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Problem: estimation of the probability of occurence of a rare event.

Simulation by an Interacting Particle System.

Two versions:

- a rare event in terms of the final state of a Markov chain,

- a rare event in terms of a random variable, whose distribution is seen as the

stationary distribution of a Markov chain.
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Rare events

• Description of the system: Let E be a measurable space.

− (Xp)0≤p≤M : a E-valued Markov chain:

P(Xp ∈ A |Xp−1 = xp−1, . . . ,X0 = x0) = P(Xp ∈ A |Xp−1 = xp−1)

− V : E → R: the risk function.

− a ∈ R: the threshold level.

• Problem: estimation of the probability

P = P(V (XM ) ≥ a)

when a is large =⇒ P ≪ 1.

We know how to simulate the Markov chain (Xp)0≤p≤M .
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Rare events

• Description of the system: Let E be a measurable space.

− (Xp)0≤p≤M : a E-valued Markov chain:

P(Xp ∈ A |Xp−1 = xp−1, . . . ,X0 = x0) = P(Xp ∈ A |Xp−1 = xp−1)

− V : E → R: the risk function.

− a ∈ R: the threshold level.

• Problem: estimation of the probability

P = P(V (XM ) ≥ a)

when a is large =⇒ P ≪ 1.

We know how to simulate the Markov chain (Xp)0≤p≤M .

• Example: Xp = Xp−1 + θp, X0 = 0, where θp is a sequence of independent

Gaussian random variables with mean zero and variance one. Here

− E = R,

− V (x) = x,

− solution known: XM = V (XM ) ∼ N (0,M).
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Example: Optical communication in transoceanic optical fibers

Optical fiber transmission principle:

- a binary message is encoded as a train of short light pulses.

- the pulse train propagates in a long optical fiber.

- the message is read at the output of the fiber.

1 1 0 1

t

−→
Transmission

1 1 0 1

t

Input pulse train Output pulse train

Transmission is perturbed by different random phenomena (amplifier noise,

random dispersion, random birefringence,. . .).

Question: estimation of the bit-error-rate (probability of error), typically

10−6 or 10−8.

Answer: use of a big numerical code (but brute-force Monte Carlo too expensive).
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Example: Optical communication in transoceanic optical fibers

• Physical model:

(u0(t))t∈R = initial pulse profile.

(u(z, t))t∈R = pulse profile after a propagation distance z.

(u(Z, t))t∈R = output pulse profile (after a propagation distance Z).

Propagation from z = 0 to z = Z governed by two coupled nonlinear Schrödinger

equations with randomly z-varying coefficients (code OCEAN, Alcatel).

→֒ black box.

→ Truncation of [0, Z] into M segments [zp−1, zp), zp = pZ/M , 1 ≤ p ≤ M .

→ Xp = u(zp, t)t∈R is the pulse profile at distance zp.

Here (Xp)0≤p≤M is Markov with state space E = H2
0 (R) ∩ L2

2(R).
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Example: Optical communication in transoceanic optical fibers

Question: estimation of the probability of anomalous pulse spreading.

Rms pulse width after propagation distance z:

τ(z)2 =

∫
|u(z, t)|2t2dt/

∫
|u(z, t)|2dt

The potential function is V :

∣∣∣∣∣
E → R

V (X) =
∫
t2|X(t)|2dt/

∫
|X(t)|2dt

Problem: estimation of the probability

P = P(τ(Z) ≥ a) = P(V (XM ) ≥ a)
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Monte Carlo method

• n independent copies ((Xi
0, . . . ,X

i
M ))1≤i≤n of (X0, . . . ,XM ) distributed with

the original P.

• Proposed estimator:

P̂n =
1

n

n∑

i=1

1V (Xi
M

)≥a

Unbiased estimator:

E

[
P̂n

]
= P(V (XM ) ≥ a) = P

Variance:

E

[
(P̂n − P )2

]
=

1

n
P (1− P )

P≪1≃ P

n

The absolute error Std(P̂n) ≃
√
P/

√
n.

The relative error
Std(P̂n)

P
≃ 1√

Pn

→֒ We should have n > P−1 to get a relative error smaller than one.

Of course: P−1 is the minimum size of the sample required for one element to

reach the rare level !

