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Problem: estimation of the probability of occurence of a rare event.
Simulation by an Interacting Particle System.

Two versions:
- a rare event in terms of the final state of a Markov chain,
- a rare event in terms of a random variable, whose distribution is seen as the

stationary distribution of a Markov chain.
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Rare events

e Description of the system: Let E be a measurable space.

— (Xp)o<p<m: a E-valued Markov chain:
P(Xp c A | Xp_1 = Lp—1y---, Xo = :130) = P(Xp c A | Xp_l = CBp_l)

— V : E — R: the risk function.
— a € R: the threshold level.

e Problem: estimation of the probability
P=P(V(Xu) > a)

when a is large — P < 1.
We know how to simulate the Markov chain (Xp)o<p<ns-
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Rare events

e Description of the system: Let E be a measurable space.

— (Xp)o<p<m: a E-valued Markov chain:
P(Xp c A | Xp_l =Tp—1,---, Xo = w()) = P(Xp c A | Xp_l = .’L'p_1>

— V : E — R: the risk function.
— a € R: the threshold level.

e Problem: estimation of the probability
P=P(V(Xur) > a)

when a is large — P < 1.

We know how to simulate the Markov chain (Xp)o<p<nr-

e Frample: X, = X,—1 4+ 0,, Xo = 0, where 6, is a sequence of independent
Gaussian random variables with mean zero and variance one. Here

— F =R,

— V(z) =,

— solution known: X = V(X) ~ N (0, M).
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Example: Optical communication in transoceanic optical fibers

Optical fiber transmission principle:

- a binary message is encoded as a train of short light pulses.
- the pulse train propagates in a long optical fiber.

- the message is read at the output of the fiber.

1 1 0 1 1 1 0 1
Transmission
—
/N 7N\ /N
t SN/ \\\ B / \I
Input pulse train Output pulse train

Transmission is perturbed by different random phenomena (amplifier noise,

random dispersion, random birefringence,. . .).

Question: estimation of the bit-error-rate (probability of error), typically
107° or 107°.

Answer: use of a big numerical code (but brute-force Monte Carlo too expensive).
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Example: Optical communication in transoceanic optical fibers

e Physical model:
(uo(t))ter = initial pulse profile.

(u(z,t))ter = pulse profile after a propagation distance z.

(u(Z,1))ier = output pulse profile (after a propagation distance 7).

Propagation from z = 0 to z = Z governed by two coupled nonlinear Schrodinger

equations with randomly z-varying coefficients (code OCEAN, Alcatel).
— black box.

— Truncation of [0, Z] into M segments [2p—1,2p), 2p = pZ/M,1 <p < M.
— X, = u(zp, t)er is the pulse profile at distance z,.
Here (X, )o<p<n is Markov with state space E = H(R) N L3(R).
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Example: Optical communication in transoceanic optical fibers
Question: estimation of the probability of anomalous pulse spreading.

Rms pulse width after propagation distance z:

(2)? :/yu(z,t>|2t2dt//yu(z,t>|2dt

E—R

The potential function is V :
poTTIE TR V(X) = [ X (6)%dt/ [ X (t)[2dt

Problem: estimation of the probability

P=P(1(Z) 2 a) =P(V(Xwm) > a)
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Monte Carlo method

e n independent copies ((X¢, ..., Xk))1<i<n of (Xo,..., X ) distributed with
the original P.

e Proposed estimator:
. 1 —

Unbiased estimator:

Variance:

>

The absolute error Std(P,) ~ v/ P/\/n.

The relative error

A

Std(P,) 1

P a v Pn

< We should have n > P~ ! to get a relative error smaller than one.

