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Motivation

Uncertainty propagation

Given:

A random vector X taking values into Rn (uncertainties)

A measurable function f : Rn → Rp

One want to gain information on the distribution of Y = f (X ) (hence the term of
propagation):

Some moments E [h(Y )] for various measurable functions h

As a special case, the probability of some events P (Y ∈ B)
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Motivation

Probabilistic modeling

The main objective is to build the distribution of X

from multivariate data

or from univariate data only

or from expert knowledge

From my personal experience:

in many applications, a rather good knowledge of the marginal distributions of X
has been gained with time

in contrast, the interaction between the components of X is rather unknown

dependence modeling is the description of this interaction, ie the description of the
joint distribution function once the effect of the marginal distributions has been
removed
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Motivation

Some bidimensional distributions. Which ones have independent
components?
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Motivation

The same data, considering ranks
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History and people

A short historical review on copulas and dependence modeling

1940 Hoeffding: measure of dependence, linear correlation multivariate distributions with
uniform marginals on [−1/2, 1/2].

1951 Fréchet: multivariate distributions with fixed marginal distributions.

1959 Sklar and Schweizer: probabilistic metric spaces, first occurence of the term copula.

1979 Deheuvels: independence tests, non parametric multivariate estimation.

1992 Darsow, Nguyen and Olsen: description of Markov processes in terms of copulas.

1999 Embrechts, Lindskog and McNeil: dissemination of copula methodology in financial
and insurance applications.

2005 Mikosch: "Copulas: Tales and facts". Are copulas something else than a fashionable
subject?

2009 Salmon: "Recipe for a disaster: the formula that killed Wall Street"
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History and people

Copulas: a serious matter? [Mikosch]

Thomas Mikosch’s analysis of the exponential growth of activity related to copulas:

2003 Google gives 10,000 responses to the word "copula"

2005 650,000 responses...

2013 2,010,000 responses...

"My main concern is that this very simple concept might be
something like the emperor’s new clothes because it promises
to solve all problems of stochastic dependence but it falls
short in achieving the goal."

"I also observed that my students are likely to be attracted
to copulas than to stochastic processes. A possible reason is
that one needs less than 10 minutes to understand the
fundamentals of copulas, but many years of studies in order
to get an idea of a genuine stochastic process."

So we will have about 40 minute left for questions...
...and we will be on time for diner!
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Copulas

Copulas for dependence modeling I

Définition

A n-dimensional copula is the restriction to the unit cube [0, 1]n of a multivariate
distribution function with uniform univariate marginals on [0, 1].

Theorem

Let C be a n-dimensional copula, then ∀u, v ∈ [0, 1]n, |C(u)− C(v)| ≤
n∑

i=1

|ui − vi |

Theorem ([Sklar])

Let F be a n-dimensional distribution function whose marginal distribution functions are
F1, . . . ,Fn. There exists a copula C of dimension n such that for x ∈ Rn

, we have:

F (x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)). (1)

In the case of continuous marginal distributions, for all u ∈ [0, 1]n, we have:

C(u) = F (F1
(−1)(u1), . . . ,Fn

(−1)(un)) (2)
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Copulas

Copulas for dependence modeling II

Proof.

Let X be a n-dimensional random vector with distribution function F .

Let V be a random variable uniformly distributed over [0, 1] and independent from X

For k = 1, . . . , n, let Uk be defined by Uk = Fk(Xk) if Fk is continuous, and by
Uk = Fk(Xk−) + V

∑
v∈∆k

P (Xk = v) where ∆k is the set of discontinuity points of
Fk if Fk is not continuous.