CEMRACS 2013 Rare events



Importance Sampling method

• n independent copies ((Xi
0, . . . ,X

i
M ))1≤i≤n of (X0, . . . ,XM ) distributed with a

biased distribution Q.

• Proposed estimator:

P̂n =
1

n

n∑

i=1

1V (Xi
M

)≥a

dP

dQ
(Xi

0, . . . ,X
i
M )

Unbiased estimator:

EQ

[
P̂n

]
= EQ

[
1V (XM )≥a

dP

dQ
(X0, . . . ,XM )

]
= P

Variance:

EQ

[
(P̂n − P )2

]
=

1

n

{
EP

[
1V (XM )≥a

dP

dQ
(X0, . . . ,XM )

]
− P 2

}

→֒ With a proper choice of Q, the error-variance can be dramatically reduced.

Optimal choice: dQ =
1V (XM )≥a

P(V (XM )≥a)
dP. Impossible to apply ! But this result gives

ideas (adaptive strategy, ...)

• Critical points: choice of the biased distribution + evaluation of the likelihood

ratio + simulation of the biased dynamics (intrusive method).
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Importance Sampling method driven by Large Deviations Principle

• Consider the family of twisted distributions, λ > 0:

dP(λ) =
1

EP(eλV (XM ))
eλV (XM ) dP

P(λ) favors random evolutions with high potential values V (XM ).

• n independent copies (Xi
M )1≤i≤n distributed with P(λ).

• Estimator:

P̂n,λ =
1

n

n∑

i=1

1V (Xi
M

)≥a

dP

dP(λ)
(Xi

0, . . . ,X
i
M )

Variance:

nEP(λ)

[
(P̂n,λ − P )2

]
= EP

[
1V (XM )≥a e−λV (XM )

]
EP[e

λV (XM )]− P 2

≤ e−[λa−ΛM (λ)] P − P 2

where ΛM (λ) = logEP[e
λV (XM )]. For a judicious choice of λ,

λ∗a− ΛM (λ∗) = supλ>0[λa− ΛM (λ)] ≃ − lnP (large deviations principle), so

EP(λ) [(P̂n,λ − P )2] .
P 2

n

Almost optimal: the relative error is 1/
√
n (compare with MC: 1/

√
Pn).
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Twisted Feynman-Kac path measures

Question: How to simulate the twisted distribution P(λ) ?

Answer: We will show a way to simulate the distribution Q:

dQ =
1

ZM

{
M∏

p=1

Gp(X0, . . . ,Xp)

}

dP

where (Gp)1≤p≤M is a sequence of positive potential functions on the path spaces

Ep, and ZM = EP[
∏

Gp(X0, . . . ,Xp)] > 0 is a normalization constant.

Examples:

- Gp(X0, . . . ,Xp) = 1, p < M , GM (X0, . . . ,XM ) = eλV (XM ).

- Gp(X0, . . . ,Xp) = eλ(V (Xp)−V (Xp−1)).

• What is a “good” choice for Gp ?

• How to simulate Q directly from P ?
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Original measures

• (Xp)0≤p≤M : a E-valued Markov chain, starting from X0 = x0, with transition

Kp(xp−1, dxp):

P(Xp ∈ A |Xp−1 = xp−1, . . . ,X0 = x0) = P(Xp ∈ A |Xp−1 = xp−1) =

∫

A

Kp(xp−1, dxp)

where Kp(xp−1, ·) is a probability measure on (E, E) for any xp−1 ∈ E.

• Denote the (partial) path

Yp =def. (X0, . . . ,Xp) ∈ Ep+1, p = 0, . . . ,M

The measure µp on Ep+1 is the distribution of Yp:

µp(fp) =def.

∫

Ep+1

fp(yp)µp(dyp) = E
[
fp(Yp)

]
, fp ∈ L∞(Ep+1)

• Expression of P in terms of µM :

P = µM (f)

f(yM ) = f(x0, . . . ,xM ) = 1V (xM )≥a

→ If one can compute/estimate µM , then one can compute/estimate P .
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• Recursive relation:

µp = Θp(µp−1) =def.

∫

Ep

µp−1(dyp−1)Kp(yp−1, ·)

with µ0 = δx0 .