Of course: P! is the minimum size of the sample required for one element to

reach the rare level !
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Importance Sampling method

e n independent copies ((X¢,..., X)) 1<i<n of (Xo,..., X ) distributed with a
biased distribution Q.

e Proposed estimator:

dp i
Z]‘V(X )>adQ(X07 . 7XM)

Unbiased estimator:

. dlP
Eq [Pn} = Ko [1V(XM>za@(Xo, . -,XM)} =P

Variance:

n

o [(By = Y] = 2 { e (1 o0 G (Kon- oo X | = P71

— With a proper choice of Q, the error-variance can be dramatically reduced.

lv(x,)>a

Optimal choice: dQ = PV (X1 Sa) dP. Impossible to apply ! But this result gives

ideas (adaptive strategy, ...)

e Critical points: choice of the biased distribution + evaluation of the likelihood

ratio + simulation of the biased dynamics (intrusive method).
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Importance Sampling method driven by Large Deviations Principle

e Consider the family of twisted distributions, A > 0:

N _ 1 AV (X )
dP'\" = ]EP(QAV(XM)) e dlP

P favors random evolutions with high potential values V(Xaz).

e n independent copies (X4;)1<i<n distributed with PO,

e Estimator:

dP p
Poy = Z Ly (xi)za To07 (X0 Xir)
Variance:
nEpo [(Pmk — P)Q} = FEp [1V(XM)za e—AV(XM)} E]}D[BAV(XM)] _ p?

< e~ ra—Am(N] p _ p2
where An(A) = logEple*V (¥M)]. For a judicious choice of ),
Aa— Ay (N) =supysglrae — Ay (AN)] ~ —In P (large deviations principle), so

. 5 P2
Epo) [(Prx — P)7] S -

Almost optimal: the relative error is 1/4/n (compare with MC: 1/v/ Pn).
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Twisted Feynman-Kac path measures
Question: How to simulate the twisted distribution P 2

Answer: We will show a way to simulate the distribution Q:

M
1
Q= —— {gap(xo,...,xp)} dP

where (Gp)1<p<nr is a sequence of positive potential functions on the path spaces
E? and Zy = Ep[][ Gp(Xo, ..., Xp)] > 0 is a normalization constant.

Examples:
-Gp(Xo,...,. X)) =1, p< M, Gu(Xo,...,Xn)=e"V XM,
- Gp(Xo, ..., Xp) = AV (Xp)=V(Xp_1))

e What is a “good” choice for G, 7
e How to simulate Q directly from P 7
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Original measures

o (X,)o<p<m: a E-valued Markov chain, starting from Xy = @, with transition
Kp(@p—1,dep):

P(Xp c A | Xp_l = Tp—1,-- .,XQ = CB()) = P(Xp c A | Xp_l = azp_l) = / Kp(a:p_l,da:p)
A

where K,(xp—1,-) is a probability measure on (F, &) for any x,—1 € E.

e Denote the (partial) path
Y, =ger. (Xo,...,X,) € EPT p=0,...,.M

The measure u, on EPT! is the distribution of Yj:

tip(fo) et / Fo(un) i (dyp) = E[fp(Y)],  fp € L=(E")

Epr+1

e Expression of P in terms of ps:

P = pa(f)

f(yM) — f(moa ce 7wM) — ]-V(a:M)Za
— If one can compute/estimate pas, then one can compute/estimate P.
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e Recursive relation:

Mp = @p(,up—l) —def. / Np—l(dyp—l)lcp(yp—la )

EP
with po = 0z,-
Kp(yp—1,dy,): Markov transitions associated to the chain Y:

’Cp(yp—la dyglo) = 5yp_1 (dyglo,oa ceey dyglo,p—l)Kp(yp—l,p—la dy],?,p)

Here yp—1 = (Yp—1,0,-- - Yp—1,0-1) € B¥, yp = (Yp,0, - Ypp) € EPT):
< [inear evolution.

Proof:

pp(fo) = Elfp(Yp—1, Xp)]

pp—1(dyp—1)E [fp (Yp—1, Xp)|Yp—1 = yp—l}

p

TS

Mp—1 (dyp—1> / Kp(yp—l,p—la dwp>fp (yp—17 -’»Up)
E

p

— ,Ufp—l(dyp—l) / dyzlglcp(yp—la dyzlo)fp(y]/?)