The random variables U1,. . . ,Un are uniformly distributed on [0, 1] and
∀xk ∈ R, {Xk ≤ xk} = {Uk ≤ Fk(xk)} a.s.
Let C be the distribution function of (U1, . . . ,Un). Then C is a copula and ∀x ∈ Rn:

P (X ≤ x) = P (U1 ≤ F1(x1), . . . ,Un ≤ Fn(xn)) = C(F1(x1), . . . ,Fn(xn)) (3)

If all the Fk are continuous, then their image include (0, 1) and by continuity of the
copulas, there exists a unique C satisfying (1).
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Copulas

Examples

Copula CDF PDF
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Copulas

Examples of composed distributions

Copula Independent Normal Clayton
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Copulas

Sampling of composed distributions

Let X be a random vector with marginal distribution functions F1, . . . , Fn and copula C .
One can sample X by the following two-steps procedure:

1 Generate u ∼ C ;
2 A realization x of X is given by:

x =
(
F

(−1)
1 (u1), . . . ,F

(−1)
N (un)

)
(4)

The key point is to be able to sample C .

Define Ck(u1, . . . , uk) = C(u1, . . . , uk , 1, . . . , 1)

and Ck(uk |u1, . . . , uk−1) =
∂k−1Ck(u1, . . . , uk)

∂u1 . . . uk−1
/
∂k−1Ck−1(u1, . . . , uk−1)

∂u1 . . . uk−1

1 Generate u1 ∼ U(0, 1);
2 For k ∈ {2, . . . , n}, generate uk ∼ Ck|1,...,k−1(u1, . . . , uk−1).
3 The resulting point (u1, . . . , un) is a realization of C .

Remark: for many copulas, more efficient specialized algorithms exist
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Copulas

Sampling of composed distributions

Copula Independent Normal Clayton
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Copulas

More modeling tools: composed copulas

Let C1, . . . ,Ck be k copulas of dimensions n1, . . . , nk and N =
∑k

i=1 ni . The function C
defined on [0, 1]N by:

C(u1, . . . , uN) = C1(u1, . . . , un1)× · · · × Ck(uN−nk+1, . . . , uN) (5)

is a copula of dimension N.

It is a sparse block-diagonal dependence structure based on several low dimensional dense
dependence structures.
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Copulas

More modeling tools: copula tree [Kurowicka] I

Définition

T = (N,E) is a tree with nodes N = {1, . . . , n} and edges E , where E is a subset of
unordered pairs of N with no cycle; that is, there does not exists a sequence a1, . . . , ak
(k > 2) of elements of N such that:

{a1, a2} ∈ E , . . . , {ak−1, ak} ∈ E , {ak , a1} ∈ E (6)

The degree of node ai ∈ N is #{aj ∈ N | {ai , aj} ∈ E}, ie the number of edges attached
to ai .

Remark: this definition allows for non-connected trees (forest).

Définition

(T ,B) is a copula-tree specification if:
1 T is a tree on n elements with nodes N = {1, . . . , n} and edges E .
2 B = {Cij | {i , j} ∈ E and Cij is a bidimensional copula}
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Copulas

More modeling tools: copula tree [Kurowicka] II

Définition

(T ,B) is a Markov tree dependence whenever disjunct subsets a and b of variables are
separated by subset c of variables in T (i.e. every path from a to b intersect c), in which
case the variables in a and b are conditionally independent given the variables in c.

Theorem

Let (T ,B) be an n-dimensional bivariate copula-tree specification with absolutely
continuous bivariate copulas Cij with density cij . Then, there is a unique n-dimensional
absolutely continuous copula C with density c such that C has Markov tree dependence
for T . Its density c is given by:

c(u1, . . . , un) =
∏
{i,j}∈E

cij(ui , uj) (7)
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Copulas

More modeling tools: copula tree [Kurowicka] III

1

2

4

3

5

6

c(u1, . . . , u6) = c12(u1, u2)c13(u1, u3)c24(u2, u4)c56(u5, u6)

To simulate realizations of such a copula, draw u1 and u5 independently, then draw u2

and u3 independently conditional on the value of u1, and u6 independently conditional on
the value of u5. u4 is drawn independently of the others conditional on the value of u2.
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Copulas

More modeling tools: vines copulas [Kurowicka] I

Définition

V is a vine on n elements if
1 V = (T1, . . . , Tn−1).
2 T1 is a connected tree with nodes N1 = {1, . . . , n} and edges E1; for

i ∈ {2, . . . , n − 1}, Ti is a connected tree with nodes Ni = Ei−1.

