Tensor numerical methods in scientific computing: Basic theory and initial applications

Boris Khoromskij CEMRACS-2013, CIRM, Marseille-Luminy, 25.07.2013

Max-Planck-Institute for Mathematics in the Sciences, Leipzig

Introduction

- Separation of variables: from canonical to tensor network formats
- Quantized tensor approximation of logarithmic complexity
 - Multi-resolution folding to quantized images: $\mathbb{R}^{2^L} \mapsto \bigotimes_{\ell=1}^L \mathbb{R}^2$
 - Theory of quantized approximation to multidimensional functional vectors
 - Representation (approximation) of operators in quantized spaces
- 4 Large-scale eigenvalue problems in quantum chemistry
- 5 Stochastic/parametric PDEs and multi-dimensional preconditioning
- 6 High-dimensional dynamics: Fokker-Planck, master and molecular Schrödinger eqn.
- 7 Superfast QTT-FFT, convolution and QTT-FWT

Conclusions

High-dimensional applications:

- *d*-dim. operators: Green's functions, Fourier, convolution and wavelet transforms.
- Molecular systems: electronic structure, quantum molecular dynamics.
- PDEs in \mathbb{R}^d : quantum information, stochastic PDEs, dynamical systems.
- ► Elliptic (parameter-dependent) BVP: Find $u \in H_0^1(\Omega)$, s.t.

$$\mathcal{H}u := -\operatorname{div}(\operatorname{\mathsf{a}\operatorname{grad}} u + u\mathbf{v}) + Vu = F \quad \operatorname{in} \quad \Omega \in \mathbb{R}^d.$$

► Elliptic EVP: Find a pair $(\lambda, u) \in \mathbb{R} \times H_0^1(\Omega)$, s.t.

$$\mathcal{H}u = \lambda u \quad \text{in } \Omega \in \mathbb{R}^d, \quad \langle u, u \rangle = 1.$$

▶ Parabolic-type equations ($\sigma \in \{1, i\}$): Find $u : \mathbb{R}^d \times (0, T) \to \mathbb{R}$, s.t.

$$u(x,0) \in H^2(\mathbb{R}^d): \quad \sigma \frac{\partial u}{\partial t} + \mathcal{H}u = 0.$$

Tensor methods adapt gainfully to main challenges:

- ► High spacial dimension: $\Omega = (-b, b)^d \in \mathbb{R}^d$ (d = 2, 3, ..., 100, ...).
- ▶ Multiparametric eq.: a(y, x), F(y, x), u(y, x), $y \in \mathbb{R}^{M}$ (M = 1, 2, ..., 100, ...).

Main focus: O(d) - numerical approximation to *d*-dimensional PDEs

Basic ingredients:

- Traditional numerical methods.
- Numerical multilinear algebra
- ► Low-parametric separable approximation of *d*-variate functions: theory/algorithms.
- Tensor representation of linear operators: Green's functions, convolution(d), FFT(d), wavelet, multi-particle Hamiltonians, preconditioners.
- Iterative solvers to steady-state and temporal PDEs on "tensor manifolds".

"Separation" of variables beats "curse of dimensionality":

• O(dN) tensor numerical methods, $N^d \rightarrow O(dN)$.

Super-compression:

- ▶ $O(d \log N)$ Quantized tensor approximation (QC, QTT), $N^d \rightarrow O(d \log N)$. Guiding principle:
- > Validation of numerical algorithms on real-life high-dimensional PDEs.

Separable representation of (discrete) functions in a tensor-product Hilbert space

Tensor-product Hilbert space, $\mathbb{V}_n = V_1 \otimes ... \otimes V_d$, $\mathbf{n} = (n_1, ..., n_d)$, $n_\ell = \dim V_\ell$.

▶ Euclidean vector space $\mathbb{V}_n = \mathbb{R}^{n_1 \times ... \times n_d}$, $V_\ell = \mathbb{R}^{n_\ell}$ $(\ell = 1, ..., d)$,

$$\mathbf{V} = [\mathbf{v}_{\mathbf{i}}] \in \mathbb{V}_{\mathbf{n}} : \quad \langle \mathbf{W}, \mathbf{V} \rangle = \sum_{\mathbf{i}} w_{\mathbf{i}} v_{\mathbf{i}}, \quad \mathbf{i} = (i_1, ..., i_d) : i_\ell \in I_\ell = \{1, ..., n_\ell\}.$$

▶ Tensors are functions of discrete variable, $\mathbb{V}_n \ni \mathbf{V} : I_1 \times ... \times I_d \mapsto \mathbb{R}$.

Separable representation in \mathbb{V}_n : rank-1 tensors

$$\mathbf{V} = [v_{i_1 \dots i_d}] = v^{(1)} \otimes \dots \otimes v^{(d)} \in \mathbb{V}_n, \quad v_{i_1 \dots i_d} = \prod_{\ell=1}^d v_{i_\ell}^{(\ell)} :$$

The scalar product

$$\langle \mathsf{W},\mathsf{V}
angle = \langle w^{(1)} \otimes \ldots \otimes w^{(d)}, v^{(1)} \otimes \ldots \otimes v^{(d)}
angle = \prod_{\ell=1}^d \langle w^{(\ell)}, v^{(\ell)}
angle v_\ell.$$

- ▶ Storage: $Stor(\mathbf{V}) = \sum_{\ell=1}^{d} n_{\ell} \ll \dim \mathbb{V}_{\mathbf{n}} = \prod_{\ell=1}^{d} n_{\ell}$.
- \triangleright O(d) bilinear operations: addition, Hadamard product, contraction, convolution, ...

Parametrization by separation of variables: from canonical to tensor network formats

Def. Canonical *R*-term representation in \mathbb{V}_n : $\mathbf{V} \in \mathcal{C}_R(\mathbb{V}_n)$, if [Hitchcock '27, ...]

$$\mathbf{V} = \sum_{k=1}^{R} v_k^{(1)} \otimes \ldots \otimes v_k^{(d)}, \quad v_k^{(\ell)} \in V_{\ell}.$$

• d = 2: rank-R matrices, $V = \sum_{k=1}^{R} u_k v_k^T$.

Visualizing canonical model, d = 3.

Advantages: Storage = *dRN*, simple multilinear algebra.