EP Epr+1

p(tp—1)(fp)

|
©
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Unnormalized measures
-)-/p:def- (AX(),...,AXP)E_E1p_|_17 p:O,,M

FK measure -, associated to the pair potentials/transitions (G, Kp):

Wwify) =E[f(¥) [] Gu(x)]

1<k<p
e Eixpression of P in terms of ~v;:
P =vum(g)
g(yM):g(m07~-~7mM):1V(;cM)2a H G CL'O,... )
1<p<M

— If one can compute/estimate yas, then one can compute/estimate P.

e Recursive relation:

o = Uy (1) —aet. / o1 (dyp—1)Gopr (Yp1 ) (g1, )

EP

Kp(yp—1,dy,): Markov transitions associated to the chain Y,

K (yp 1, dyp) 5yp 1 (dyp Oy -> dyglo,p—l)Kp(yp—lap—la dy]/o,p)
< Linear evolution.

CEMRACS 2013
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Normalized measures

Introduce the normalized measure 7,:

Mo (fo) = Vo (fo)/7p(1), p=0,...,.M

e Expression of P in terms of 7,:
P=nu(g) ][ m(Gy)
1<p<M
Proof:

P=E[g¥a) [I Gu(Yi)|=(9) = m(@)rar(1)
1<k<M

Normalizing constant:

(D) =y —1(Gar—1) = -1 (Gar—1) v (D= [ m0(Gp)
1<p<M

— If one can compute/estimate (np)p=1,...,s, then one can compute/estimate P.

e Recursive relation:
Tlp = (I)p(np—l) —def. / 77p—1(dyp—l)Gp—l(yp—l)lcp(yp—la ')/np—l(Gp—l)
EP
<~ Nonlinear evolution.
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Interacting path-particle system

e Goal: simulate the original measures

pp = Op(pip—1)
e Easy: Let (Y, ,...,Y,") € (EP™")" be independent Markov chains simulated
with P. Then
1 n
Jm 2 S =
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Interacting path-particle system

e Goal: simulate the original measures

pp = Op (,up—l)

e Easy: Let (Y,,...,Y,)") € (EP™))" be independent Markov chains simulated
with P. Then

e Goal: simulate the normalized measures

np = Pp (7719—1)

e Idea: Y, = (Y, ,...,Y,)") € (EP™")™ particle system s.t.
lim 1 zn:c? =
nl_mo n 2= y; = Tlp

e Key points:
— Nonlinear ®,, — interacting particle system
— Simulation technique

— Fixed number of particles (n,(1) = 1)
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Interacting path-particle system

Question: How to simulate nps directly from P 7

1 M-—1
d77M — E {pl_ll Gp(Xo,...,Xp)} dPP

Answer: System of path-particles, whose empirical measure will be approximately

Q.

e Path-particle: Y, = (Xo, ..., X,) taking values in EP*! 1 <p < M.
e System with n path-particles: Y, = (Y, )1<i<» taking values in (EP*)™.
— Initialization: p=0: Yy = foralli=1,...,n.

— Dynamics: Evolution from generation p to p + 1 as follows:

selection ~ mutation

Y, € (EPTH)" > Y, € (EP™)" ——— Y41 € (EPT3)"
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n=3 particles

5_
4+
3t 3 particles
% at generation p
2+
1+
O_ 1 1 1
P p+1 p+2
generation

3 particles Y, Y,?, Y’ at generation p,
with potential weights G(Y,}) = 1, G(Y}}) =2 ,G(Y;’) = 3.
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n=3 particles

5_
4+
3 selection
Z
Q)
2+
1+
O_ | | |
P p+1 _ p+2
generation
(1 ., -
_ zif =1
Probability to select particle j: GY;) = 4 i if 7 =2
G+ GYHra) ] 2T
| sifj=3
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n=3 particles

5_
4+
3 selection
Z
Q)
2 b
1+
O_ | | |
P p+1 _ p+2
generation
(1 ., -
_ zif =1
Probability to select particle j: GY;) = 4 i if 7 =2
GYH e G ) 2T
| sifj=3
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n=3 particles

5_
4F
36D selection completed
% 3 particles selected
2P
1+
O_ 1 1 1
P p+1 _ p+2
generation
(1 ., -
_ =ifj=1
Probability to select particle j G(y) 9 (13 if j =2
r r . = = —
obability to select particle j GY)) + C(Y2) + G(YP) 3 1T J
| 5 ifj=3
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n=3 particles