V is a regular vine on n elements if additionally:
3 For i ∈ {2, . . . , n − 1}, if {a, b} ∈ Ei , then #a4b = 2, where 4 denotes the

symmetric difference. In other words, if a and b are nodes of Ti connected by an
edge in Ti , where a = {a1, a2}, b = {b1, b2}, then exactly one of the aj equals one
of the bj .

The edges E1 express the unconditioned pairwise dependence, the edges E2 express the
pairwise dependence conditional on the value of nodes in N1, the edges E3 express the
pairwise dependence conditional on the value of nodes in N2 and so one.
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Copulas

More modeling tools: vines copulas [Kurowicka] II

Définition

A regular vine is called a

D-vine if each node in T1 has a degree of at most 2

Canonical or C-vine if each tree Ti has a unique node of degree n− i . The node with
maximal degree in T1 is the root.

1 2 3 4

1,3 | 2 2,4 | 3

1,4 | 23

1

32 4

2,3 | 1

2,4 | 1

3,4 | 12

D-vine C-vine
c(u1, . . . , u4) = c12(u1, u2)c23(u2, u3)×

c34(u3, u4)c13|2(u1, u3|u2)×
c24|3(u2, u4|u3)c14|23(u1, u4|u2, u3)

c(u1, . . . , u4) = c12(u1, u2)c13(u1, u3)×
c14(u1, u4)c24|1(u2, u4|u1)×

c34|12(u3, u4|u1, u2)
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Measures of association

Additional properties of copulas

Theorem (Fréchet-Hoeffding bounds)

Let C be a n-dimensional copula. Then for all u ∈ [0, 1]n we have:

Wn(u) := max(0, u1 + . . .+ un) ≤ C(u) ≤ Mn(u) := min(u1, . . . , un) (8)

The copula Mn is called the Min copula and corresponds to random vectors X for which
all the components are almost surely strictly increasing functions of a common random
variable: X = (f1(U), . . . , fn(U)).

Theorem ([Nelsen])

Let X be a n-dimensional random vector with copula C and α1,. . . ,αn be n strictly
increasing functions from R to R, then C is also a copula for the random vector
(α1(X1), . . . , αn(Xn)).
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Measures of association

Measures of association [Joe], [Nelsen]

Définition

A measure of association r between two random variables X1 and X2 is a scalar function
of X1 and X2 such that:

1 r is defined for all pair (X1,X2).
2 r(X1,X2) ∈ [−1, 1], r(X1,X1) = 1, r(X1,−X1) = −1.
3 If X1 and X2 are independent, r(X1,X2) = 0.
4 If g and h are two strictly increasing functions, r(X1,X2) = r(g(X1), h(X2)).

Such a r is a function of the copula of (X1,X2) only. The objective of such a measure is
to provide a scalar summary of the intensity of the dependence between X1 and X2.
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Measures of association

Bad properties of linear correlation I

Définition

The linear correlation ρ between two random variables X1 and X2 such that
Var(X1) = σ2

1 <∞ and Var(X2) = σ2
2 <∞ is defined by:

ρ(X1,X2) =
Cov(X1,X2)√

Var(X1)Var(X2)

=
1

σ1σ2

∫∫
R2

F12(x1, x2)− F1(x1)F2(x2) dx1dx2 (9)

It is not a measure of association because it is defined for finite second moment random
variables only, and is not invariant by increasing transformation.

Theorem (Fréchet)

Let (X1,X2) be a random vector with given marginal distribution functions F1, F2. The
possible values of the linear correlation ρ(X1,X2), if defined, form an interval [ρmin, ρmax ]
that is in general a strict subset of [−1, 1].
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Measures of association

Example

If X1 ↪→ LN (0, 1) and X2 ↪→ LN (0, σ2) are two log-normal random variables, then

ρ(X1,X2) ∈
[
ρmin = e−σ−1

√
e−1
√

eσ
2−1

, ρmax = eσ−1
√
e−1
√

eσ
2−1

]
( [−1, 1]

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

sigma

rh
o

We see that limσ→∞ ρmin = limσ→∞ ρmax = 0. For σ = 5, ρ ∈ [−3 10−6, 4 10−4]! As a
consequence, from a modeling perspective, the value of ρ(X1,X2) cannot be specified
independently from F1 and F2.
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Measures of association

Spearman’rho and Kendall’s tau

Let X1 and X2 be two random variables.