Kp(yp−1, dy
′
p): Markov transitions associated to the chain Yp:

Kp(yp−1, dy
′
p) = δyp−1(dy

′
p,0, . . . , dy

′
p,p−1)Kp(yp−1,p−1, dy

′
p,p)

Here yp−1 = (yp−1,0, . . .yp−1,p−1) ∈ Ep, y′
p = (y′

p,0, . . .y
′
p,p) ∈ Ep+1):

→֒ Linear evolution.

Proof:

µp(fp) = E[fp(Yp−1,Xp)]

=

∫

Ep

µp−1(dyp−1)E
[
fp(yp−1,Xp)|Yp−1 = yp−1

]

=

∫

Ep

µp−1(dyp−1)

∫

E

Kp(yp−1,p−1, dxp)fp(yp−1,xp)

=

∫

Ep

µp−1(dyp−1)

∫

Ep+1

dy′
pKp(yp−1, dy

′
p)fp(y

′
p)

= Θp(µp−1)(fp)
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Unnormalized measures

Yp =def. (X0, . . . ,Xp) ∈ Ep+1, p = 0, . . . ,M

FK measure γp associated to the pair potentials/transitions (Gp,Kp):

γp(fp) = E
[
fp(Yp)

∏

1≤k<p

Gk(Yk)
]

• Expression of P in terms of γM :

P = γM (g)

g(yM ) = g(x0, . . . ,xM ) = 1V (xM )≥a

∏

1≤p<M

G−1
p (x0, . . . ,xp)

→ If one can compute/estimate γM , then one can compute/estimate P .

• Recursive relation:

γp = Ψp(γp−1) =def.

∫

Ep

γp−1(dyp−1)Gp−1(yp−1)Kp(yp−1, ·)

Kp(yp−1, dy
′
p): Markov transitions associated to the chain Yp

Kp(yp−1, dy
′
p) = δyp−1(dy

′
p,0, . . . , dy

′
p,p−1)Kp(yp−1,p−1, dy

′
p,p)

→֒ Linear evolution.
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Normalized measures

Introduce the normalized measure ηp:

ηp(fp) = γp(fp)/γp(1), p = 0, . . . ,M

• Expression of P in terms of ηp:

P = ηM (g)
∏

1≤p<M

ηp(Gp)

Proof:

P = E

[

g(YM )
∏

1≤k<M

Gk(Yk)
]

= γM (g) = ηM (g)γM (1)

Normalizing constant:

γM (1) =γM−1(GM−1) = ηM−1(GM−1) γM−1(1)=
∏

1≤p<M

ηp(Gp)

→ If one can compute/estimate (ηp)p=1,...,M , then one can compute/estimate P .

• Recursive relation:

ηp = Φp(ηp−1) =def.

∫

Ep

ηp−1(dyp−1)Gp−1(yp−1)Kp(yp−1, ·)/ηp−1(Gp−1)

→֒ Nonlinear evolution.
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Interacting path-particle system

• Goal: simulate the original measures

µp = Θp(µp−1)

• Easy: Let (Y 1
p , . . . ,Y n

p ) ∈ (Ep+1)n be independent Markov chains simulated

with P. Then

lim
n→∞

1

n

n∑

i=1

δY i
p
= µp
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Interacting path-particle system

• Goal: simulate the original measures

µp = Θp(µp−1)

• Easy: Let (Y 1
p , . . . ,Y n

p ) ∈ (Ep+1)n be independent Markov chains simulated

with P. Then

lim
n→∞

1

n

n∑

i=1

δY i
p
= µp

• Goal: simulate the normalized measures

ηp = Φp(ηp−1)

• Idea: Yp = (Y 1
p , . . . ,Y n

p ) ∈ (Ep+1)n particle system s.t.

lim
n→∞

1

n

n∑

i=1

δY i
p
= ηp

• Key points:

− Nonlinear Φp → interacting particle system

− Simulation technique

− Fixed number of particles (ηp(1) = 1)
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Interacting path-particle system

Question: How to simulate ηM directly from P ?

dηM =
1

ZM

{
M−1∏

p=1

Gp(X0, . . . ,Xp)

}
dP

Answer: System of path-particles, whose empirical measure will be approximately

Q.

• Path-particle: Yp = (X0, . . . ,Xp) taking values in Ep+1, 1 ≤ p ≤ M .