▶ Limitations: $C_R(\mathbb{V}_n)$ is the non-closed set \Rightarrow lack of stable approximation methods. Example. $f(x) = x_1 + ... + x_d$. $rank_{Can}(f) = d$, but approximated by rank-2 elements

$$f(x) = \lim_{\varepsilon \to 0} \frac{\prod_{\ell=1}^{d} (1 + \varepsilon x_{\ell}) - 1}{\varepsilon}$$

Def. Rank $\mathbf{r} = [r_1, \dots, r_d]$ Tucker tensors: $\mathbf{V} \in \mathcal{T}_{\mathbf{r}}(\mathbb{V}_{\mathbf{n}})$ if [Tucker '66]

$$\mathbf{V} = \sum_{k_1, \dots, k_d=1}^{\cdot} b_{k_1 \dots k_d} v_{k_1}^{(1)} \otimes \dots \otimes v_{k_d}^{(d)} \in T_1 \otimes \dots \otimes T_d, \quad T_\ell = span\{v_{k_\ell}^{(\ell)}\}_{k_\ell=1}^{r_\ell} \subset \mathbb{R}^{n_\ell}$$

▶ d = 2: SVD of a rank-r matrix, $A = UDV^T$, $U \in \mathbb{R}^{n \times r}$, $D \in \mathbb{R}^{r \times r}$, [Schmidt '1905] ▶ Storage: $drN + r^d$, $r = \max r_\ell \ll N$ (efficient for d = 3, e.g. Hartree-Fock eq.).

Beginning of tensor numerical methods: Tucker for 3D functions (e.g. $f = e^{-r}, \frac{1}{r}$). [BNK, Khoromskaia '07]

In quantum physics/information:

The matrix product states (MPS) and tree-tensor network states (TNS) of slightly entangled systems, matrix product operators (MPO), DMRG optimization. [White '92: ..., Östlund, Rommer '95; ..., Cirac, Verstraete '06, ...].

Re-invented in numerical multilinear algebra:

Hierarchical dimension splitting, $O(dr^{\log d}N)$ -storage: [BNK '06]. Hierarchical Tucker (HT) \equiv TNS: [Hackbusch, Kühn '09] Tensor train (TT) \equiv MPS (open b.c.) [Oseledets, Tyrtyshnikov '09].

Def. Tensor Train (MPS): Given $\mathbf{r} = (r_1, ..., r_d)$, $r_d = 1$, $r_0 = 1$. $\mathbf{V} \in \mathcal{TT}[\mathbf{r}] \subset \mathbb{V}_n$ is a parametrization by contracted product of tri-tensors in $\mathbb{R}^{r_{\ell-1} \times n_{\ell} \times r_{\ell}}$,

$$\mathbf{V}[i_1...i_d] = \sum_{\alpha} G^{(1)}_{\alpha_1}[i_1] G^{(2)}_{\alpha_1\alpha_2}[i_2] \cdots G^{(d)}_{\alpha_{d-1}}[i_d]$$

$$\equiv G^{(1)}[i_1] G^{(2)}[i_2] \dots G^{(d)}[i_d],$$

 $G^{(\ell)}[i_\ell]$ is a $r_{\ell-1} imes r_\ell$ matrix, $1 \le i_\ell \le n_\ell$.

Example.
$$f(x) = x_1 + \dots + x_d$$
, $rank_{TT}(f) = 2$.

$$f = \begin{bmatrix} x_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ x_2 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & 0 \\ x_{d-1} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_d \end{bmatrix}.$$

Benefits and limitations of the TT format

Example. d = 5.

► Advantages: Storage: $dr^2N \ll N^d$, $N = \max n_k$. Efficient and robust MLA with polynomial scaling in r, linear scaling in d. Can be implemented by stable QR/SVD algorithms.

▶ Limitations: strong entanglements in a system, large mode-size N. Multilinear matrix-vector algebra and DMRG iterations cost: $O(dRr^3N^2)$

 $d, R, r \sim 10^2, N \sim 10^3 \div 10^4$ – non-tractable local problems ?

Rank bounds:

$$r_{TT} \leq R_{Can}, \quad r_{Tuck} \leq r_{TT}^{2}, \quad r_{Tuck} \leq R_{Can}.$$

Tensor network formats without loops

QTT-Tucker

Approximation problem: Given $X \in \mathbb{V}_n$ (in general, $X \in S_0 \subset \mathbb{V}_n$), find

 $\mathcal{T}_{\mathbf{r}}(X) := \operatorname*{argmin}_{A \in \mathcal{S}} \| X - A \|, \quad \text{where} \quad \mathcal{S} \subset \{\mathcal{T}_{\mathbf{r}}, \mathcal{C}_{R}, \mathcal{T}_{\mathcal{C}_{R,\mathbf{r}}}, MPS/TT[\mathbf{r}]] \}.$

Quasi-optimal (nonlinear) tensor approximation: SVD, ACA, Greedy

- SVD (or Schmidt) decomposition for matrices
- ► SVD-based (R)HOSVD for Tucker and canonical tensors [De Lathauwer; BNK, Khoromskaia]
- ► ACA interpolation [Tyrtyshnikov et al.; Grasedyck et al.].
- ▶ Greedy algorithms [Temlyakov, Maday, Cances, Lelievre, Cohen, Dahmen, Chinesta, Nouy, ...].
- SVD-based ALS/DMRG iteration in TT [Dolgov, BNK, Oseledets, Savostianov, ...]

 $\mathsf{MPS/TT \ ranks:} \ \mathcal{TT}[\mathbf{r}] := \{ \mathbf{A} \in \mathbb{V}_{\mathbf{n}} : \operatorname{rank} \mathbf{A}_{[p]} \leq r_{p} \},$

$$r_p = \operatorname{rank} \mathbf{A}_{[p]} \left(\underbrace{j_1 \, j_2 \, \dots \, j_p}_{\text{column index}} ; \underbrace{j_{p+1} \dots \, j_d}_{\text{rank index}} \right)$$

column index row index

Canonical rank can not be presented as matrix ranks! \Rightarrow unstable approximation.

Rank reduction in the canonical format:

Reduced HOSVD: Canonical \mapsto Tucker \mapsto canonical (ALS) [BNK, Khoromskaia, SISC '08].

Tensor approximation on the quantized image in higher virtual dimensions

• Quantized Tensor Approximation of *N*-vectors with $N = 2^{L}$. [BNK '2009]

Can/TT approximation of quantized image in $\mathbb{Q}_L \Rightarrow \text{QCan}/\text{QTT}$ method

Storage in quantized tensor formats scales logarithmically in $N = 2^{L}$,

$$2r^2L \ll 2^L$$
.

▶ $N = q^L$, q = 2, 3, ...: $q_{opt} = e \approx 2, 7...$ Standard choice q = 2: binary coding.