= |
b mutation

P p+1 p+2
generation

Each particle evolve independently from p to p + 1.
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n=3 particles

< |
5 selection

P p+1 p+2
generation

3 particles are selected at generation p + 1.
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n=3 particles

| \/
i \/
C’ ction
— -

II3 p-lkl p-;-2

generation

Each particle evolve independently from p + 1 to p + 2.
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At each generation p =0,..., M — 1:

Selection: from the system Y, = (lfpi)lgign, choose randomly and independently n
path-particles
'Yp'L — ('1/*0’L7p7 'Yl'L o Y’L

p+1
D9 ) p,p> c kb

according to the Boltzmann-Gibbs particle measure

SS_Gl¥)
i=1 Z?:1 Gp(ij> i

Mutation: each selected path-particle 57; is extended by an elementary unbiased

K ,-transition:

Yoiir = ( (Ypr1s-- . Yopi1) & Yorip1)
— ((%’L?p’. . .7'Yp'L7p)’ '1/;)’L+1,p+1> E Ep+1

where Y, 11 5,41 is a random variable with distribution KP(IA”

s ). The mutations

are performed independently.
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e The occupation measures of the ancestral lines converge to the desired twisted

measures:
5 n—oo
—def. g : —

p e (Y§ oY) TMp

In addition, several propagatlon—of—chaos estimates ensure that the ancestral lines

Y, = (Yd,,...,Y,,) are asymptotically i.i.d. with common distribution 7,,.

e Estimator of P =num(g) [[o<,<pr 0(Gp):

1<p<M
g(wow"awM) :1V(wM)ZCL H G wo’ p)
1<p<M

Proof. asymptotic analysis of genealogical particle models.

cf P. Del Moral, Feynman-Kac formulae, genealogical and interacting particle systems
with applications, Springer, New York, 2004.

cf P. Del Moral and J. Garnier, Ann. Appl. Probab. 15 (2005), 2496-2534.
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Estimator of the probability of the rare event
Let

[ Zlv(YZ M)>a H G 1/()pa'-- pi,p)]X H {%ZGp(ni,pw-w}fpi,p

1<p<M

A

P,, is an unbiased estimator of P:

such that
jf’n " p a.s.

CEMRACS 2013
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Central limit theorem
e The estimator P, satisfies the central limit theorem

N [ﬁn . P} "3 N(0,02)
with the asymptotic variance

M

02:ZE
P

=1

E _ p?

p
1[G (P’
=1

p
116
j=1
Here the functions P; j, are defined by
xp € E— Pyy(xp) =P(V(Xm) >a | Xp =axp)

e Useful for
1) the choice of “good” functions (G, (variance reduction)

2) the design of an estimator of the asymptotic variance.
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Sketch of proof

Local errors: introduce the random field W, given by

Wg(fp> = \/ﬁ [77; — (I)p(ng—1>](fp>v for f, € LOO(E>

Central limit theorem: The sequence (W,')i<p<am converges in law, as n — oo, to

a sequence of M independent, Gaussian and centered random fields (W, )1<p<ns
E [Wp(fp)wp(gp)] = np([fp - np(fp)][gp - 7719(919)])

Global error: Let Qp ar, with 1 < p < M, be the FK semi-group associated to the
flow yar = vpQp,mr- Using the Markov property,

Qpt(far)(yp) =E | fu(Yar) [ Gr(Ye) | Yo =1,

p<k<M
Telescopic decomposition
M M
Yar =y =D [y Qpvt — -1Qp—1.m] = > [y — Yp-1Qp—1,p]Qp,m
p=1 p=1

Use 15-1Qp-1.p = Yp-1(Gp—1)Pp-1(np-1) and 7,1 (Gp-1) = 7 (1).
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Var — vM—Z% )1y — @1 (np—1))Qp, 1

As a result:

v (fm) =det. vVn[yvar — ym](fm) va p (Qp.arfar)

Consider

v [Pn — Pl = W3i"(9)
Thus W,,;"(g) converge in law, as n — oo, to a centered Gaussian random variable
W1, (g) with the variance

U?\/[ =qer. E(W3,(g Z%o 77'p [Qp Mm(g) — anp,M(g)]2)
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Variance comparisons for the Gaussian model X, = X,,_; 4 0,

where (6,)1<p<nr independent, Gaussian, zero-mean, variance one,
V(z) = .

