\mathcal{W}_{M}^{\gamma, n}(g)$ converge in law, as $n \rightarrow \infty$, to a centered Gaussian random variable $\mathcal{W}_{M}^{\gamma}(g)$ with the variance

$$
\sigma_{M}^{2}=_{\text {def. }} \mathbb{E}\left(\mathcal{W}_{M}^{\gamma}(g)^{2}\right)=\sum_{p=1}^{M} \gamma_{p}(1)^{2} \eta_{p}\left(\left[Q_{p, M}(g)-\eta_{p} Q_{p, M}(g)\right]^{2}\right)
$$

Variance comparisons for the Gaussian model $X_{p}=X_{p-1}+\theta_{p}$
where $\left(\theta_{p}\right)_{1 \leq p \leq M}$ independent, Gaussian, zero-mean, variance one,

$$
V(x)=x .
$$

Here X_{M} is Gaussian, has zero-mean and variance M :

$$
P=\mathbb{P}\left(X_{M} \geq a\right)=\frac{1}{\sqrt{2 \pi M}} \int_{a}^{\infty} \exp \left(-\frac{s^{2}}{2 M}\right) d s \sim \exp \left(-\frac{a^{2}}{2 M}\right)
$$

Consider $a \gg \sqrt{M}$ so that $P \ll 1$.
First choice for the potential:

$$
G_{p}\left(x_{0}, \ldots, x_{p}\right)=\exp \left(\alpha x_{p}\right), \quad \text { for some } \alpha>0
$$

Calculations show

$$
\sigma^{2} \simeq \sum_{p=1}^{M}\left[e^{-\frac{a^{2}}{M}} e^{\frac{p}{M(M+p)}[a-\alpha M(p-1) / 2]^{2}+\frac{1}{12} \alpha^{2}(p-1) p(p+1)}-P^{2}\right]
$$

By optimizing, we take $\alpha=2 a /[M(M-1)]$, and we get

$$
\sigma^{2} \simeq e^{-\frac{a^{2}}{M} \frac{2}{3}\left(1-\frac{1}{M-1}\right)}
$$

\hookrightarrow the asymptotic variance is of the order of $P^{4 / 3}$
\rightarrow relative error $\sim 1 / \sqrt{n P^{2 / 3}}$.

Consider the same model.
Second choice for the potential:

$$
G_{p}\left(x_{0}, \ldots, x_{p}\right)=\exp \left[\alpha\left(x_{p}-x_{p-1}\right)\right], \quad \text { for some } \quad \alpha>0
$$

We obtain:

$$
\sigma^{2} \simeq \sum_{0 \leq p<M}\left[e^{-\frac{a^{2}}{M}} e^{\frac{p+1}{M(M+p+1)}\left[a-\alpha \frac{M p}{p+1}\right]^{2}+\alpha^{2} \frac{p}{p+1}}-P^{2}\right]
$$

By optimizing, $\alpha=a / M$, we get

$$
\sigma^{2} \sim e^{-\frac{a^{2}}{M}\left(1-\frac{1}{M}\right)}
$$

\hookrightarrow the asymptotic variance is of the order of P^{2}.
\rightarrow relative error $\sim 1 / \sqrt{n}$.
By comparing with the previous case: a selection pressure depending only on the state is not efficient!

Numerical simulations with the Gaussian model

$$
M=15, n=210^{4} \text { particles, } \alpha=1
$$

Optical communication in transoceanic optical fibers

- Physical model:
$\left(u_{0}(t)\right)_{t \in \mathbb{R}}=$ initial pulse profile.
$(u(z, t))_{t \in \mathbb{R}}=$ pulse profile after a propagation distance z.
$(u(Z, t))_{t \in \mathbb{R}}=$ output pulse profile (after a propagation distance Z).
$\tau(z)^{2}=\int|u(z, t)|^{2} t^{2} d t / \int|u(z, t)|^{2} d t$ rms pulse width after propagation distance z.
Propagation from $z=0$ to $z=Z$ governed by two coupled nonlinear Schrödinger equations with randomly z-varying coefficients.
\rightarrow Truncation of $[0, Z]$ into M segments $\left[z_{p-1}, z_{p}\right), z_{p}=p Z / M, 1 \leq p \leq M$.
$\rightarrow \boldsymbol{X}_{p}=\left(u\left(z_{p}, t\right)_{t \in \mathbb{R}}\right)$ is the pulse profile at distance z_{p}.
Here $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$ is Markov with state space $E=H_{0}^{2}(\mathbb{R}) \cap L_{2}^{2}(\mathbb{R})$