Why the multi-resolution QTT-method does a job? QTT-approximation theory

Thm. [BNK '09]. QTT-approximation of functional vectors. Let $N = 2^{L}$.

For quantized exponential *N*-vector: $rank_{QCan}(X) = rank_{Can}(Q_{1,L}(X)) = 1$,

$$\mathsf{X} := \{ z^{n-1} \}_{n=1}^{\mathsf{N}} \in \mathbb{C}^{\mathsf{N}} \mapsto \otimes_{p=1}^{\mathsf{L}} \left[\begin{array}{c} 1 \\ z^{2^{p-1}} \end{array} \right] \in \bigotimes_{p=1}^{\mathsf{L}} \mathbb{C}^2, \quad z \in \mathbb{C}.$$

► For the quantized trigonometric *N*-vector: $rank_{QCan,\mathbb{C}}(X) = rank_{QTT,\mathbb{R}}(X) = 2$,

$$\mathbf{X}:=\{\sin(\omega h(n-1))\}_{n=1}^{N}\in\mathbb{C}^{N},\quad h=rac{1}{N-1},\quad orall\omega\in\mathbb{C}.$$

- **Proof.** Hint: sin $z = \frac{e^{iz} e^{-iz}}{2i} = Im(e^{iz})$.
- ▶ For QTT-image of polynomial of degree m, $rank_{QTT}(P_m) \le m+1$.
- QTT-rank of the step function and Haar wavelet is 1 and 2, resp.
- Chebyshev polynomial $T_m(x) = \cos(m \arccos x)$, sampled as a vector

$$\mathbf{X} := \{x_n := T_m(x_n)\}_{n=0}^N \in \mathbb{R}^N, \quad N = 2^L - 1, \ |x_n| \le 1,$$

over CGL nodes $\{x_n = \cos \frac{\pi n}{N}\}$, has the explicit rank-2 QCan-image.

QTT based quadratures (cf. Chebfun2, L.-N. Trefethen, et al. '13)

Boris Khoromskij CEMRACS-2013, CIRM Tensor methods for high-dim. PDEs

QTT based quadratures of $O(\log n)$ complexity

Quantized weight function w(x), integrand f(x), both with moderate QTT-ranks. The rectngular *n*-point quadrature, $n = 2^L$, $|I - I_n| = O(2^{-\alpha L})$, Time = $O(\log n)$.

$$\int_{-1}^{1} w(x)f(x)dx \approx I_n(f) := h \sum_{i=1}^{n} w(x_i)f(x_i) = \langle \mathbf{W}, \mathbf{F} \rangle_{QTT}, \quad \mathbf{W}, \mathbf{F} \in \otimes_{\ell=1}^{L} \mathbb{R}^2.$$

Examples. Highly oscillated and singular functions on [-1, 1], $\varepsilon_{QTT} = 10^{-6}$:

$$f_{1}(x) = e^{x} \sin(3x) \tanh(5\cos(30x)), \quad (N. \text{ Hale, L.-N. Trefethen, '12})$$

$$f_{2}(x) = (1 - |x|)^{q}, \quad q = 0.025.$$

$$f_{3}(x) = (\text{homogenization example: 3 scales}).$$

$$f_{4}(x) = (x + 1)\sin(\omega(x + 1)^{2}), \quad \omega = 100 \quad (\text{Fresnel integral}).$$

$n \setminus \overline{r}$	$r_{QTT}(f_1)$	$r_{QTT}(f_2)$	$r_{QTT}(f_3)$	$r_{QTT}(f_4)$
2 ¹⁴	7.0	4.0	3.5	6.5
2 ¹⁵	7.0	4.0	3.6	7.0
2 ¹⁶	8.5	4.5	3.6	7.5
2 ¹⁷	9.0	5.0	3.6	7.9

Example. *d*-dimensional discrete Laplacian.

$$\Delta_{d} = \Delta_{1} \otimes I \otimes ... \otimes I + I \otimes \Delta_{1} \otimes I... \otimes I + ... + I \otimes I... \otimes \Delta_{1} \in \mathbb{R}^{N^{\otimes d} \times N^{\otimes d}},$$

 $\Delta_1 = \text{tridiag}\{-1, 2, -1\} \in \mathbb{R}^{N \times N}$, *I* is the $N \times N$ identity. Canonical/Tucker representation: $rank_{CP}(\Delta_d) = d$, $rank_{Tuck}(\Delta_d) = 2$. Explicit TT representation: $rank_{TT}(\Delta_d) = 2$, $rank_{QTT}(\Delta_d) \le 4$, $\forall d$.

$$\Delta_d = \begin{bmatrix} \Delta_1 & I \end{bmatrix} \bowtie \begin{bmatrix} I & 0 \\ \Delta_1 & I \end{bmatrix}^{\bowtie(d-2)} \bowtie \begin{bmatrix} I \\ \Delta_1 \end{bmatrix}.$$

► [Kazeev, BNK '10] Explicit QTT representation: $rank_{QTT}(\Delta_1) = 3$, $rank_{QTT}(\Delta_1^{-1}) \le 5$,

$$\Delta_{1} = \begin{bmatrix} I & J' & J \end{bmatrix} \bowtie \begin{bmatrix} I & J' & J \\ & J & \\ & & J' \end{bmatrix}^{\bowtie (d-2)} \bowtie \begin{bmatrix} 2I - J - J' \\ & -J \\ & -J' \end{bmatrix}.$$
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

"¤" is a regular matrix product of block core matrices, blocks being multiplied by means of tensor product.

Spin systems and chemical master equation (CME)

► *d*-dimensional operators in chemical master equation:

Thm. [Dolgov, BNK '12]. Given matrices $E_k, F_k^k, F_k^{k+1} \in \mathbb{R}^{N_k \times N_k}$. The cascadic sum

$$H = F_1^1 \otimes \left(\bigotimes_{k=2}^d E_k\right) + \sum_{i=2}^d \left(\bigotimes_{k=1}^{i-2} E_k\right) \otimes F_{i-1}^i \otimes F_i^i \otimes \left(\bigotimes_{k=i+1}^d E_k\right)$$

possesses an explicit rank-3 TT decomposition $H = H^1(i_1, j_1) \cdots H^d(i_d, j_d)$, with

$$H^{1} = \begin{bmatrix} E_{1} & F_{1}^{2} & F_{1}^{1} \end{bmatrix}, \quad H^{k} = \begin{bmatrix} E_{k} & F_{k}^{k+1} & 0 \\ 0 & 0 & F_{k}^{k} \\ 0 & 0 & E_{k} \end{bmatrix},$$

$$H^{d-1} = \begin{bmatrix} F_{d-1}^{d} & 0\\ 0 & F_{d-1}^{d-1}\\ 0 & E_{d-1} \end{bmatrix}, \quad H^{d} = \begin{bmatrix} F_{d}^{d}\\ E_{d} \end{bmatrix}$$

CME operator: [Kazeev, Schwab '12]

Similar Hamiltonians arise in the spin systems models with local interactions

[Cirac, Verstraete '06; Huckle et al '12, ...]