Here X, is Gaussian, has zero-mean and variance M:

1 oC 52 a?
Xurza)= "=z | eXp( 2M> i eXp( 2M>
Consider a > v M so that P < 1.

First choice for the potential:
Gp(xo,...,zp) = exp(ax,), for some a >0

Calculations show

M
Z _aﬁ o (M p) la— oM (p— 1)/2]%+ 5 0% (p—1)p(p+1) P2]

By optimizing, we take o = 2a/[M (M — 1)], and we get

0-2 ~ 6_% %(1_M1—1>

< the asymptotic variance is of the order of P*/3

— relative error ~ 1/vVnP?/3.
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Consider the same model.

Second choice for the potential:

Gp(xo,...,xp) = expla(xy, — xp—1)], for some «a >0
We obtain:
2 2
o? N et et [t et st _ py
0<p<M

By optimizing, o = a/M, we get

< the asymptotic variance is of the order of P2.

— relative error ~ 1/4/n.

By comparing with the previous case: a selection pressure depending only on the

state is not efficient !
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Numerical simulations with the Gaussian model

10°
107° | .
= y

10°°% ) 1
) o MC \
/ * IPS a=1

10_15 I I I I

-30 -20 -10 0 10 20 3C
X

CEMRACS 2013

o MC empir.
6 -~ - MC theo.
107 « IPS empir. ||
—— IPS theo.
< 10 ]
e~
X \
[e\] \
o \
1027 \\\\'\ /
a«*
Eb'lDajggadjj #%H@Hew
100 1 1 1 1 1
-30 -20 -10 0 10 20
X

M =15, n = 2 10* particles, o = 1.
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Optical communication in transoceanic optical fibers

e Physical model:

(uo(t))ter = initial pulse profile.

(u(z,t))ter = pulse profile after a propagation distance z.

(u(Z,t))ter = output pulse profile (after a propagation distance 7).

7(2)? = [ |Ju(z,t)|*t?dt/ [ |u(z,t)|?dt rms pulse width after propagation distance z.
Propagation from z = 0 to z = Z governed by two coupled nonlinear Schrodinger

equations with randomly z-varying coefficients.

— Truncation of [0, Z] into M segments [zp—1,2p), 2p = pZ/M, 1 <p < M.
— X, = (u(zp,1)ier) is the pulse profile at distance z,.

Here (X,)o<p<ar is Markov with state space E = H§(R) N L3(R)
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EF— R

The potential function is V :
V(X) = [LIX@)Pdt/ [ 1X(t)dt

Problem: estimation of the probability

P =P(V(Xay) > a)=P((Z) > a)

1) asymptotic model (separation of scales technique)

— the rms pulse width 7(2) is a diffusion process and its pdf is

1/2
rt/ T

p=(7) = V27 (4022)3/2 ©*p <_ 022

) 1o,00)(7)

2) realistic model: impossible to get a closed-form expression for the pdf of 7(z).

3) experimental observations: the pdf tail of the rms pulse width does not fit with

the Maxwellian distribution in realistic configurations.
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Numerical simulations with the PMD model

o

R v

AV *

MC
IPS a=1.0

IPS 0=3.0 ||

10

P,(1)/p(T)

10

10}

10

o MC

v IPSa=1.0 |
IPS 0=3.0 ||
vV **
DD VVVVVVV *%%
2 4 8 10

M =15, n = 2 10* particles, « = 1 and o = 3.

The solid line stands for the Maxwellian pdf predicted by the asymptotic model.
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Multilevel splitting

e Description of the system:

— Let X be a R%valued random variable with pdf p(x).
— Let V : RY — R be the risk function.

— Let a be the threshold level.

e Problem: estimation of

when a is large — P < 1.
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Multilevel splitting

e Splitting strategy:
- Note the decomposition (with apy =a > -+ > ag = —o0)

M
p=1]]pr, P =P(V(X) > a;|V(X) >a;_1)
j=1

- Estimate P; separately.

e Two key issues:
1) Algorithm to evaluate each P;,

2) Selection of the levels a;.