Définition

Spearman’s rho ρS(X1,X2) is defined by:

ρs(X1,X2) =ρ(F1(X1),F2(X2)) = 12
∫∫

[0,1]2
C(u, v) du dv − 3 (10)

where C is the copula of (X1,X2).

Définition

Kendall’s tau τ(X1,X2) is defined by:

τ(X1,X2) =P[(X̂1 − X̃1)(X̂2 − X̃2) > 0]− P[(X̂1 − X̃1)(X̂2 − X̃2) < 0]

=4
∫∫

[0,1]2
C(u, v) dC(u, v)− 1

where (X̂1, X̂2) and (X̃1, X̃2) are iid copies of (X1,X2).
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Measures of association

Is a measure of association enough to quantify the dependence?

P
(
X1 + X2 ≥ β

√
2
)

for X1,X2 ∼ N (0, 1) and various copulas C such that ρS (X1,X2) = 1/2.

Zone 1 Zone 2 Zone 3

0 1 2 3 4 5 6 7

−11
10

1
10

Failure probability vs probability level vs copula, with rho_S=0.5

P
ro

ba
bi

lit
y

Frank
Normal

Clayton

Clayton comp
Gumbel

Student (nu=3)

Student (nu=10)

Independent

beta

β Pmin(β) Pmax (β) ratio

1.89 6.5 10−2 8.7 10−2 1.5
3.41 1.1 10−3 8.6 10−3 10.0
6.5 8.3 10−11 1.9 10−6 2.3 104
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Estimation

Parametric estimation of copulas

Estimation of an elementary copula:

Based on estimators of measures of association
Inversion of the relation between the parameters of the copula and the measures of
association:

Normal copula CR : Rij = 2 sin
(π

6
ρS ij

)
= sin

(π

2
τij

)
Clayton’s copula Cθ: θ =

2τ
1 − τ

etc.

Estimation of vines copulas or of copula trees:

Semi-heuristic estimation of the structure

Based on partial rank correlation

see [Kurowicka] for the details
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Estimation

Rank and order statistics

The notion of rank plays a key role in the estimation of measures of association.

Définition

Let (X k)k=1,...,N be a sample of size N of the random variable X and σ ∈ SN a random
permutation such that Xσ(1) ≤ . . .Xσ(N) a.s. (such a permutation is almost surely unique
if X is continuous). The rank of X k is defined by:

rank(X k) = σ−1(k)

It is the random position of X k in the order statistics X1:N = Xσ(1), . . . ,XN:N = Xσ(N).
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Estimation

Estimation of measures of association I

Définition

Let
(
(X k

1 ,X
k
2 )
)
k=1,...,N be a sample of size N of the random vector X = (X1,X2). The

Spearman rho estimator ρ̂S,N(X ) is given by:

ρ̂S,N(X ) =

∑N
k=1

(
rank(X k

1 )− rank(X1)
)(

rank(X k
2 )− rank(X2)

)
√∑N

k=1

(
rank(X k

1 )− rank(X1)
)2∑N

k=1

(
rank(X k

2 )− rank(X2)
)2

(11)

where rank(X1) = 1
N

∑N
k=1 rank(X k

1 ) and rank(X2) = 1
N

∑N
k=1 rank(X k

2 ).