Grid-based Hartree-Fock calculations

$$\mathcal{F}\varphi_i(x) \equiv (-\frac{1}{2}\Delta + V_c + V_H - \mathcal{K})\varphi_i(x) = \lambda_i \varphi_i(x), \quad i = 1, ..., N_{orb}.$$

The Fock operator \mathcal{F} depends on $\tau(x, y) = 2 \sum_{i=1}^{N_{orb}} \varphi_i(x) \varphi_i(y)$,

$$\mathcal{F}\varphi := \left[-\frac{1}{2}\Delta - \sum_{\nu=1}^{M} \frac{Z_{\nu}}{\|x-a_{\nu}\|} + \int_{\mathbb{R}^{3}} \frac{\tau(y,y)}{\|x-y\|} \, dy\right]\varphi - \frac{1}{2} \int_{\mathbb{R}^{3}} \frac{\tau(x,y)}{\|x-y\|} \, \varphi(y) \, dy.$$

The efficient Galerkin representation of the nonlinear Fock operator in low-rank basis $\{g_{\mu}\}$ is based on the precomputed two-electron integrals (TEI) tensor:

$$b_{\mu\nu\kappa\lambda} = \int_{\mathbb{R}^{3}\times\mathbb{R}^{3}} \frac{g_{\mu}(x)g_{\nu}(x)g_{\kappa}(y)g_{\lambda}(y)}{\|x-y\|} dxdy, \quad 1 \leq \mu, \nu, \kappa, \lambda \leq N_{b}.$$

Complexity scaling $N_b^4 \times (3D \text{ convolution cost})$.

Challenges: High accuracy, 3D singular convolutions, nuclear cusps, hard scaling.

Competing grid-based tensor approach to computational quantum chemistry

Benchmark packages (analytic): MOLPRO [Werner et al.], GAUSSIAN, CRYSTAL, ... Grid-based tensor methods in HF calculations: [BNK, Khoromskaia, Flad, 2009, SISC '11],

Example of a compact molecule computed by tensor method: Alanin aminoacid

► Grid-based tensor numerical methods are promising for structured extended systems and for periodic compounds !

- **Canonical, Tucker and QTT** tensor arithmetics.
- Grid basis $\{g_{\mu}\}$, and QTT core Hamiltonian (on example of H_2O)

р	15	16	17	18	19	20
N ³ = 2 ³	32767 ³	65535 ³	131071 ³	262143 ³	524287 ³	1048575 ³
$Er(\Delta_{G})$	0.0027	$6.8 \cdot 10^{-4}$	$1.7\cdot 10^{-4}$	4.2 · 10 ⁻⁵	$1.0\cdot 10^{-5}$	2.6 · 10 ⁻⁶
Richardson e.	-	1.0 · 10 ⁻⁵	8.3 · 10 ⁻⁸	2.6 · 10 ⁻⁹	3.3 · 10 ⁻¹⁰	0
time (sec)	12.8	17.4	25.7	42.6	77	135

Fast tensor convolution via sinc-quadrature, [BNK '08; Bertoglio, BNK '09]:

$$\frac{1}{r} = \int_0^\infty e^{-t^2 r^2} dt \approx \sum c_k e^{-t_k r^2} \quad \Rightarrow \quad \text{rank-} R_{\mathcal{N}} \quad \text{tensor} \quad \mathbf{P}_{\mathcal{N}} = [P^{(1)}, P^{(2)}, P^{(3)}].$$

▶ Direct or redundancy free factorization of TEI matrix $B = [b_{\mu\nu;\kappa\lambda}]$.

► Cholesky decomposition (*ε*-approximation) of *B*: Compute columns and diagonal of *B* using precomputed factorization,

$$B = mat(\mathbf{B}) := [b_{\mu\nu,\kappa\lambda}] \approx LL^T, \quad rank_{\varepsilon}(B) = O(N_b).$$

QTT compression of the Cholesky factor $L \in \mathbb{R}^{N_b^2 \times R_B}$: $N_b^2 \Rightarrow N_{orb}^2$, $N_b \approx 10 N_{orb}$.

DIIS self-consistent iteration.

MP2 energy correction via tensor factorizations.

Laplace transform and sinc-quadratures

[Gavrilyuk, Hackbusch, BNK '08], [Bertoglio, BNK '10]:

Green's function for Δ in \mathbb{R}^3 , via sinc-quadrature approximation

$$\frac{1}{r} = \int_0^\infty e^{-t^2 r^2} dt \approx \sum c_k e^{-t_k^2 r^2} = \sum c_k \prod_{i=1}^3 e^{-t_k^2 x_i^2}.$$

n ³	128 ³	256 ³	512 ³	1024 ³	2048 ³	4096 ³	8192 ³	16384 ³
FFT ₃	4.3	55.4	582.8	~ 6000	_	-	_	~ 2 years
<i>C</i> * <i>C</i>	0.2	0.9	1.5	8.8	20.0	61.0	157.5	299.2
C2T	4.2	4.7	5.6	6.9	10.9	20.0	37.9	86.0

CPU time (in sec) for $V_H = \frac{1}{r} * \rho$ for H_2O . [BNK '08; BNK, Khoromakaia '09]

Similar for Green's kernels

$$\frac{e^{-\lambda r}}{r}, \quad \frac{e^{-i\lambda r}}{r}, \quad e^{-\lambda r}.$$

[BNK, Khoromskaia '08 (SISC '09)]

The computational box:
$$[-b, b]^3$$
,
 $b \approx 15 \stackrel{\circ}{A}$
 $n \times n \times n$ 3D Cartesian grid, $n \sim 10^4$

 $\mathbf{I}_{\mathbf{x}}: \sigma_{\mathbf{x}} \rightarrow \overline{\sigma} := \sum \sigma_{\mathbf{x}}(\mathbf{x}) \dot{c}(\mathbf{x})$

Direct factorization of TEI matrix

Grid-based TEI: [Khoromskaia, BNK, Schneider, SISC'13]