Answer to 1): use an interacting particle method (based on a Markov process
whose invariant distribution has pdf p) — P,.

Answer to 2): choose a; such that the P;’s are all equal to the same a € (0, 1).
Then

P? ((1 —a)lnP

aln o

Var(P,) = ) +o(n )

n
<~ one should take a — 1.
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e New strategy with “a=1—1/n":

e Generate n particles (with the distribution with pdf p) to create generation zero:

—  (Xg,...,X) independent and identically distributed with the distribution
with pdf p(x)

e For j — 1 — 73,

- define the level a; as the minimum of V' (ax) evaluated on the n particles:
a;j =mini—1,...o{(V(Xj_1)},

- remove the particle that achieves the minimum,

- generate a new particle with the conditional distribution p,; of X knowing
that V(X)) > a;:

. ]-V(a:)Zajp(w)
fRd ]-V(a;’)Zajp(w/)dw/

Ha (dw> = Pa; (w>dw7 Pa; (w>

(use the Metropolis-Hastings algorithm).

—  (X;,..., X! independent and identically distributed with the distribution Ha,

e Stop when a; > a. Denote Jn = min{j,a; > a} — 1.

CEMRACS 2013 Rare events



e Result 1: if one knows how to generate the new particle with the distribution

Pa;, then J,, follows a Poisson distribution with parameter —n In P.

Proof:
- if V(X)) has continuous cumulative distribution function F', then F'(V (X)) is a

uniform random variable and —log(1 — F'(V(X))) is an exponential random

variable.
- the random variables —log(1 — F'(a;)), j > 1, are distributed as the successive

arrival times of a Poisson process with rate n,

—log(l — F dist —ZE

where F); are i.i.d. exponential random variables.
-P(Jo=j) =P(a; < a,aj41 >a) =P(X7_, E; < —nlnP < Y I E)).
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Proof. Let A(y) = —log(1 — F(y)). A: R — (0,00) is continuous and increasing.
o Generation 0: (A(V(X{)))i=1....n are i.i.d. with the distribution of A(V(X)):

PAV(X) >N =PQ1-F(V(Xo)<l—-e ) =e"

Therefore (A(V(Xé))) 77777 n are i.i.d. with the distribution £(1).
n{V(XO)} We have A(a1) = min;—1, . - {A(V(X{))}.

P(A(a1) > A) =P(A(V(X)) > )\)" _ oA

Therefore 1

A(al) ~ EEl, E1 ~ 5(1)
e Generation j. Let A;(y) = —log(1l — Fj(y)) where F; is the cdf of V(X)) given
V(X) Z aj:
Pla; <V(X)<y) _ Fly) = Flay)

P(V(X)=a;)  1-F(a)

Fi(y) =P(V(X) <y[V(X) > a;) =

Therefore Aj;(y) = Ay) — A(aj)
As above: (A;(V(X3})))i=1,...,n are i.i.d. with the distribution £(1).
Let Aj+1 = minz 1, ,n{V(XI>} AS above A (aj_|_1> ~ EEj-l-h Ej ~ 5(1)

Therefore
j+1

Magi) = May) + Ag(a) ~ = S Biy Bin E(1
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e Kstimator:

. 1\ JIn
n

e Result 2: if one knows how to generate the new particle with the distribution

Pa;, then P, is an unbiased estimator of P with variance

2
Var(P,) = P? (P_l/" —1) ~ — P

n

In fact

P(pn _ (1 B l)]) _ P(jn _ )= Pn(—n.logp)j

Moreover, denoting

P, = P,ex (izl_o‘/Q\/—lo ]5)
n,+t n p \/ﬁ g1In

where z1_, /2 is the 1 — a/2-quantile of the standard normal distribution, we have

IP)(P -~ [pn7_,pn7_|_]) ~1— .

If o =0.05, then 2z;_,/2 ~ 2.
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e Aparté: Metropolis-Hastings algorithm.

e Let 11, be a probability distribution on R* with pdf ps () (known up to a
multiplicative constant). We want to simulate an ergodic Markov chain (X¢):>0

whose invariant distribution is .

e Preliminary step: choose an instrumental transition density ¢ on R?, i.e., for any
fixed ' € RY, & — g(x’, ) is a pdf and we know how to generate a random
variable X with this pdf.

e Algorithm:

Step 0: Choose X arbitrarily.

