Large deviations for Poisson driven processes in epidemiology

Peter Kratz joint work with Etienne Pardoux

Aix Marseille Université

CEMRACS Luminy. August 20, 2013

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

1 Motivation

- Deterministic compartmental models
- Long-term behavior
- Stochastic models
- Dynamically consistent finite difference schemes
- 2 General models
 - Poisson models
 - Law of large numbers
- 3 Large deviations
 - Rate function
 - Large deviations principle (LDP)
 - Exit from domain
- 4 Diffusion approximation

1 Motivation

- Deterministic compartmental models
- Long-term behavior
- Stochastic models
- Dynamically consistent finite difference schemes

2 General models

- Poisson models
- Law of large numbers

3 Large deviations

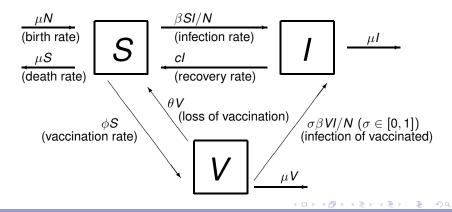
- Rate function
- Large deviations principle (LDP)
- Exit from domain

4 Diffusion approximation

Aix Marseille Université

A model with vaccination

- SIV model by Kribs-Zaleta and Velasco-Hernández (2000)
- S = # of susceptibles, I = # of infectives,
 - V = # of vaccinated, N = S + I + V population size



Peter Kratz: Large deviations for Poisson driven processes in epidemiology

ODE representation

$$S' = \mu N - \beta \frac{SI}{N} - (\mu + \phi)S + cI + \theta V$$

$$I' = \beta \frac{(S + \sigma V)I}{N} - (\mu + c)I$$

$$V' = \phi S - \sigma \beta \frac{VI}{N} - (\mu + \theta)V$$
(1)

Equation (1) has a unique solution satisfying $0 \le S, I, V \le S + I + V = N$

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

3

イロン イヨン イヨン

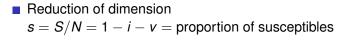
ODE and equilibria

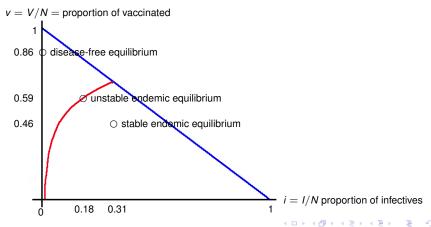
We are interested in the long-term behavior of the model

- Does the disease become extinct or endemic?
- Find equilibria of the ODE (1)
 - **\square** R_0 = basic reproduction number
 - = "# of cases one case generates in its infectious period" a disease-free equilibrium (I = 0) of (1) exists
 - $R_0 < 1 \Rightarrow$ the equilibrium is asymptotically stable
 - \tilde{R}_0 = basic reproduction number without vaccination $ilde{R}_0 > 1 \Rightarrow$ the disease-free equilibrium is unstable
 - $\mathbf{R}_0 < 1 < \tilde{R}_0$ (and appropriate parameter choice) \Rightarrow two endemic equilibria (l > 0) exist

One is asymptotically stable, one is unstable

Equilibria of the ODE





Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

Stochastic models

- Stochastic model corresponding to the deterministic model
- Replace the deterministic rates by (independent) non-homogenous Poisson processes
 - An individual of type S becomes of type I at the jump time of the respective processes
 - Jump rates are constant in-between jumps
 - Example. Infection rate (at time t): $\beta \frac{S(t)I(t)}{N}$
- Questions
 - What is the difference between the two processes for large *N*?
 - Can the stochastic process change between the domains of attraction of different stable equilibria (for large N)?
 - When does this happen?
 - For which population size N is it possible/probable?

イロン イヨン イヨン

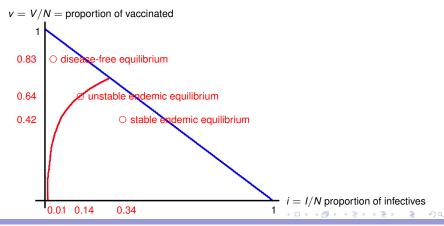
- We require a modification of the SIV-model in order to ensure that the process doesn't get stuck at *I* = 0
- Immigration of infectives at rate $\alpha > 0$ (small)

$$S' = \mu N - \beta \frac{SI}{N} - (\mu + \phi + \alpha)S + cI + \theta V$$
$$I' = \alpha N + \beta \frac{(S + \sigma V)I}{N} - (\mu + c + \alpha)I$$
$$V' = \phi S - \sigma \beta \frac{VI}{N} - (\mu + \theta + \alpha)V$$
(2)

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Equilibria with immigration

- For α ≈ 0 (but α > 0 sufficiently small) the equilibria and the regions of attraction remain similar
- The "disease-free" equilibrium satisfies $I \approx 0$ (but I > 0)



Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

- We require a numerical method for solving the ODE
- Anguelov et al. (2014): Non-standard finite difference scheme which is *elementary stable*
 - The standard denominator h of the discrete derivatives is replaced by a more complex function \u03c6(h)
 - Nonlinear terms are approximated in a nonlocal way by using more than one point of the mesh
 - The equilibria and their local stability is the same as for the ODE