• System with n path-particles: Yp = (Y i
p )1≤i≤n taking values in (Ep+1)n.

− Initialization: p = 0: Y i
0 = x0 for all i = 1, . . . , n.

− Dynamics: Evolution from generation p to p+ 1 as follows:

Yp ∈ (Ep+1)n
selection
−−−−−−−−→ Ŷp ∈ (Ep+1)n

mutation
−−−−−−−→ Yp+1 ∈ (Ep+2)n
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p p+1 p+2
0

1

2

3

4

5

3 particles

at generation p

generation

G
(Y

)

n=3 particles

3 particles Y 1

p
,Y 2

p
,Y 3

p
at generation p,

with potential weights G(Y 1

p
) = 1, G(Y 2

p
) = 2 ,G(Y 3

p
) = 3.
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p p+1 p+2
0

1

2

3

4

5

selection

generation

G
(Y

)

n=3 particles

Probability to select particle j:
G(Y j

p )

G(Y 1
p ) +G(Y 2

p ) +G(Y 3
p )

=






1
6
if j = 1

1
3
if j = 2

1
2
if j = 3
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p p+1 p+2
0

1

2

3

4

5

selection

generation

G
(Y

)

n=3 particles

Probability to select particle j:
G(Y j

p )

G(Y 1
p ) +G(Y 2

p ) +G(Y 3
p )

=






1
6
if j = 1

1
3
if j = 2

1
2
if j = 3
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p p+1 p+2
0

1

2

3

4

5

selection completed

3 particles selected

generation

G
(Y

)

n=3 particles

Probability to select particle j:
G(Y j

p )

G(Y 1
p ) +G(Y 2

p ) +G(Y 3
p )

=






1
6
if j = 1

1
3
if j = 2

1
2
if j = 3
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p p+1 p+2
0

1

2

3

4

5

mutation

generation

G
(Y

)

n=3 particles

Each particle evolve independently from p to p+ 1.
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p p+1 p+2
0

1

2

3

4

5

selection

generation

G
(Y

)

n=3 particles

3 particles are selected at generation p+ 1.
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p p+1 p+2
0

1

2

3

4

5

selection

generation

G
(Y

)

n=3 particles

Each particle evolve independently from p+ 1 to p+ 2.
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At each generation p = 0, . . . ,M − 1:

Selection: from the system Yp = (Y i
p )1≤i≤n, choose randomly and independently n

path-particles

Ŷ
i
p = (Ŷ i

0,p, Ŷ
i
1,p, . . . , Ŷ

i
p,p) ∈ Ep+1

according to the Boltzmann-Gibbs particle measure

n∑

i=1

Gp(Y
i
p )∑n

j=1 Gp(Y
j
p )

δY i
p

Mutation: each selected path-particle Ŷ i
p is extended by an elementary unbiased

Kp-transition:

Y
i
p+1 = ( (Y i

0,p+1, . . . ,Y
i
p,p+1) , Y

i
p+1,p+1)

= ((Ŷ i
0,p, . . . , Ŷ

i
p,p), Y

i
p+1,p+1) ∈ Ep+1

where Y i
p+1,p+1 is a random variable with distribution Kp(Ŷ

i
p,p, ·). The mutations

are performed independently.

CEMRACS 2013 Rare events



• The occupation measures of the ancestral lines converge to the desired twisted

measures:

ηn
p =def.

1

n

n∑

i=1

δ(Y i
0,p,...,Y

i
p,p)

n→∞−→ ηp

In addition, several propagation-of-chaos estimates ensure that the ancestral lines

Y i
p = (Y i

0,p, . . . ,Y
i
p,p) are asymptotically i.i.d. with common distribution ηp.