Theorem

Let X be a bi-dimensional continuous random vector. Then:

ρ̂S,N(X )
a.s−→ρS(X ) when N →∞

√
N (ρ̂S,N(X )− ρS(X ))

D−→N (0, σ2
ρS ) when N →∞
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Estimation

Estimation of measures of association II

where the asymptotic variance σ2
ρS is given by:

σ2
ρS =

(
1 +

ρS(X )2

2

)
4(5 + 192η10)

3(4η00 − 1)2 +
ρS(X )2

4

(
342
125
− 12

5

(
24(η20 + η02)− 1)

4η00 − 1

))

where ηk` =

∫∫
[0,1]2

(
u1 −

1
2

)k (
u2 −

1
2

)`
C(u1, u2) du1du2 and C is the copula of X .

Définition

Let
(
(X k

1 ,X
k
2 )
)
k=1,...,N be a sample of size N of the random vector X = (X1,X2). The

sampling Kendall tau τ̂N(X1,X2) is given by

τ̂N(X ) =
2

N(N − 1)

∑
1≤i<j≤N

sgn(X i
1 − X j

1) sgn(X i
2 − X j

2) (12)
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Estimation

Estimation of measures of association III

Theorem

Let X be a bi-dimensional random vector. Then:

τ̂N(X )
a.s−→τ(X ) when N →∞

√
N (τ̂N(X )− τ(X ))

D−→N (0, σ2
τ ) when N →∞

where the asymptotic variance σ2
τ is given by:

σ2
τ = 4Var

[
sgn(X1 − X ′1) sgn(X2 − X ′2) |X1,X2

]
where X ′ = (X ′1,X

′
2) is an independent copy of X .
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Estimation

Fitting test

An active research area with relatively few results

See [Genest2], [Berg] and [Fermanian]

Good news: in dimension 2, the tests are powerful enough to discriminate rather
close hypotheses for sample sizes N as small as N = 150.
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More fun with copulas

Order statistics and copulas I

Let X be an n-dimensional random vector with known univariate marginal distribution
functions F1, . . . , Fn. We look for the set of copulas C such that the resulting
distribution function satisfies:

X1 ≤ . . . ≤ Xn a.s. (13)

Theorem

1 C 6= ∅ if and only if ∀x ∈ R,Fn(x) ≤ . . .F1(x);
2 If F1,. . . ,Fn verify (1 and are continuous, then C ∈ C if and only if the support of C

is included in {u ∈ [0, 1]n |F←1 (u1) ≤ . . . ≤ F←n (un)}

where F← is the generalized inverse of F :

F←(q) = inf{x ∈ R |F (x) ≥ q} (14)
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More fun with copulas

Order statistics and copulas II

F1 ∼ U(0, 1), F2 ∼ U( 1
4 ,

5
4 )

realizations
iso-pdf

0.
8

0.8

1.
0

1.0

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

realizations
iso-pdf

1.
0

1.0

0.
0

0.0

0.
5

0.5

F1 ∼ T (0, 1
2 , 1), F2 ∼ 1

2T ( 1
4 ,

1
2 ,

3
5 ) + 1

2T ( 3
4 , 1,

7
5 )

realizations
iso-pdf

0.
8

0.8

1.
0

1.0

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

realizations
iso-pdf

0.
8

0.8

1.
2

1.2

0.
0

0.0

0.
4

0.4

Example of compatible absolutely continuous copulas for order statistics.
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More fun with copulas

Are perfect dependence and independence so different? I

Définition

Let X1, . . . ,Xn be n random variables. They are said to be perfectly dependent if there
exist a random variable U and n almost surely bijective functions f1, . . . , fn such that
X1 = f1(U), . . . ,Xn = fn(U).

Définition

A copula C of dimension n is a shuffle of min if and only if there is a positive integer N,
n partitions (0 = sk0 < s1 < . . . < sn = 1)k=1,...,n of [0, 1], and n − 1 permutations σk on
{1, . . . , n} such that each [si−1, si ]× . . .× [snσn−1(i−1), s

n−1
σn−1(i)

] is a hypercube in which C

deposits a mass of size si − si−1 spread uniformly along one of the diagonals.

s0 s1 s2 s3 s4 s5
t0

t1

t2

t3

t4

t5

s = (0, 1/12, 1/3, 1/2, 11/12, 1)
t = (0, 1/12, 1/3, 5/12, 5/6, 1)

σ =

(
1 2 3 4 5
3 2 5 4 1

)
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More fun with copulas

Are perfect dependence and independence so different? II

Theorem

Shuffles of Min are dense in the set of copulas endowed with the sup norm.