The potential function is $V: \left\lvert\, \begin{aligned} & E \rightarrow \mathbb{R} \\ & V(\boldsymbol{X})=\int t^{2}|\boldsymbol{X}(t)|^{2} d t / \int|\boldsymbol{X}(t)|^{2} d t\end{aligned}\right.$
Problem: estimation of the probability

$$
P=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)=\mathbb{P}(\tau(Z) \geq a)
$$

1) asymptotic model (separation of scales technique)
\rightarrow the rms pulse width $\tau(z)$ is a diffusion process and its pdf is

$$
p_{z}(\tau)=\frac{\tau^{1 / 2}}{\sqrt{2 \pi}\left(4 \sigma^{2} z\right)^{3 / 2}} \exp \left(-\frac{\tau}{8 \sigma^{2} z}\right) \mathbf{1}_{[0, \infty)}(\tau)
$$

2) realistic model: impossible to get a closed-form expression for the pdf of $\tau(z)$.
3) experimental observations: the pdf tail of the rms pulse width does not fit with the Maxwellian distribution in realistic configurations.

Numerical simulations with the PMD model

$$
M=15, n=210^{4} \text { particles, } \alpha=1 \text { and } \alpha=3
$$

The solid line stands for the Maxwellian pdf predicted by the asymptotic model.

Multilevel splitting

- Description of the system:
- Let \boldsymbol{X} be a \mathbb{R}^{d}-valued random variable with $\operatorname{pdf} p(\boldsymbol{x})$.
- Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the risk function.
- Let a be the threshold level.
- Problem: estimation of

$$
P=\mathbb{P}(V(\boldsymbol{X}) \geq a)
$$

when a is large $\Longrightarrow P \ll 1$.

Multilevel splitting

- Splitting strategy:
- Note the decomposition (with $a_{M}=a>\cdots>a_{0}=-\infty$)

$$
P=\prod_{j=1}^{M} P_{j}, \quad P_{j}=\mathbb{P}\left(V(\boldsymbol{X})>a_{j} \mid V(\boldsymbol{X})>a_{j-1}\right)
$$

- Estimate P_{j} separately.
- Two key issues:

1) Algorithm to evaluate each P_{j},
2) Selection of the levels a_{j}.

Answer to 1): use an interacting particle method (based on a Markov process whose invariant distribution has pdf $p) \rightarrow \hat{P}_{n}$.
Answer to 2): choose a_{j} such that the P_{j} 's are all equal to the same $\alpha \in(0,1)$. Then

$$
\operatorname{Var}\left(\hat{P}_{n}\right)=\frac{P^{2}}{n}\left(\frac{(1-\alpha) \ln P}{\alpha \ln \alpha}\right)+o\left(n^{-1}\right)
$$

\hookrightarrow one should take $\alpha \rightarrow 1$.

- New strategy with " $\alpha=1-1 / n$ ":
- Generate n particles (with the distribution with pdf p) to create generation zero:
$\hookrightarrow \quad\left(\boldsymbol{X}_{0}^{1}, \ldots, \boldsymbol{X}_{0}^{n}\right)$ independent and identically distributed with the distribution with pdf $p(\boldsymbol{x})$
- For $j-1 \rightarrow j$,
- define the level a_{j} as the minimum of $V(\boldsymbol{x})$ evaluated on the n particles: $a_{j}=\min _{i=1, \ldots, n}\left\{\left(V\left(\boldsymbol{X}_{j-1}^{i}\right)\right\}\right.$,
- remove the particle that achieves the minimum,
- generate a new particle with the conditional distribution $\mu_{a_{j}}$ of \boldsymbol{X} knowing that $V(\boldsymbol{X})>a_{j}$:

$$
\mu_{a_{j}}(d \boldsymbol{x})=p_{a_{j}}(\boldsymbol{x}) d \boldsymbol{x}, \quad p_{a_{j}}(\boldsymbol{x})=\frac{\mathbf{1}_{V(\boldsymbol{x}) \geq a_{j}} p(\boldsymbol{x})}{\int_{\mathbb{R}^{d}} \mathbf{1}_{V\left(\boldsymbol{x}^{\prime}\right) \geq a_{j}} p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}}
$$

(use the Metropolis-Hastings algorithm).
$\hookrightarrow \quad\left(\boldsymbol{X}_{j}^{1}, \ldots, \boldsymbol{X}_{j}^{n}\right)$ independent and identically distributed with the distribution $\mu_{a_{j}}$

- Stop when $a_{j}>a$. Denote $\hat{J}_{n}=\min \left\{j, a_{j}>a\right\}-1$.
- Result 1: if one knows how to generate the new particle with the distribution $\mu_{a_{j}}$, then \hat{J}_{n} follows a Poisson distribution with parameter $-n \ln P$.