• Estimator of P = ηM (g)
∏

0≤p<M ηp(Gp):

P̂n = ηn
M (g)

∏

1≤p<M

ηn
p (Gp)

g(x0, . . . ,xM ) = 1V (xM )≥a

∏

1≤p<M

G−1
p (x0, . . . ,xp)

Proof. asymptotic analysis of genealogical particle models.

cf P. Del Moral, Feynman-Kac formulae, genealogical and interacting particle systems

with applications, Springer, New York, 2004.

cf P. Del Moral and J. Garnier, Ann. Appl. Probab. 15 (2005), 2496-2534.
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Estimator of the probability of the rare event

Let

P̂n =

[
1

n

n∑

i=1

1V (Y i
M,M

)≥a

∏

1≤p<M

G−1
p (Y i

0,p, . . . ,Y
i
p,p)

]
×

∏

1≤p<M

[ 1
n

n∑

i=1

Gp(Y
i
0,p, . . . ,Y

i
p,p)

]

P̂n is an unbiased estimator of P :

E[P̂n] = P

such that

P̂n
n→∞−→ P a.s.
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Central limit theorem

• The estimator P̂n satisfies the central limit theorem

√
n
[
P̂n − P

]
n→∞−→ N (0, σ2)

with the asymptotic variance

σ2 =
M∑

p=1

E

[
p∏

j=1

Gj

]
E

[
p∏

j=1

G−1
j (P a

p,M )2
]
− P 2

Here the functions P a
p,M are defined by

xp ∈ E 7→ P a
p,M (xp) = P(V (XM ) ≥ a | Xp = xp)

• Useful for

1) the choice of “good” functions Gp (variance reduction)

2) the design of an estimator of the asymptotic variance.
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Sketch of proof

Local errors: introduce the random field Wn
p given by

Wn
p (fp) =

√
n [ηn

p − Φp(η
n
p−1)](fp), for fp ∈ L∞(E)

Central limit theorem: The sequence (Wn
p )1≤p≤M converges in law, as n → ∞, to

a sequence of M independent, Gaussian and centered random fields (Wp)1≤p≤M

E [Wp(fp)Wp(gp)] = ηp
(
[fp − ηp(fp)][gp − ηp(gp)]

)

Global error: Let Qp,M , with 1 ≤ p ≤ M , be the FK semi-group associated to the

flow γM = γpQp,M . Using the Markov property,

Qp,M (fM )(yp) = E



fM (YM )
∏

p≤k<M

Gk(Yk) | Yp = yp





Telescopic decomposition

γn
M − γM =

M∑

p=1

[γn
pQp,M − γn

p−1Qp−1,M ] =

M∑

p=1

[γn
p − γn

p−1Qp−1,p]Qp,M

Use γn
p−1Qp−1,p = γn

p−1(Gp−1)Φp−1(η
n
p−1) and γn

p−1(Gp−1) = γn
p (1).
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γn
M − γM =

M∑

p=1

γn
p (1)[η

n
p − Φp−1(η

n
p−1)]Qp,M

As a result:

Wγ,n
M (fM ) =def.

√
n[γn

M − γM ](fM ) =

M∑

p=1

γn
p (1) Wn

p (Qp,MfM )

Consider √
n [P̂n − P ] = Wγ,n

M (g)

Thus Wγ,n
M (g) converge in law, as n → ∞, to a centered Gaussian random variable

Wγ
M (g) with the variance

σ2
M =def. E(Wγ

M (g)2) =

M∑

p=1

γp(1)
2 ηp

(
[Qp,M (g)− ηpQp,M (g)]2

)
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Variance comparisons for the Gaussian model Xp = Xp−1 + θp

where (θp)1≤p≤M independent, Gaussian, zero-mean, variance one,

V (x) = x.

Here XM is Gaussian, has zero-mean and variance M :

P = P(XM ≥ a) =
1√
2πM

∫ ∞

a

exp

(
− s2

2M

)
ds ∼ exp

(
− a2

2M

)

Consider a ≫
√
M so that P ≪ 1.

First choice for the potential:

Gp(x0, . . . , xp) = exp(αxp), for some α > 0

Calculations show

σ2 ≃
M∑

p=1

[e−
a2

M e
p

M(M+p)
[a−αM(p−1)/2]2+ 1

12
α2(p−1)p(p+1) − P 2]

By optimizing, we take α = 2a/[M(M − 1)], and we get

σ2 ≃ e−
a2

M
2
3 (1−

1
M−1 )

→֒ the asymptotic variance is of the order of P 4/3

→ relative error ∼ 1/
√
nP 2/3.
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Consider the same model.