We give the demonstration for target compula Πn, the n-dimensional independent copula.

ε > 0 given, m an integer such that m ≥ 1/ε

Take M = mn and build Cε a shuffle of Min associated with the n uniform partitions
of [0, 1] into M sub-intervals of equal width and the permutations
σk(mk(j − 1) + i) = mk(i − 1) + j for i , j = 1, . . . ,m, k = 1, . . . ,m − 1.

Cε distributes a mass of 1/M in each of the M sub-hypercubes of [0, 1]n, and
Cε(p1/m, . . . , pn/m) = p1 × . . .× pn/m for all pi = 0, . . . ,m so Cε and Πn are equal
on these points. As both Πn and Cε are Lipschitz we have ‖Cε − Πn‖∞ ≤ nε.
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More fun with copulas

MANY THANKS FOR YOUR
ATTENTION!
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Link with Markov processes

Copulas and Markov processes I

Définition
1 Let A and B be two bidimensional copulas. We define the product C = A ∗ B of

these copulas by:

C(u1, u2) =

∫ 1

0
A1|2(u1, t)B2|1(t, u2) dt (15)

The null element is Π2 (the bidimensional independent copula) and the neutral
element is M2.

2 Let A be a copula of dimension m and B a copula of dimension n. We define the
product C = A ? B of these two copulas by:

C(u1, . . . , um+n−1) =

∫ um

0
A1,...,m−1|m(u1, . . . , um−1, t)× (16)

×B2,...,m|1(t, um+1, . . . , um+n−1) dt

We have the relation A ∗ B(u, v) = A ? B(u, 1, v)
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Link with Markov processes

Copulas and Markov processes II

Properties

These products have the following properties (where • ∈ {∗, ?}):
C is a copula (of dimension 2 for ∗, of dimension m + n − 1 for ?);

These products are continuous with respect to A and B: if (An)n∈N → A and
(Bn)n∈N → B, An • B → A • B et A • Bn → A • B;

These products are associative: (A • B) • C = A • (B • C);

These products are left and right distributive with respect to convex combinations of
copulas.
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Link with Markov processes

Copulas and Markov processes III

Theorem

Let Xt , t ∈ T be a real-valued stochastic process and for all s, t ∈ T , let Cst be the
copula of the random vector (Xs ,Xt). There is an equivalence between:

1 The transition probabilities P(s, x , t,A) = P(Xt ∈ A|Xs = x) of the process satisfy
the Chapman-Kolmogorov equations:

P(s, x , t,A) =

∫ ∞
−∞

P(u, ξ, t,A)P(s, x , u, dξ) (17)

for all Borel set A, all s < t in T , all u ∈]s, t[∩T and almost all x ∈ R;
2 For all s, u, t ∈ T such that s < u < t,

Cst = Csu ∗ Cut (18)
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Link with Markov processes

Copulas and Markov processes IV

Theorem

A real valued stochastic process Xt , t ∈ T is a Markov process if and only if for all
n ∈ N∗ and for all t1, . . . , tn ∈ T such that t1 < · · · < tn we have:

Ct1...tn = Ct1t2 ? Ct2t3 ? · · · ? Ctn−1tn (19)

where Ct1...tn is the copula of (Xt1 , . . . ,Xtn ) and Ctk tk+1 the copula of (Xtk ,Xtk+1).

This result has been generalized [Ibragimov] to a Markov process of order k, i.e. such
that:

P(Xt < x |Xt1 , . . . ,Xtn−k ,Xtn−k+1 , . . . ,Xtn ) = P(Xt < x |Xt1 , . . . ,Xtn−k ) (20)

for all t, ti ∈ T such that t1 < · · · < tn−k < tn−k+1 < · · · < tn < t and x ∈ R.
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