- ▶ Separable basis $rank(\mathbf{G}_{\mu}) = 1 \Rightarrow \mathbf{G}_{\mu} = G_{\mu}^{(1)} \otimes G_{\mu}^{(2)} \otimes G_{\mu}^{(3)} \in \mathbb{R}^{n \times n \times n}.$
- ▶ Direct factorization: Precompute tensors G and full set of convolutions $P_N * G$,

$$\mathbf{G} = [\mathbf{G}_{\mu} \odot \mathbf{G}_{\nu}] \in \mathbb{R}^{N_{\boldsymbol{b}} \times N_{\boldsymbol{b}} \times n^{\otimes 3}}, \quad \mathbf{G}_{\mu} \odot \mathbf{G}_{\nu} \in \mathbb{R}^{n^{\otimes 3}}.$$

then

$$[b_{\mu\nu\kappa\lambda}] = \langle \mathbf{G}_{\mu} \odot \mathbf{G}_{\nu}, \mathbf{P}_{\mathcal{N}} * (\mathbf{G}_{\kappa} \odot \mathbf{G}_{\lambda}) \rangle_{\mathbf{n}^{\otimes \mathbf{3}}}.$$

The unfolding matrices of the side tensor $\mathbf{G}^{(\ell)} \in \mathbb{R}^{n \times N_{\boldsymbol{b}} \times N_{\boldsymbol{b}}}$:

$$G^{(\ell)} = \operatorname{mat}(\mathbf{G}^{(\ell)}) \in \mathbb{R}^{n \times N_{\boldsymbol{b}}^2}, \quad \ell = 1, 2, 3.$$

 $P^{(\ell)} = [P_k^{(\ell)}] \in \mathbb{R}^{n \times R_{\mathcal{N}}} - \text{factor matrices in the rank-} R_{\mathcal{N}} \text{ canonical tensor } \mathbf{P}_{\mathcal{N}} \in \mathbb{R}^{n \times n \times n},$

$$B = [b_{\mu\nu;\kappa\lambda}] = \sum_{k=1}^{R_{\mathcal{N}}} \odot_{\ell=1}^{3} G^{(\ell)^{T}}(P_{k}^{(\ell)} *_{n} G^{(\ell)}).$$

• QTT compression of $G^{(\ell)}$ and $P_k^{(\ell)} *_n G^{(\ell)}$.

Numerics: QTT compression leading to $O(\log n)$ HF calculations

Example for CH_4

(Left) average QTT ranks of the Newton potential, $\mathbf{P}_{\mathcal{N}} * \mathbf{G}_{\mu\nu}$: $\varepsilon = 10^{-6}$, $N_b = 55$, n = 8192;

(Right) Coulomb operator: Times vs. level L of the univariate grid size $n = 2^{L}$, maximal $n^{3} = 2^{42} \approx 10^{12}$. [Khoromskaia '13]

Left: convergence of DIIS iteration for Glycin aminoacid, $N_b = 170$ (large TEI). Right: Computed energy (blue) vs. Molpro (red) after 30 + k iterations.

The Laplacian $-\Delta$ is approximated on $n^{\otimes 3}$ grid, n = 32768.

Møller-Plesset (MP2) energy correction: factorized TEI + QTT compression

► MP2 energy correction by tensor factorization. [Khoromskaia, BNK '13] Cholesky decomposed TEI matrix $B = L^T L$ is transformed from the AO to the MO-basis,

$$v_{k\ell;mn} = \sum_{\mu,\nu,\kappa,\lambda=1}^{N_{b}} C_{\mu k} C_{\nu \ell} C_{\kappa m} C_{\lambda n} b_{\mu \nu;\kappa \lambda}, \quad k,\ell,m,n \in \{1,...,N_{b}\}.$$

Cost $O(N_b^4) \Rightarrow O(R_B N_{orb}^3 N_{virt} N_{orb}).$

MP2 correction:
$$E_{MP2} = -\sum_{k,\ell \in I_{virt}} \sum_{m,n \in I_{occ}} \frac{v_{k\ell mn}(2v_{k\ell mn} - v_{knm\ell})}{\lambda_k + \lambda_\ell - \lambda_m - \lambda_n},$$

 $I_{occ} := \{1, ..., N_{orb}\}, I_{virt} := \{N_{orb} + 1, ..., N_b\}, \text{ and } \lambda_k, k = 1, ..., N_b.$ Reduced complexity $O(R_B N_{virt}^2 N_{orb}^2)$. Storage $R_B N_{virt} N_{orb}$.

MP2 calculations for H₂O. $E_{experiment} = -76.439$.

 $E_{Molpro} = -76.0308; E_{tensor} = -76.0308$

 $E_{MP2} = -76.3292$, CPU time ≈ 1 sec.

Low rank canonical approx. Δ_d^{-1} (super-fast Poisson solver, preconditioning)

d-Laplacian:
$$\Delta_d U = F$$
 on $N \times N \times ... \times N$ – grid.
► $e^{-t\Delta_d} = \bigotimes_{\ell=1}^d e^{-t\Delta_1}$, $\Delta_1 = F_1^* \Lambda_1 F_1$, F_1 is the 1D sin-FFT

▶ sinc-quadrature approximation $G_M \simeq \Delta_d^{-1}$ in rank-R canonical format,

$$\Delta_d^{-1} = \int_0^\infty e^{-t\Delta_d} dt \simeq \sum_{k=-M}^M c_k \bigotimes_{\ell=1}^d \exp(-t_k\Delta_1) := \sum_{k=-M}^M c_k \bigotimes_{\ell=1}^d F_1^* e^{-t_k\Lambda_1} F_1 := G_M,$$
$$t_k = e^{k\mathfrak{h}}, \quad c_k = \mathfrak{h}t_k, \quad \mathfrak{h} = \pi/\sqrt{M},$$

with the exponential convergence rate in R=2M+1, [Gavrilyuk, Hackbusch, BNK '05]

$$\left\|\Delta_d^{-1} - \mathcal{G}_M\right\|_{\infty} \leq C e^{-\pi\sqrt{M}}, \quad \text{(or } \leq C e^{-\pi M/\log M}).$$

Ν	Precomp	Time for sol	Residue	Relative L_2 error
2 ⁸	6.14	2.98	6.6e-06	7.0e-06
2 ⁹	8.37	3.52	8.7e-06	7.0e-06
2 ¹⁰	10.81	4.02	9.4e-06	7.0e-06

100D Poisson eq. in C-QTT, F = 1, $W = O(d \log \varepsilon)^2 \log N$ complexity.