Second choice for the potential:

Gp(x0, . . . , xp) = exp[α(xp − xp−1)], for some α > 0

We obtain:

σ2 ≃
∑

0≤p<M

[e−
a2

M e
p+1

M(M+p+1)

[

a−α Mp
p+1

]2
+α2 p

p+1 − P 2]

By optimizing, α = a/M , we get

σ2 ∼ e−
a2

M (1− 1
M )

→֒ the asymptotic variance is of the order of P 2.

→ relative error ∼ 1/
√
n.

By comparing with the previous case: a selection pressure depending only on the

state is not efficient !
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Numerical simulations with the Gaussian model

−30 −20 −10 0 10 20 30
10

−15

10
−10

10
−5

10
0

X

p(
X

)

MC
IPS α=1

−30 −20 −10 0 10 20 30
10

0

10
2

10
4

10
6

X

p 2(X
)/

p(
X

)

MC empir.
MC theo.
IPS empir.
IPS theo.

M = 15, n = 2 104 particles, α = 1.
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Optical communication in transoceanic optical fibers

• Physical model:

(u0(t))t∈R = initial pulse profile.

(u(z, t))t∈R = pulse profile after a propagation distance z.

(u(Z, t))t∈R = output pulse profile (after a propagation distance Z).

τ(z)2 =
∫
|u(z, t)|2t2dt/

∫
|u(z, t)|2dt rms pulse width after propagation distance z.

Propagation from z = 0 to z = Z governed by two coupled nonlinear Schrödinger

equations with randomly z-varying coefficients.

→ Truncation of [0, Z] into M segments [zp−1, zp), zp = pZ/M , 1 ≤ p ≤ M .

→ Xp = (u(zp, t)t∈R) is the pulse profile at distance zp.

Here (Xp)0≤p≤M is Markov with state space E = H2
0 (R) ∩ L2

2(R)
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The potential function is V :

∣∣∣∣∣
E → R

V (X) =
∫
t2|X(t)|2dt/

∫
|X(t)|2dt

Problem: estimation of the probability

P = P(V (XM ) ≥ a) = P(τ(Z) ≥ a)

1) asymptotic model (separation of scales technique)

→ the rms pulse width τ(z) is a diffusion process and its pdf is

pz(τ) =
τ1/2

√
2π(4σ2z)3/2

exp
(
− τ

8σ2z

)
1[0,∞)(τ)

2) realistic model: impossible to get a closed-form expression for the pdf of τ(z).

3) experimental observations: the pdf tail of the rms pulse width does not fit with

the Maxwellian distribution in realistic configurations.
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Numerical simulations with the PMD model
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M = 15, n = 2 104 particles, α = 1 and α = 3.

The solid line stands for the Maxwellian pdf predicted by the asymptotic model.
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Multilevel splitting

• Description of the system:

− Let X be a Rd-valued random variable with pdf p(x).

− Let V : Rd → R be the risk function.

− Let a be the threshold level.

• Problem: estimation of

P = P(V (X) ≥ a)

when a is large =⇒ P ≪ 1.

CEMRACS 2013 Rare events



Multilevel splitting

• Splitting strategy:

- Note the decomposition (with aM = a > · · · > a0 = −∞)

P =

M∏

j=1

Pj , Pj = P(V (X) > aj |V (X) > aj−1)

- Estimate Pj separately.

• Two key issues:

1) Algorithm to evaluate each Pj ,

2) Selection of the levels aj .

Answer to 1): use an interacting particle method (based on a Markov process

whose invariant distribution has pdf p) → P̂n.

Answer to 2): choose aj such that the Pj ’s are all equal to the same α ∈ (0, 1).

Then

Var(P̂n) =
P 2

n

( (1− α) lnP

α lnα

)
+ o(n−1)

→֒ one should take α → 1.
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• New strategy with “α = 1− 1/n”:

• Generate n particles (with the distribution with pdf p) to create generation zero:

→֒ (X1
0 , . . . ,X

n
0 ) independent and identically distributed with the distribution

with pdf p(x)

• For j − 1 → j,

- define the level aj as the minimum of V (x) evaluated on the n particles:

aj = mini=1,...,n{(V (Xi
j−1)},

- remove the particle that achieves the minimum,

- generate a new particle with the conditional distribution µaj
of X knowing

that V (X) > aj :

µaj
(dx) = paj

(x)dx, paj
(x) =

1V (x)≥aj
p(x)

∫
Rd 1V (x′)≥aj

p(x′)dx′

(use the Metropolis-Hastings algorithm).