1 Motivation

- Deterministic compartmental models
- Long-term behavior
- Stochastic models
- Dynamically consistent finite difference schemes

2 General models

- Poisson models
- Law of large numbers

3 Large deviations

- Rate function
- Large deviations principle (LDP)
- Exit from domain

4 Diffusion approximation

Poisson models

$$Z^{N}(t) := x + \frac{1}{N} \sum_{j=1}^{k} h_{j} P_{j} \left(\int_{0}^{t} N\beta_{j}(Z^{N}(s)) ds \right)$$
(3)
$$= x + \int_{0}^{t} b(Z^{N}(s)) ds + \frac{1}{N} \sum_{j=1}^{N} h_{j} M_{j} \left(\int_{0}^{t} N\beta_{j}(Z^{N}(s)) ds \right)$$

$$= x + \int_0 b(Z^N(s))ds + \frac{1}{N}\sum_j h_j M_j \Big(\int_0 N\beta_j(Z^N(s))ds\Big)$$

- d = number of compartments (susceptible individuals, ...) N = "natural size" of the population $Z_i^N(t) =$ proportion of individuals in compartment *i* at time *t* A = domain of process (compact) $D_i(i = 1, ..., (k))$ independent standard Paisson processon
- P_j (j = 1, ..., k): independent standard Poisson processes
- $M_j(t) = P_j(t) t$: compensated Poisson processes
- $h_j \in \mathbb{Z}^d$: jump directions

$$eta_j: \mathcal{A} o \mathbb{R}_+$$
: jump intensities

$$b(x) = \sum_j h_j \beta_j(x)$$

《曰》《圖》《臣》《臣》

Law of large numbers

Deterministic model

$$\phi(t) := x + \int_0^t b(\phi(s)) ds = x + \int_0^t \sum_{j=1}^k h_j \beta_j(\phi(s)) ds \quad (4)$$

Theorem (Kurtz)

 $x \in A, T > 0, \beta_j : \mathbb{R}^d \to \mathbb{R}_+$ bounded and Lipschitz. There exist constants $C_1(\epsilon), C_2 > 0$ ($C_1(\epsilon) = \Theta(1/\epsilon)$ as $\epsilon \to 0, C_2$ independent of ϵ) such that for $N \in \mathbb{N}, \epsilon > 0$

$$\mathbb{P}\big[\sup_{t\in[0,T]}|Z^{N}(t)-\phi(t)|\geq\epsilon\big]\leq C_{1}(\epsilon)\exp(-C_{2}\frac{N}{\log N}\epsilon^{2}).$$

In particular, $Z^N \rightarrow \phi$ almost surely uniformly on [0, T].

Aix Marseille Université

1 Motivation

- Deterministic compartmental models
- Long-term behavior
- Stochastic models
- Dynamically consistent finite difference schemes

2 General models

- Poisson models
- Law of large numbers

3 Large deviations

- Rate function
- Large deviations principle (LDP)
- Exit from domain

4 Diffusion approximation

Rare events

- **Recall (LLN):** $Z^N \to \phi$ almost surely uniformly on [0, T]
- But: A (large) deviation of Z^N from the ODE solution \u03c6 is nevertheless possible (even for large N, cf. Campillo and Lobry (2012))

Fix
$$T > 0$$
; $D([0, T]; A) := \{\phi : [0, T] \to A | \phi \text{ càdlàg}\};$

Quantify

$$\mathbb{P}[Z^N \in G], \mathbb{P}[Z^N \in F]$$

for $G \subset D$ open, $F \subset D$ closed (N large)

Legendre-Fenchel transform

Legendre-Fenchel transform $x \in A$ position, $y \in \mathbb{R}^d$ direction of movement

$$L(x,y) := \sup_{\theta \in \mathbb{R}^d} \ell(\theta, x, y)$$

for

$$\ell(\theta, x, y) = \langle \theta, y \rangle - \sum_{j} \beta_j(x) (e^{\langle \theta, h_j \rangle} - 1)$$

- $L(x, y) \ge L(x, \sum_j \beta_j(x)h_j) = 0$ • $L(x, y) < \infty$ iff $\exists \mu \in \mathbb{R}^k_+ \text{ s.t. } y = \sum_j \mu_j h_j \text{ and } \mu_j > 0 \Rightarrow \beta_j(x) > 0$
- "Local measure" for the "energy" required for a movement from x in direction y

・ロ・ ・ 日・ ・ 日・ ・ 日・

Rate function ($x \in A$)

$$I_{x,T}(ilde{\phi}) := egin{cases} \int_0^T L(ilde{\phi}(t), ilde{\phi}'(t)) dt & ext{ for } ilde{\phi}(0) = x ext{ and } ilde{\phi} ext{ is abs. cont.} \ \infty & ext{ else} \end{cases}$$

- If $I_{x,T}(\phi) = 0$ iff ϕ solves (4) on [0, T]
- Interpretation of *I_{x,T}(φ̃)*: the "energy" required for a deviation from φ