Find $u_M \in L^2(\Gamma) \times H^1_0(D)$, s.t.

$$\begin{aligned} \mathcal{A}u_{M}(\boldsymbol{y},\boldsymbol{x}) &= f(\boldsymbol{x}) & \text{in } D, \quad \forall \boldsymbol{y} \in \Gamma, \\ u_{M}(\boldsymbol{y},\boldsymbol{x}) &= 0 & \text{on } \partial D, \quad \forall \boldsymbol{y} \in \Gamma, \end{aligned}$$

 $\mathcal{A} := -\operatorname{div}\left(a_{M}(\boldsymbol{y}, \boldsymbol{x})\operatorname{grad}\right), \quad f \in L^{2}\left(D\right), \quad D \in \mathbb{R}^{d}, \quad d = 1, 2, 3, \\ a_{M}(\boldsymbol{y}, \boldsymbol{x}) \text{ is smooth } \text{ in } \boldsymbol{x} \in D, \ \boldsymbol{y} = (y_{1}, ..., y_{M}) \in \Gamma := [-1, 1]^{M}, \ M \leq \infty. \\ Additive \ case \ (\text{via the truncated Karhunen-Loéve expansion})$

$$a_M(\mathbf{y}, \mathbf{x}) := a_0(\mathbf{x}) + \sum_{m=1}^M a_m(\mathbf{x}) \mathbf{y}_m, \quad a_m \in L^\infty(D), \quad M \to \infty.$$

Log-additive case

$$a_M(y,x) := \exp(a_0(x) + \sum_{m=1}^M a_m(x)y_m) > 0.$$

Sparse stochastic Galerkin/collocation: [Babuska, Nobile, Tempone '06-'10; Schwab el. '07-'10, Matthies '06]

- Stochastic Galerkin, C_R format, additive case: [BNK, Ch. Schwab '10]
- QTT, both additive and log-additive cases: [BNK, Oseledets '10]
- HT, additive: [Kressner, Tobler '10]

Stochastic collocation (additive case): discretization in x and y

A parametric linear system, N - grid size in x (Galerkin-FEM, FD in x)

$$A(y)u(y) = f, \quad f \in \mathbb{R}^N, \ u(y) \in \mathbb{R}^N, \quad y \in \Gamma,$$
(1)

 $A(y) = A_0 + \sum_{m=1}^{M} A_m y_m, \quad A_m \in \mathbb{R}^{N imes N}, \quad ext{parameter dependent matrix.}$

Collocation on $n^{\otimes M}$ grid, n - grid size in y (uniform, Chebyshev, etc.)

$$\{y_m^{(k)}\} =: \Gamma_m \in [-1,1], \ k = 1, \ldots, n, \quad \Gamma_n^y = \bigotimes_{m=1}^M \Gamma_m$$

 \Rightarrow Assembled large linear system

$$\mathbb{A}\mathbf{u} = \mathbf{f}, \quad \mathbf{u}, \mathbf{f} \in \mathbb{R}^{N \times n^{\otimes M}}, \quad \mathbb{A} \in \mathbb{R}^{(N \times n^{\otimes M}) \times (N \times n^{\otimes M})},$$

 $\mathbb{A} = A_0 \times I \times \ldots \times I + A_1 \times D_1 \times I \times \ldots \times I + \ldots + A_M \times I \times \ldots \times D_M,$

 $D_m, m = 1, ..., M$, is $n \times n$ diagonal matrix with positions of collocation points, $\{y_m^{(k)}\} \in \Gamma_m$, on the diagonal: $rank_{CP}(\mathbb{A}) \leq M$.

$$\mathbf{f} = f \times \mathbf{e} \times \ldots \times \mathbf{e}, \quad \mathbf{e} = (1, ..., 1)^T \in \mathbb{R}^n.$$

▶ Parametric elliptic BVP on nonlinear manifold *S*:

$$A(y)u(y) = f \quad \Rightarrow \quad \mathbb{A}\mathbf{u} = \mathbf{f},$$

 $\widetilde{\mathbf{u}}_{m+1} = \mathbf{u}_m - \mathbb{B}^{-1}(\mathbb{A}\mathbf{u}_m - \mathbf{f}), \quad \mathbf{u}_{m+1} := \mathcal{T}_{\mathcal{S}}(\widetilde{\mathbf{u}}_{m+1}) \in \mathcal{S}.$

Assumptions:

- \triangleright u, f allow the low S-rank approximation,
- ▶ \mathbb{A} and \mathbb{B}^{-1} are of low matrix \mathcal{S} -rank,
- \blacktriangleright A and \mathbb{B} are spectral equivalent (close).

Good candidates for \mathbb{B}^{-1} :

(A) Shifted FD *d*-Laplacian inverse $(\Delta_d + aI)^{-1}$.

 $\Delta_{d} = \Delta_{1} \otimes I_{N} \otimes ... \otimes I_{N} + ... + I_{N} \otimes I_{N} ... \otimes \Delta_{1} \in \mathbb{R}^{N^{\otimes d} \times N^{\otimes d}}.$

(B) $\mathbb{A}(y^*)^{-1}$ with optimization in y^* . (C) Reciprocal preconditioner $\mathbb{B}^{-1} = \Delta_d^{-1} \mathbb{A}_{\lfloor 1/a(y) \rfloor} \Delta_d^{-1}$: Strongly variable coeff. a(y, x). [Dolgov, BNK, Oseledets, Tyrtyshnikov '10]

► Rank bounds: $\operatorname{rank}_{\operatorname{Can}}(\Delta_d^{-1}) \leq C |\log \varepsilon|^2$, $\operatorname{rank}_{\operatorname{QTT}}(\Delta_d^{-1}) \leq C \operatorname{rank}_{\operatorname{Can}}(\Delta_d^{-1})$.

[BNK, Ch. Schwab, '11]

▶ Preconditioned S-truncated iteration in (d + M)-dimensional parametric space. Rank-*R* canonical format, $M \le 100$.