→֒ (X1
j , . . . ,X

n
j ) independent and identically distributed with the distribution µaj

• Stop when aj > a. Denote Ĵn = min{j, aj > a} − 1.
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• Result 1: if one knows how to generate the new particle with the distribution

µaj
, then Ĵn follows a Poisson distribution with parameter −n lnP .

Proof:

- if V (X) has continuous cumulative distribution function F , then F (V (X)) is a

uniform random variable and − log(1− F (V (X))) is an exponential random

variable.

- the random variables − log(1− F (aj)), j ≥ 1, are distributed as the successive

arrival times of a Poisson process with rate n,

− log(1− F (aj))
dist.
=

1

n

j∑

i=1

Ei

where Ei are i.i.d. exponential random variables.

- P
(
Ĵn = j

)
= P

(
aj ≤ a, aj+1 > a

)
= P

(∑j
i=1 Ei ≤ −n lnP <

∑j+1
i=1 Ei

)
.
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Proof. Let Λ(y) = − log(1− F (y)). Λ : R → (0,∞) is continuous and increasing.

• Generation 0: (Λ(V (Xi
0)))i=1,...,n are i.i.d. with the distribution of Λ(V (X)):

P
(
Λ(V (X)) ≥ λ

)
= P

(
1− F (V (X0)) ≤ 1− e−λ) = e−λ

Therefore (Λ(V (Xi
0)))i=1,...,n are i.i.d. with the distribution E(1).

Let a1 = mini=1,...,n{V (Xi
0)}. We have Λ(a1) = mini=1,...,n{Λ(V (Xi

0))}.

P
(
Λ(a1) ≥ λ

)
= P

(
Λ(V (X)) ≥ λ

)n
= e−nλ

Therefore

Λ(a1) ∼ 1

n
E1, E1 ∼ E(1)

• Generation j. Let Λj(y) = − log(1− Fj(y)) where Fj is the cdf of V (X) given

V (X) ≥ aj :

Fj(y) = P(V (X) ≤ y|V (X) ≥ aj) =
P(aj ≤ V (X) ≤ y)

P(V (X) ≥ aj)
=

F (y)− F (aj)

1− F (aj)

Therefore Λj(y) = Λ(y)− Λ(aj).

As above: (Λj(V (Xi
j)))i=1,...,n are i.i.d. with the distribution E(1).

Let aj+1 = mini=1,...,n{V (Xi
j)}. As above Λj(aj+1) ∼ 1

n
Ej+1, Ej ∼ E(1).

Therefore

Λ(aj+1) = Λ(aj) + Λj(aj) ∼ 1

n

j+1∑

i=1

Ei, Ei ∼ E(1)
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• Estimator:

P̂n =
(
1− 1

n

)Ĵn

• Result 2: if one knows how to generate the new particle with the distribution

µaj
, then P̂n is an unbiased estimator of P with variance

Var(P̂n) = P 2(P−1/n − 1
)
≃ −P 2 lnP

n

In fact

P

(
P̂n =

(
1− 1

n

)j)
= P(Ĵn = j) =

Pn(−n logP )j

j!

Moreover, denoting

P̂n,± = P̂n exp
(
± z1−α/2√

n

√
− log P̂n

)

where z1−α/2 is the 1− α/2-quantile of the standard normal distribution, we have

P
(
P ∈ [P̂n,−, P̂n,+]

)
≈ 1− α.

If α = 0.05, then z1−α/2 ≈ 2.
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• Aparté: Metropolis-Hastings algorithm.

• Let µa be a probability distribution on Rd with pdf pa(x) (known up to a

multiplicative constant). We want to simulate an ergodic Markov chain (Xt)t≥0

whose invariant distribution is µa.

• Preliminary step: choose an instrumental transition density q on Rd, i.e., for any

fixed x′ ∈ Rd, x → q(x′,x) is a pdf and we know how to generate a random

variable X with this pdf.

• Algorithm:

Step 0: Choose X0 arbitrarily.