Proof:

- if $V(\boldsymbol{X})$ has continuous cumulative distribution function F, then $F(V(\boldsymbol{X}))$ is a uniform random variable and $-\log (1-F(V(\boldsymbol{X})))$ is an exponential random variable.
- the random variables $-\log \left(1-F\left(a_{j}\right)\right), j \geq 1$, are distributed as the successive arrival times of a Poisson process with rate n,

$$
-\log \left(1-F\left(a_{j}\right)\right) \stackrel{\text { dist. }}{=} \frac{1}{n} \sum_{i=1}^{j} E_{i}
$$

where E_{i} are i.i.d. exponential random variables.
$-\mathbb{P}\left(\hat{J}_{n}=j\right)=\mathbb{P}\left(a_{j} \leq a, a_{j+1}>a\right)=\mathbb{P}\left(\sum_{i=1}^{j} E_{i} \leq-n \ln P<\sum_{i=1}^{j+1} E_{i}\right)$.

Proof. Let $\Lambda(y)=-\log (1-F(y)) . \Lambda: \mathbb{R} \rightarrow(0, \infty)$ is continuous and increasing.

- Generation 0: $\left(\Lambda\left(V\left(\boldsymbol{X}_{0}^{i}\right)\right)\right)_{i=1, \ldots, n}$ are i.i.d. with the distribution of $\Lambda(V(\boldsymbol{X}))$:

$$
\mathbb{P}(\Lambda(V(\boldsymbol{X})) \geq \lambda)=\mathbb{P}\left(1-F\left(V\left(X_{0}\right)\right) \leq 1-e^{-\lambda}\right)=e^{-\lambda}
$$

Therefore $\left(\Lambda\left(V\left(\boldsymbol{X}_{0}^{i}\right)\right)\right)_{i=1, \ldots, n}$ are i.i.d. with the distribution $\mathcal{E}(1)$.
Let $a_{1}=\min _{i=1, \ldots, n}\left\{V\left(\boldsymbol{X}_{0}^{i}\right)\right\}$. We have $\Lambda\left(a_{1}\right)=\min _{i=1, \ldots, n}\left\{\Lambda\left(V\left(\boldsymbol{X}_{0}^{i}\right)\right)\right\}$.

$$
\mathbb{P}\left(\Lambda\left(a_{1}\right) \geq \lambda\right)=\mathbb{P}(\Lambda(V(\boldsymbol{X})) \geq \lambda)^{n}=e^{-n \lambda}
$$

Therefore

$$
\Lambda\left(a_{1}\right) \sim \frac{1}{n} E_{1}, \quad E_{1} \sim \mathcal{E}(1)
$$

- Generation j. Let $\Lambda_{j}(y)=-\log \left(1-F_{j}(y)\right)$ where F_{j} is the cdf of $V(\boldsymbol{X})$ given $V(\boldsymbol{X}) \geq a_{j}:$

$$
F_{j}(y)=\mathbb{P}\left(V(\boldsymbol{X}) \leq y \mid V(\boldsymbol{X}) \geq a_{j}\right)=\frac{\mathbb{P}\left(a_{j} \leq V(\boldsymbol{X}) \leq y\right)}{\mathbb{P}\left(V(\boldsymbol{X}) \geq a_{j}\right)}=\frac{F(y)-F\left(a_{j}\right)}{1-F\left(a_{j}\right)}
$$

Therefore $\Lambda_{j}(y)=\Lambda(y)-\Lambda\left(a_{j}\right)$.
As above: $\left(\Lambda_{j}\left(V\left(\boldsymbol{X}_{j}^{i}\right)\right)\right)_{i=1, \ldots, n}$ are i.i.d. with the distribution $\mathcal{E}(1)$.
Let $a_{j+1}=\min _{i=1, \ldots, n}\left\{V\left(\boldsymbol{X}_{j}^{i}\right)\right\}$. As above $\Lambda_{j}\left(a_{j+1}\right) \sim \frac{1}{n} E_{j+1}, E_{j} \sim \mathcal{E}(1)$.
Therefore

$$
\Lambda\left(a_{j+1}\right)=\Lambda\left(a_{j}\right)+\Lambda_{j}\left(a_{j}\right) \sim \frac{1}{n} \sum_{i=1}^{j+1} E_{i}, \quad E_{i} \sim \mathcal{E}(1)
$$