Step t + 1: Choose a candidate X;+1 with the distribution with pdf q(X¢, x). Set
X:11 = X with probability 1 — p(X4, Xt—|—1) (reject) and Xyiy1 = X411 with
probability p(X;, X:41) (accept). Here

pa(x)q(x, ") | 1)

pla @) =min (3

e (X:):>0 is a Markov chain with transition

K(2',dz) = q(z',x)p(x’, x)dz + (1 - /q(w',y)p(w',y)dy) O (da)
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e We can check (because po(x')[q(x’, x)p(x’, x)] = po(x)[q(x, x")p(x,x")])

/da:/pa (2K (2',dx) = pa(x)dx

— g is stationary for the Markov chain.

e Under mild conditions (for instance, if ¢ is positive), the chain (X;):>0 is ergodic
with stationary distribution pg:

sup  |P(X: € A) — pa(A)] =F 0
AcB(R4)

e In practice:

- after a burn-in phase with some length to, the sequence (X;)¢>¢, is stationary
with distribution p, (but not independent).

- the choice of the instrumental transition density is important to get fast

convergence. Ideally the rejection rate should be around 50%.

o If Xy ~ ., then the chain is stationary. After a few accepted mutations,

X ~ e and is quasi-independent from Xp.
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e Problem: how to generate the new particle with the distribution p.; (of X
knowing that V(X) > a;) 7

Version 1:

e Consider a symmetric transition kernel ¢(x’, ) such that q(x’, x) = q(x, z").

e Algorithm:

- a; = minimal value of the n particles.

- pick a particle X1y amongst the n — 1 largest particles (larger than a;).

-fort =1,...,T, draw a new particle X* with the pdf ¢(X),-); if V(X™) > ay,
then X ;) = X™ with probability min(p(X™)/p(X (1)), 1); otherwise keep X(q).

- replace the smallest particle by X(q).

e Result 3: the distribution of X1 is the distribution pue;. As T' — oo, the
distribution of X ;) becomes independent of the other particles.
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e Problem: how to generate the new particle with the distribution p.; (of X
knowing that V(X) > a;) 7

Version 2:

e Consider a transition kernel g(x’, ) such that p(x')q(x’, 2) = p(x)q(x, x).

e Algorithm:

- a; = minimal value of the n particles.

- pick a particle X1y amongst the n — 1 largest particles (larger than a;).

-fort =1,...,T, draw a new particle X* with the pdf ¢(X1),-); if V(X™) > ay,
then X (1) = X™; otherwise keep X 1).

- replace the smallest particle by X(q).

e Result 3: the distribution of X1 is the distribution pue;. As T' — oo, the
distribution of X ;) becomes independent of the other particles.

In practice: T' = a few tens.
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Example:
P =P(V(X) > a)

with X ~ N(0,14), d =20, a =0.95, V(x) = z1/|x| — P =4.70410""".

Kernel q : o’ —>N(\/1{’i7, 1ii21d>’ o=0.3,7T = 20, ie

(14 02)%/2 exp ( V14 o2%x - a:’|2)

g(z', x) =
(2mo2)d/2

202
x 10 °
0.8 +
0.6+ [ I
o
04 | | L |
0.2f )
O \ \
0 500 1000

M
n € (100,200, 500, 1000] particles.

Cf: F. Cerou, A. Guyader (Rennes), P. Glasserman, R. Rubinstein.
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Conclusions

e Importance sampling: bias the input.
Interacting particle system: select the particles based on the output.

— No physical insight is required to guess the suitable twisted input distribution.
But: need V(X).

e The real distribution is used, not a twisted one.

— Non-intrusive method: no need to change the numerical code.

e Number of particles fixed, computational cost (almost) fixed.

e It is possible to make the algorithm partially parallel (not fully parallel as Monte
Carlo).

e Also: conditional distributions. The method is efficient for the computation of
conditional expectations and for the analysis of the cascade of events leading to a

rare event.
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