 $N^{\otimes (M+d)}$ -grid, d = 1, M = 20 ($S = C_R$, $\mathbb{B}^{-1} := \mathbb{A}(0)^{-1}$). Variable coefficients with exponential decay (N = 63, $R \le 5$),

$$a_m(x) = 0.5 e^{-\alpha m} sin(mx), \quad m = 1, 2, ..., M, \quad x \in (0, \pi).$$

▶ Parabolic BVP projected onto $S \subset V_n$: $U \in S$,

$$\sigma \frac{\partial U}{\partial t} = AU + F, \quad U(0) = T_{\mathcal{S}} U(0), \quad \sigma = 1, i.$$

Problem 1. Complex-time molecular Schrödinger eq. in QMD,

$$i\frac{\partial\psi}{\partial t} = H\psi = (-\frac{1}{2}\Delta_d + V)\psi, \quad \psi(x,0) = \psi_0(x), \quad x \in \mathbb{R}^d,$$

 $V : \mathbb{R}^d \to \mathbb{R}$ is (given) approximation to the potential energy surface (PES). **Problem 2.** Real-time evolution. The Fokker-Planck equation

$$\psi(\mathbf{0}) = \psi_{\mathbf{0}}, \quad \frac{d\psi}{dt} = -A\psi; \quad A\psi = -\varepsilon\Delta\psi + \operatorname{div}(\psi\mathbf{v}), \quad \psi: \mathbb{R}^{d} \to \mathbb{R},$$

 $\mathbf{v}: \mathbb{R}^d o \mathbb{R}^d$ is a given velocity field. $\psi(t) o \psi_*: A\psi_* = 0.$

Problem 3. Chemical master equation. Joint probability density $\mathcal{P}(\mathbf{x}, t)$,

$$\mathcal{P}(\mathbf{x},0) = \mathcal{P}_0, \quad \frac{d\mathcal{P}(\mathbf{x},t)}{dt} = \mathbf{A}\mathcal{P}(\mathbf{x},t), \quad \mathbf{x} \in \mathbb{R}^{n_1 \times \ldots \times n_d}.$$

Main approaches

Time integrators

- Sparse grids in (x, t): [Schwab et al.; Griebel et al.]
- Dirac-Frenkel projection onto Tucker/TT/QTT-manifold S,

$$\langle \frac{dy}{dt} - Ay, \delta y \rangle = 0, \quad \delta y \in T_y \mathcal{S}.$$

[Meyer et al. '03; Lubich '07-'12; BNK, Oseledets, Schneider '12]

- Greedy iterations (canonical format)
 [Cancés, Le Brie, Lelievre, Maday et al; Chinesta et al; Suli et al; Binev, Cohen, Dahmen, et al]
- Time stepping by implicit scheme + TT/QTT + ALS/DMRG local solver, [Dolgov, BNK, Oseledets '11; Kaseev, Schwab '12]

Global time-space schemes

- Global time-space separation by QTT-Cayley transform [Gavrilyuk, BNK '11]
- QTT-Tucker + ALS-type solver on global (x, t) tensor manifold [Dolgov, BNK '12-'13]

Discretization on global QTT-tensor manifold in space-time

Crank-Nicolson, A, f_k are given in the TT/QTT format,

$$(I + \frac{\tau}{2}A)y_{k+1} = (I - \frac{\tau}{2}A)y_k + \frac{\tau}{2}(f_k + f_{k+1}) =: F_{k+1}.$$

(A) Time stepping by DMRG-TT iter. for

$$(I+\frac{\tau}{2}A)y_{k+1}=F_{k+1}.$$

(B) Global $O(\log N_x \log N_t)$ block solver in QTT format:

$$y_{k+1} - y_k + \frac{\tau}{2}Ay_{k+1} + \frac{\tau}{2}Ay_k = \frac{\tau}{2}(f_k + f_{k+1}).$$

Solve the huge global $N_x^d \times N_t$ system in QTT format,

$$\begin{bmatrix} I + \frac{\tau}{2}A & & \\ -I + \frac{\tau}{2}A & I + \frac{\tau}{2}A & \\ & \ddots & \ddots & \\ & & -I + \frac{\tau}{2}A & I + \frac{\tau}{2}A \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} (I - \frac{\tau}{2}A)y^0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \frac{\tau}{2} \begin{bmatrix} f_0 + f_1 \\ f_1 + f_2 \\ \vdots \\ f_{N-1} + f_N \end{bmatrix}$$

Chemical master equation (CME): High-dimensional real-time dynamics

► QTT-Tucker for chemical master equation.

[Dolgov, BNK, '13]

Species $S_1, ..., S_d$ react in M channels. The vector of concentration $\mathbf{x} = (x_1, ..., x_d), x_i \in \{0, ..., N_i - 1\}$, The stoichiometric vector $\mathbf{z}^m \in \mathbb{Z}^d$, The propensity function $w^m(\mathbf{x}), m = 1, ..., M$.

$$J^{\mathbf{z}} = \begin{bmatrix} 0 & \cdots & 1 & & \\ & \ddots & & \ddots & \\ & & \ddots & & 1 \\ & & & \ddots & 1 \\ & & & \ddots & \vdots \\ & & & & 0 \end{bmatrix} \leftarrow \text{row} \quad N - z, \text{ if } z \ge 0; \qquad J^{\mathbf{z}} = (J^{-\mathbf{z}})^{\top}, \text{ if } z < 0.$$

CME is a deterministic difference equation on the joint probability density P(x, t):

$$\begin{aligned} \frac{dP(t)}{dt} &= \sum_{m=1}^{M} (\mathbf{J}^{\mathbf{z}^{m}} - \mathbf{J}^{0}) \operatorname{diag}(w^{m}) P(t), \qquad P(t) \in \mathbb{R}_{+}^{\prod_{i=1}^{d} N_{i}}, \\ \mathbf{J}^{\mathbf{z}} &= J^{\mathbf{z}_{1}} \otimes \cdots \otimes J^{\mathbf{z}_{d}}, \\ &= \{w^{m}(\mathbf{x})\} \text{ and } P(t) = \{P(\mathbf{x}, t)\}, \, \mathbf{x} \in \bigotimes_{i=1}^{d} \{0, \dots, N_{i} - 1\}. \end{aligned}$$

 w^m

Figure: Cascade signaling network

 δ_m is the *m*-th identity vector.

Problem size 64²⁰

Figure: Mean concentrations $\langle x_i \rangle(t)$.

$O(\log N_t)$ CPU time

The performance of the global state-time scheme vs.

- numbers of time steps N_t in each interval $[(p-1)T_0, pT_0]$.
- the time interval widths T_0

- Logarithmic complexity in N_t.
- There is an optimal time-step T₀.