- Estimator:

$$
\hat{P}_{n}=\left(1-\frac{1}{n}\right)^{\hat{J}_{n}}
$$

- Result 2: if one knows how to generate the new particle with the distribution $\mu_{a_{j}}$, then \hat{P}_{n} is an unbiased estimator of P with variance

$$
\operatorname{Var}\left(\hat{P}_{n}\right)=P^{2}\left(P^{-1 / n}-1\right) \simeq \frac{-P^{2} \ln P}{n}
$$

In fact

$$
\mathbb{P}\left(\hat{P}_{n}=\left(1-\frac{1}{n}\right)^{j}\right)=\mathbb{P}\left(\hat{J}_{n}=j\right)=\frac{P^{n}(-n \log P)^{j}}{j!}
$$

Moreover, denoting

$$
\hat{P}_{n, \pm}=\hat{P}_{n} \exp \left(\pm \frac{z_{1-\alpha / 2}}{\sqrt{n}} \sqrt{-\log \hat{P}_{n}}\right)
$$

where $z_{1-\alpha / 2}$ is the $1-\alpha / 2$-quantile of the standard normal distribution, we have

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n,-}, \hat{P}_{n,+}\right]\right) \approx 1-\alpha
$$

If $\alpha=0.05$, then $z_{1-\alpha / 2} \approx 2$.

- Aparté: Metropolis-Hastings algorithm.
- Let μ_{a} be a probability distribution on \mathbb{R}^{d} with pdf $p_{a}(\boldsymbol{x})$ (known up to a multiplicative constant). We want to simulate an ergodic Markov chain $\left(\boldsymbol{X}_{t}\right)_{t \geq 0}$ whose invariant distribution is μ_{a}.
- Preliminary step: choose an instrumental transition density q on \mathbb{R}^{d}, i.e., for any fixed $\boldsymbol{x}^{\prime} \in \mathbb{R}^{d}, \boldsymbol{x} \rightarrow q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ is a pdf and we know how to generate a random variable \boldsymbol{X} with this pdf.
- Algorithm:

Step 0: Choose \boldsymbol{X}_{0} arbitrarily.
Step $t+1$: Choose a candidate $\tilde{\boldsymbol{X}}_{t+1}$ with the distribution with pdf $q\left(\boldsymbol{X}_{t}, \boldsymbol{x}\right)$. Set $\boldsymbol{X}_{t+1}=\boldsymbol{X}_{t}$ with probability $1-\rho\left(\boldsymbol{X}_{t}, \tilde{\boldsymbol{X}}_{t+1}\right)$ (reject) and $\boldsymbol{X}_{t+1}=\tilde{\boldsymbol{X}}_{t+1}$ with probability $\rho\left(\boldsymbol{X}_{t}, \tilde{\boldsymbol{X}}_{t+1}\right)$ (accept). Here

$$
\rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=\min \left(\frac{p_{a}(\boldsymbol{x}) q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}{p_{a}\left(\boldsymbol{x}^{\prime}\right) q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)}, 1\right)
$$

- $\left(\boldsymbol{X}_{t}\right)_{t \geq 0}$ is a Markov chain with transition

$$
K\left(\boldsymbol{x}^{\prime}, d \boldsymbol{x}\right)=q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) d \boldsymbol{x}+\left(1-\int q\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right) d \boldsymbol{y}\right) \delta_{\boldsymbol{x}^{\prime}}(d \boldsymbol{x})
$$

- We can check (because $\left.p_{a}\left(\boldsymbol{x}^{\prime}\right)\left[q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)\right]=p_{a}(\boldsymbol{x})\left[q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \rho\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]\right)$

$$
\int d \boldsymbol{x}^{\prime} p_{a}\left(\boldsymbol{x}^{\prime}\right) K\left(\boldsymbol{x}^{\prime}, d \boldsymbol{x}\right)=p_{a}(\boldsymbol{x}) d \boldsymbol{x}
$$

$\hookrightarrow \mu_{a}$ is stationary for the Markov chain.

- Under mild conditions (for instance, if q is positive), the chain $\left(\boldsymbol{X}_{t}\right)_{t \geq 0}$ is ergodic with stationary distribution μ_{a} :

$$
\sup _{A \in \mathcal{B}\left(\mathbb{R}^{d}\right)}\left|\mathbb{P}\left(\boldsymbol{X}_{t} \in A\right)-\mu_{a}(A)\right| \xrightarrow{t \rightarrow \infty} 0
$$

- In practice:
- after a burn-in phase with some length t_{0}, the sequence $\left(\boldsymbol{X}_{t}\right)_{t \geq t_{0}}$ is stationary with distribution μ_{a} (but not independent).
- the choice of the instrumental transition density is important to get fast convergence. Ideally the rejection rate should be around 50%.
- If $\boldsymbol{X}_{0} \sim \mu_{a}$, then the chain is stationary. After a few accepted mutations, $\boldsymbol{X}_{t} \sim \mu_{a}$ and is quasi-independent from \boldsymbol{X}_{0}.
- Problem: how to generate the new particle with the distribution $\mu_{a_{j}}$ (of \boldsymbol{X} knowing that $\left.V(\boldsymbol{X})>a_{j}\right)$?

