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Motivating example: Uncertainties management in 

simulation of thermal-hydraulic accident

Scenario : Loss of primary coolant
accident due to a large break in cold leg

[ De Crecy et al., NED, 2008 ]

Interest output variable Y :

Peak of cladding temperature

p ~ 10-50 input random variables X:

geometry, material properties, 
environmental conditions, …

Goal: numerical model exploration via 
space filling design, then metamodel

Computer code Y =f (X)

Time cost ~ 1-10 h - N ~ 100 - 500

Pressurized water nuclear reactor

Source: CEA
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Model exploration goal

GOAL : explore as best as possible the behaviour of the code

Put some points in the whole input space in order to « maximize » the 
amount of information on the model output

Contrary to an uncertainty propagation step, it depends on p

Regular mesh with n levels N =n p simulations

To minimize N, needs to have some techniques ensuring good 
« coverage » of the input space

Simple random sampling (Monte Carlo) does not ensure this

Monte Carlo Optimized design

Ex: p = 2
N = 10

Ex: p =2, n =3

N =9

p = 10, n=3

N = 59049
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Objectives

When the objectives is to discover what happens inside a numerical model (e.g.
non linearities of the model output), we want to build the design

while respecting the constraints:

1. To « regularly » spread the N points over the p-dimensional input space c

2. To ensure that this input space coverage is robust with respect to
dimension reduction (because most of the times, only a small number of
inputs are influent low effective dimension)

Therefore, we look for some design which insures the « best coverage » of
the input space (and its sub-projections)

The class of Space filling Design (SFD) is adequate. It can be:

- Based on an inter-point distance criterion (minimax, maximin, …)

- Based on a criterion of uniform distribution of the points (entropy, various
discrepancy measures, L² discrepancies, …)
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1. Two classical space filling criteria

• Mindist distance:

Maximin design N
Mm :
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1. Two classical space filling criteria

• Mindist distance:

Maximin design N
Mm :

• Discrepancy measure: Deviation of the sample points distribution from the 
uniformity
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L2 discrepancy allows to obtain analytical formulas
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Example of discrepancy

Various analytical formulations while considering L² discrepancy and 
different kind of intervals

Centered L2-discrepancy (intervals with boundary one vertex of the unit cube)
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[ Hickernell 1998 ]

Modified L2 discrepancy allows to take into account points uniformity on 

subspaces of  [0,1[
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Class of LHS ensures uniform projection on margins

LHS(p,N): - Divide each dimension in N intervals

- Take one point in each stratum

- Random LHS: perturb each point in each stratum

Finding an optimal (SFD) LHS:
impossible exhaustive exploration: different LHS

Methods via optimization algo (ex: minimization of . via simulated annealing) :

1. Initialisation of a design  (LHS initial) and a temperature T

2. While T > 0 : 
1. Produce a neighbor  new of  (permutation of 2 components in a column)

2. replace  by  new with proba
3. decrease T

3. Stop criterion =>  is the optimal solution 

2. Unidim.-projection robustness via Latin Hypercube Sample
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[ Park 1993; 

Morris & Mitchell 1995 ]

Ex: p =2, N =4
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Mindist criterion :

(to be maximized)

Regularized mindist criterion :

(to be minimized)

These 2 criteria are equivalent for the 

optimization when

[Pronzato & Müller12]

q is easier to optimize than mindist

In practice, we take q = 50 

LHS maximin: regularization of the criterion
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Numerical test: N = 100, p = 10

[ Morris & Mitchell 95 ]

Example :
Maximin LHS(2,16)
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Updating criteria after a LHS perturbation

Between  and ’, 2 point coordinates and are modified

• Regularized mindist criterion
(N (N -1)/2 distances)

 Only recalculate the 2(N -2) distances of these 2 points to other points

• L² discrepancy criteria (cost in O(pN²) )

Cost in O(pN)
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[ Jin et al. 2005 ]
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Two different optimization algorithms

1 Morris & Mitchell Simulated Annealing (MMSA) [ Morris & Mitchell 1995 ]

Linear profile for the temperature decrease
(geometrical alternative: Ti = c i x T0 )

Temperature decreases when B new LHS do not improve the criterion

Slow convergence but large exploration space

2 Enhanced Stochastic Evolutionary (ESE) [ Jin et al. 2005 ] 

Inner loop (I iterations):
Proposition of M new perturbed LHS at each step

Outer loop to manage the temperature (can decrease or increase)
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Comparison of optimization algorithms convergence

Both algorithms converge slowly to the same value, after the same iteration
numbers

ESE shows a faster convergence at the first iterations than MMSA

It is possible to improve this result, but at a prohibitive cost
(MMSA: T0=0.01, B=1000, c=0.98; ESE: M=300)

Numerical tests: N = 50, p = 5

MMSA  - linear profile

T0 = 0.1, B = 300, c = 0.9

ESE

M = 100, I = 50 
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Maximin LHS

p

Robustness tests in 2D subprojections of optimal LHS (1/3)

3 types of LHS (n = 100) with increasing p ; 10 replicates for each dimension
All 2D subprojections are taken into account

Standard LHS
(reference)

From dimension p=10, the maximin LHS behaves like a standard LHS 
From dimension p=40, the low C2-discrepancy LHS behaves like a standard LHS
Another test for the low L²-star discrepancy: convergence for p=10 

It confirms the relevance of C2-discrepancy criterion in terms of subprojections

p

C
2

-d
is

c.

C
2

-d
is

c.

Low C2-discrepancy LHS
(C2 = L2-centered)

p0.015
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Another space-filling criteria based on Minimal Spanning Tree

Conclusion

This MST-based graph is a 
tool to compare 

designs in terms of regularity
in the p -dimensional space

Complementarity with mindist

Using the Minimal Spanning Tree (MST)
[ Franco et al., Chem. Lab., 2009 ]
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Maximin LHS

N = 100

Low C2-discrepancy LHS

Robustness tests in 2D subprojections of optimal LHS (3/3)

MST criteria
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Non monotonic test function (p = 5) : g-function of Sobol

Simple LHS Low W2-discrep. LHS
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on a learning
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Computer code

X1
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Example: fitting a kriging metamodel

[ Marrel 2008 ]
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Conclusions

1 SFD are useful in an initial exploration step, small N, large p

2 Algorithms for LHS optimization: ESE seems preferable (faster convergence)
Tuning parameters are difficult to fit; some recommendations are made in refs.

3 Modified L² discrepancies take into account uniformity of the point projections 
on lower-dimensional subspaces of [0,1[p

In our tests, low L²-centered discrepancy LHS have shown the best space
filling robustness on the projections over 2D subspaces (same effects on 3D 
subprojections)

Important property for metamodel fitting and sensitivity indices 
computation

3 Distance-based designs show stronger space filling regularity but no 2D 
robustness

Challenge: Building good & robust SFD outside the LHS class
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Annexes
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Maximin LHS

Robustness tests in 2D subprojections of optimal LHS (2/3)

Low C2-discrepancy LHS

It confirms the non-relevance of mindist distance in terms of subprojections

2 types of LHS (n = 100) with increasing p ; 10 replicates for each dimension

All 2D subprojections are taken into account