Superfast QTT-FFT transform in $O(\log^2 n)$ operations

FFT matrix (unitary $n \times n$, $n = 2^d$, $FFT_n = F_d$).

$$F_d = \frac{1}{2^{d/2}} \left[\omega_d^{jk} \right]_{j,k=0}^{2^d-1}, \qquad \omega_d = \exp\left(-\frac{2\pi i}{2^d}\right), \quad i^2 = -1$$

QTT format for matrix

$$a(i,j) = a(\overline{j_1 \dots j_d}, \overline{k_1 \dots k_d}) = \mathbf{A}(j_1 k_1, j_2 k_2, \dots, j_d k_d) = A_{j_1 k_1}^{(1)} A_{j_2 k_2}^{(2)} \dots A_{j_d k_d}^{(d)}$$

QTT ranks

$$r_{p} = \operatorname{rank} \mathbf{A}_{[p]} \underbrace{(j_{1}k_{1} j_{2}k_{2} \dots j_{p}k_{p})}_{\text{column index}}; \underbrace{j_{p+1}k_{p+1} \dots j_{d}k_{d}}_{\text{row index}}$$

QTT decomposition of FFT matrix has full rank

QTT-FFT matrix has full ε -rank \Leftrightarrow The low-rank ε -approximation is not possible :-(

Given rank-R QTT vector x, $y = \frac{1}{\sqrt{n}}F_dx$ can be computed in QTT format!, Cost $O(d^2R^3)$, storage $O(dR^2)$ [Dolgov, BNK, Savostyanov '12]. In contrast to the Fourier transform:

The Hadamard (Walsh) transform has QTT-ranks one,

$$H_d = H_1^{\otimes d}, \qquad H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}.$$

Fourier transform $y = FFT_n(x)$ for dense vectors costs $O(n \log n)$

$$y = \frac{1}{\sqrt{n}}F_n x \quad \Leftrightarrow \quad y_k = \frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}x_j \exp\left(-\frac{2\pi i}{n}jk\right), \quad j,k=0,\ldots,n-1$$

Reccurence [Cooley, Tuckey, 1965]

$$P_{d}F_{d}X = \frac{1}{\sqrt{2}} \begin{bmatrix} F_{d-1} & \\ & F_{d-1} \end{bmatrix} \begin{bmatrix} I & \\ & \Omega_{d-1} \end{bmatrix} \begin{bmatrix} I & I \\ I & -I \end{bmatrix} \begin{bmatrix} x_{-} \\ x_{+} \end{bmatrix},$$

 P_d is the *bit-shift* permutation, agglomerating even and odd elements of a vector.

Twiddle factors QTT rank = 2 $\Omega_{d} = \operatorname{diag}\left\{\exp\left(-\frac{2\pi i}{2^{d}}j\right)\right\}_{j=0}^{2^{d-1}-1} = \operatorname{diag}\left\{\exp\left(-\frac{2\pi i}{2^{d}}j_{1}\right)\right\} \dots \operatorname{diag}\left\{\exp\left(-\frac{2\pi i}{2}j_{d-1}\right)\right\}$

QTT-FFT approximation scheme

Combine exact QTT-FFT with rank truncation: Algorithm (*d*-level approximation)

QTT-Fourier images in 1D

The rectangle pulse function, for which the Fourier transform is known,

$$\Pi(t) = \begin{cases} 0, & \text{if } |t| > 1/2 \\ 1/2, & \text{if } |t| = 1/2, \\ 1 & \text{if } |t| < 1/2, \end{cases} \qquad \hat{\Pi}(\xi) = \operatorname{sinc}(\xi) \stackrel{\text{def}}{=} \frac{\sin \pi \xi}{\pi \xi}.$$

The Fourier integral is approximated by rectangular rule.

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} f(t) \exp(-2\pi i t\xi) dt.$$

 $f(t) = \Pi(t)$ is real and even, we write for $k, j = 0, \dots, n-1$, $n = 2^d$,

$$\hat{f}(\xi_j) = 2\operatorname{Re} \int_0^{+\infty} f(t) \exp(-2\pi i t\xi_j) dt \approx 2\operatorname{Re} \sum_{k=0}^{n-1} f(t_k) \exp(-2\pi i t_k \xi_j) h_t,$$

 $t_k = (k + 1/2)h_t$, $\xi_j = (j + 1/2)h_{\xi}$, and use DFT for $h_t = h_{\xi} = \frac{1}{2^{d/2}}$ and d even. The QTT representation of the rectangular pulse has QTT-ranks one, i.e.,

$$\Pi(t_k) = \Pi(\frac{h}{2} + \overline{k_1 \dots k_{d/2-1}}h + \overline{k_{d/2} \dots k_d}/2) = (1 - k_{d/2}) \dots (1 - k_d).$$

Table: Time for QTT-FFT (in milliseconds) w.r.t. size $n = 2^d$ and accuracy ε . time_{QTT} is the runtime of Alg. QTT-FFT, time_{FFTW} is the runtime of the FFT from the FFTW library, and rank \hat{f} is the effective QTT-rank of the Fourier image.

$f = \Pi(t)$		$arepsilon = 10^{-4}$		$\varepsilon =$	= 10 ⁻⁸	$arepsilon = 10^{-12}$	
d	$\texttt{time}_{\rm FFTW}$	$\operatorname{rank} \hat{f}$	$\texttt{time}_{\rm QTT}$	$\operatorname{rank} \hat{f}$	$\texttt{time}_{\rm QTT}$	$\operatorname{rank} \hat{f}$	$\texttt{time}_{\rm QTT}$
16	1.7	4.66	7.9	6.85	13.8	8.85	20.0
18	8.9	4.70	9.7	6.86	16.7	8.82	23.4
20	42.5	4.75	11.3	6.85	19.8	8.86	30.6
22	180	4.77	13.1	6.83	23.3	8.89	36.4
24	810	4.74	15.0	6.72	26.3	8.94	41.7
26	4100	4.62	17.0	6.76	30.0	8.89	46.5
28	26300	4.57	18.9	6.80	33.0	8.88	51.2
30		4.72	20.3	6.78	36.2	8.84	57.0
40		4.20	29.1	6.59	53.6	8.78	83.2
50		3.96	39.3	6.45	70.5	8.48	109
60	_	3.69	50.0	6.25	87.6	8.32	133

Conclusions

Recent progress in fast tensor numerical methods:

- Advanced $O(d \log N)$ tensor formats: QCan, QTT, QTT-Tucker (+)
- QTT convolution(d) and super-fast QTT-FFT(d) in $O(d \log N)$ op. (\pm) .
- Low-rank preconditioning of elliptic operators on tensor grid. (±).
- Tensor solver for the Hartree-Fock eqn. on $N \times N \times N$ grids, $N \leq 10^5$ (+).
- Parametric elliptic/parabolic problems in tensor formats (±).
- Time dependent Fokker-Planck and Master equations (±).

Future work:

Theoretical understanding, advanced solvers in higher dimensions, real-life applications. Lecture notes on tensor numerical methods [BNK '10]: http://www.math.uzh.ch/fileadmin/math/preprints/06_11.pdf More details: http://personal-homepages.mis.mpg.de/bokh

Thank you for your attention !