Version 1:

- Consider a symmetric transition kernel $q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ such that $q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$.
- Algorithm:
- $a_{j}=$ minimal value of the n particles.
- pick a particle $\boldsymbol{X}_{(1)}$ amongst the $n-1$ largest particles (larger than a_{j}).
- for $t=1, \ldots, T$, draw a new particle \boldsymbol{X}^{*} with the pdf $q\left(\boldsymbol{X}_{(1)}, \cdot\right)$; if $V\left(\boldsymbol{X}^{*}\right)>a_{j}$, then $\boldsymbol{X}_{(1)}=\boldsymbol{X}^{*}$ with probability $\min \left(p\left(\boldsymbol{X}^{*}\right) / p\left(\boldsymbol{X}_{(1)}\right), 1\right)$; otherwise keep $\boldsymbol{X}_{(1)}$.
- replace the smallest particle by $\boldsymbol{X}_{(1)}$.
- Result 3: the distribution of $\boldsymbol{X}_{(1)}$ is the distribution $\mu_{a_{j}}$. As $T \rightarrow \infty$, the distribution of $\boldsymbol{X}_{(1)}$ becomes independent of the other particles.
- Problem: how to generate the new particle with the distribution $\mu_{a_{j}}$ (of \boldsymbol{X} knowing that $\left.V(\boldsymbol{X})>a_{j}\right)$?

Version 2:

- Consider a transition kernel $q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ such that $p\left(\boldsymbol{x}^{\prime}\right) q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=p(\boldsymbol{x}) q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$.
- Algorithm:
- $a_{j}=$ minimal value of the n particles.
- pick a particle $\boldsymbol{X}_{(1)}$ amongst the $n-1$ largest particles (larger than a_{j}).
- for $t=1, \ldots, T$, draw a new particle \boldsymbol{X}^{*} with the pdf $q\left(\boldsymbol{X}_{(1)}, \cdot\right)$; if $V\left(\boldsymbol{X}^{*}\right)>a_{j}$, then $\boldsymbol{X}_{(1)}=\boldsymbol{X}^{*}$; otherwise keep $\boldsymbol{X}_{(1)}$.
- replace the smallest particle by $\boldsymbol{X}_{(1)}$.
- Result 3: the distribution of $\boldsymbol{X}_{(1)}$ is the distribution $\mu_{a_{j}}$. As $T \rightarrow \infty$, the distribution of $\boldsymbol{X}_{(1)}$ becomes independent of the other particles.
In practice: $T=$ a few tens.

Example:

$$
P=\mathbb{P}(V(\boldsymbol{X}) \geq a)
$$

with $\boldsymbol{X} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right), d=20, a=0.95, V(\boldsymbol{x})=x_{1} /|\boldsymbol{x}| \rightarrow P=4.70410^{-11}$.
Kernel $q: \boldsymbol{x}^{\prime} \rightarrow \mathcal{N}\left(\frac{\boldsymbol{x}^{\prime}}{\sqrt{1+\sigma^{2}}}, \frac{\sigma^{2}}{1+\sigma^{2}} \mathbf{I}_{d}\right), \sigma=0.3, T=20$, ie

$$
\begin{aligned}
& q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=\left(1+\sigma^{2}\right)^{d / 2} \\
&\left(2 \pi \sigma^{2}\right)^{d / 2} \exp \left(-\frac{\left|\sqrt{1+\sigma^{2}} \boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{2}}{2 \sigma^{2}}\right) \\
& \\
& n \in[100,200,500,1000] \text { particles. }
\end{aligned}
$$

Cf: F. Cerou, A. Guyader (Rennes), P. Glasserman, R. Rubinstein.

Conclusions

- Importance sampling: bias the input.

Interacting particle system: select the particles based on the output.
\hookrightarrow No physical insight is required to guess the suitable twisted input distribution. But: need $V(\boldsymbol{X})$.

- The real distribution is used, not a twisted one.
\hookrightarrow Non-intrusive method: no need to change the numerical code.
- Number of particles fixed, computational cost (almost) fixed.
- It is possible to make the algorithm partially parallel (not fully parallel as Monte Carlo).
- Also: conditional distributions. The method is efficient for the computation of conditional expectations and for the analysis of the cascade of events leading to a rare event.