イロン イヨン イヨン

Large deviations principle

 For appropriate assumptions (which are satisfied for the SIV-model with immigration)

Theorem (work in progress)

For
$$G \subset D([0, T]; A)$$
 open and $x \in A$,

$$\liminf_{N\to\infty}\frac{1}{N}\log\mathbb{P}[Z^N\in G]\geq -\inf_{\tilde{\phi}\in G}I_{x,T}(\tilde{\phi}).$$

For $F \subset D([0, T]; A)$ closed and $x \in A$,

$$\limsup_{N\to\infty}\frac{1}{N}\log\mathbb{P}[Z^N\in \mathcal{F}]\leq -\inf_{\tilde{\phi}\in\mathcal{F}}I_{x,\mathcal{T}}(\tilde{\phi}).$$

Problem: $\beta_j(x) \to 0$ for $x \to \partial A$ is possible

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

Exit from domain

- G = domain of attraction of an equilibrium x^* ; $x \in G$
- When does *Z^N* exit from *G* (and enter the domain of attraction of another equilibrium)?

•
$$\tau^N := \inf\{t > 0 | Z^N(t) \in A \setminus G\}$$

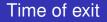
• Where does Z^N exit G (and "on" which trajectory)?

$$T > 0, y, z \in A.$$

$$V(y, z, T) := \inf_{\substack{\phi: \phi(0) = y, \phi(T) = z \\ V(y, z)}} I_{y, T}(\phi)$$
$$V(y, z) := \inf_{T > 0} V(y, z, T)$$
$$\bar{V} := \inf_{z \in \partial G} V(x^*, z)$$

The minimal energy required to go from y to z in [0, T], respectively from y to z, respectively form x* to the boundary

コト (周) (ヨ) (ヨ)



For appropriate assumptions:

Corollary (work in progress)

 $\begin{aligned} x \in G, \, \delta > 0. \\ \lim_{N \to \infty} \mathbb{P}[e^{N(\bar{V} + \delta)} > \tau^N] &= 1, \quad \lim_{N \to \infty} \mathbb{P}[e^{N(\bar{V} - \delta)} < \tau^N] = 1. \end{aligned}$

This follows from the LDP (once it is completely established)

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Place of exit

For appropriate assumptions:

Theorem (work in progress)

 $x \in G$, $F \subset \partial G$ closed, $\inf_{z \in F} V(x^*, z) > \overline{V}$.

$$\lim_{N\to\infty}\mathbb{P}[Z^N(\tau^N)\in F]=0.$$

In particular, if there exists a $z^* \in \partial G$ such that for all $z \neq z^*$ $V(x^*, z^*) < V(x^*, z)$, then for $\delta > 0$,

$$\lim_{N\to\infty}\mathbb{P}[|Z^N(\tau^N)-z^*|<\delta]=1.$$

Problem: ∂G is the "characteristic boundary" of G, i.e., for $x \in G$, $\lim_{t\to\infty} \phi(t) \neq x^*$.

Peter Kratz: Large deviations for Poisson driven processes in epidemiology

Aix Marseille Université

1 Motivation

- Deterministic compartmental models
- Long-term behavior
- Stochastic models
- Dynamically consistent finite difference schemes

2 General models

- Poisson models
- Law of large numbers

3 Large deviations

- Rate function
- Large deviations principle (LDP)
- Exit from domain

4 Diffusion approximation

Diffusion approximation

$$Y^{N}(t) = x + \int_{0}^{t} b(Y^{N}(s)) ds + \frac{1}{N} \sum_{j} h_{j} W_{j} \Big(\int_{0}^{t} N\beta_{j}(Y^{N}(s)) ds \Big),$$

$$W_{j} (j = 1, ..., k): \text{ standard independent Brownian motions}$$

Theorem (Kurtz)

There exists a RV X = X(N, T) whose distribution is independent of N with $\mathbb{E}[\exp(\lambda X)] < \infty$ for some $\lambda > 0$ such that

$$\sup_{0\leq t\leq \tau}|Z^N(t)-Y^N(t)|\leq X\frac{\log N}{N}.$$

 Problem: Kurtz' Theorem does not explain the long-term behavior of the process

Pakdaman et al. (2010):

 Z^N and Y^N can differ not only quantitatively but also qualitatively

Literature

- R. Anguelov, Y. Dumont, J. Lubuma, and M. Shillor. Dynamically consistent nonstandard finite difference schemes for epidemiological models. *Journal of Computational and Applied Mathematics*, 255:161–182, 2014.
- F. Campillo and C. Lobry. Effect of population size in a predator-prey model. *Ecological Modelling*, 246:1–10, 2012.
- C. M. Kribs-Zaleta and Velasco-Hernández. A simple vaccination model with multiple endemic states. *Math. Biosci.*, 164(2):183–201, 2000.
- K. Pakdaman, M. Thieullen, and G. Wainrib. Diffusion approximation of birth-death processes: Comparison in terms of large deviations and exit points. *Statistics & Probability Letters*, 80(13-14):1121–1127, 2010.

ヘロア 人間 アメヨアメヨア