Step t+ 1: Choose a candidate X̃t+1 with the distribution with pdf q(Xt,x). Set

Xt+1 = Xt with probability 1− ρ(Xt, X̃t+1) (reject) and Xt+1 = X̃t+1 with

probability ρ(Xt, X̃t+1) (accept). Here

ρ(x′,x) = min
( pa(x)q(x,x

′)

pa(x′)q(x′,x)
, 1
)

• (Xt)t≥0 is a Markov chain with transition

K(x′, dx) = q(x′,x)ρ(x′,x)dx+
(
1−

∫
q(x′,y)ρ(x′,y)dy

)
δx′(dx)
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• We can check (because pa(x
′)[q(x′,x)ρ(x′,x)] = pa(x)[q(x,x

′)ρ(x,x′)])
∫

dx′pa(x
′)K(x′, dx) = pa(x)dx

→֒ µa is stationary for the Markov chain.

• Under mild conditions (for instance, if q is positive), the chain (Xt)t≥0 is ergodic

with stationary distribution µa:

sup
A∈B(Rd)

∣∣P(Xt ∈ A)− µa(A)
∣∣ t→∞−→ 0

• In practice:

- after a burn-in phase with some length t0, the sequence (Xt)t≥t0 is stationary

with distribution µa (but not independent).

- the choice of the instrumental transition density is important to get fast

convergence. Ideally the rejection rate should be around 50%.

• If X0 ∼ µa, then the chain is stationary. After a few accepted mutations,

Xt ∼ µa and is quasi-independent from X0.
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• Problem: how to generate the new particle with the distribution µaj
(of X

knowing that V (X) > aj) ?

Version 1:

• Consider a symmetric transition kernel q(x′,x) such that q(x′,x) = q(x,x′).

• Algorithm:

- aj = minimal value of the n particles.

- pick a particle X(1) amongst the n− 1 largest particles (larger than aj).

- for t = 1, . . . , T , draw a new particle X∗ with the pdf q(X(1), ·); if V (X∗) > aj ,

then X(1) = X∗ with probability min(p(X∗)/p(X(1)), 1); otherwise keep X(1).

- replace the smallest particle by X(1).

• Result 3: the distribution of X(1) is the distribution µaj
. As T → ∞, the

distribution of X(1) becomes independent of the other particles.
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• Problem: how to generate the new particle with the distribution µaj
(of X

knowing that V (X) > aj) ?

Version 2:

• Consider a transition kernel q(x′,x) such that p(x′)q(x′,x) = p(x)q(x,x′).

• Algorithm:

- aj = minimal value of the n particles.

- pick a particle X(1) amongst the n− 1 largest particles (larger than aj).

- for t = 1, . . . , T , draw a new particle X∗ with the pdf q(X(1), ·); if V (X∗) > aj ,

then X(1) = X∗; otherwise keep X(1).

- replace the smallest particle by X(1).

• Result 3: the distribution of X(1) is the distribution µaj
. As T → ∞, the

distribution of X(1) becomes independent of the other particles.

In practice: T = a few tens.
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Example:

P = P(V (X) ≥ a)

with X ∼ N (0, Id), d = 20, a = 0.95, V (x) = x1/|x| → P = 4.704 10−11.

Kernel q : x′ → N
(

x′√
1+σ2

, σ2

1+σ2 Id

)
, σ = 0.3, T = 20, ie

q(x′,x) =
(1 + σ2)d/2

(2πσ2)d/2
exp

(
− |

√
1 + σ2x− x′|2

2σ2

)

0 500 1000
0

0.2

0.4

0.6

0.8

x 10
−10

M

P

n ∈ [100, 200, 500, 1000] particles.

Cf: F. Cerou, A. Guyader (Rennes), P. Glasserman, R. Rubinstein.
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Conclusions

• Importance sampling: bias the input.

Interacting particle system: select the particles based on the output.

→֒ No physical insight is required to guess the suitable twisted input distribution.

But: need V (X).

• The real distribution is used, not a twisted one.

→֒ Non-intrusive method: no need to change the numerical code.

• Number of particles fixed, computational cost (almost) fixed.

• It is possible to make the algorithm partially parallel (not fully parallel as Monte

Carlo).

• Also: conditional distributions. The method is efficient for the computation of

conditional expectations and for the analysis of the cascade of events leading to a

rare event.
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