Variance reduction approaches in stochastic homogenization

Frédéric Legoll

ENPC (Navier) and INRIA (MICMAC team-project)

Joint work with William Minvielle (ENPC and INRIA)

CEMRACS 2013 seminar
August 7, 2013

Setting

Homogenization of random materials often leads to very expensive computations, and thus many practical difficulties.

Simplify the situation from the theoretical viewpoint: consider the simple scalar linear PDE

$$
-\operatorname{div}\left[A\left(\frac{x}{\varepsilon}, \omega\right) \nabla u^{\varepsilon}\right]=f \quad \text { in some domain } \mathcal{D}, \quad u^{\varepsilon}=0 \text { on } \partial \mathcal{D} .
$$

Thermal diffusion, ...

Outline of the talk

- Some background materials on random homogenization
- Variance reduction by the control variate approach
- A weakly stochastic model (rare defects) due to A. Anantharaman and C. Le Bris
- Use this model to build a surrogate model and design a control variate approach to reduce the variance

Random homogenization

Homogenization 1.0.1: the periodic setting

$$
-\operatorname{div}\left[A_{\mathrm{per}}\left(\frac{x}{\varepsilon}\right) \nabla u^{\varepsilon}\right]=f \text { in } \mathcal{D}, \quad u^{\varepsilon}=0 \text { on } \partial \mathcal{D}, \quad A_{\mathrm{per}} \text { is } \mathbb{Z}^{d} \text {-periodic. }
$$

Homogenization 1.0.1: the periodic setting

$$
-\operatorname{div}\left[A_{\text {per }}\left(\frac{x}{\varepsilon}\right) \nabla u^{\varepsilon}\right]=f \text { in } \mathcal{D}, \quad u^{\varepsilon}=0 \text { on } \partial \mathcal{D}, \quad A_{\text {per }} \text { is } \mathbb{Z}^{d} \text {-periodic. }
$$

When $\varepsilon \rightarrow 0, u^{\varepsilon}$ converges to u^{\star} solution to

$$
-\operatorname{div}\left[A^{\star} \nabla u^{\star}\right]=f \text { in } \mathcal{D}, \quad u^{\star}=0 \text { on } \partial \mathcal{D} .
$$

The effective matrix A^{\star} is given by

$$
\left[A^{\star}\right]_{i j}=\int_{Q} e_{i}^{T} A_{\mathrm{per}}(y)\left(e_{j}+\nabla w_{e_{j}}(y)\right) d y, \quad Q=\text { unit cube }=(0,1)^{d},
$$

where, for any $p \in \mathbb{R}^{d}$, w_{p} solves the so-called corrector problem:

$$
-\operatorname{div}\left[A_{\mathrm{per}}(y)\left(p+\nabla w_{p}\right)\right]=0, \quad w_{p} \text { is } \mathbb{Z}^{d} \text {-periodic. }
$$

Homogenization 1.0.1: the periodic setting

$$
-\operatorname{div}\left[A_{\text {per }}\left(\frac{x}{\varepsilon}\right) \nabla u^{\varepsilon}\right]=f \text { in } \mathcal{D}, \quad u^{\varepsilon}=0 \text { on } \partial \mathcal{D}, \quad A_{\text {per }} \text { is } \mathbb{Z}^{d} \text {-periodic. }
$$

When $\varepsilon \rightarrow 0, u^{\varepsilon}$ converges to u^{\star} solution to

$$
-\operatorname{div}\left[A^{\star} \nabla u^{\star}\right]=f \text { in } \mathcal{D}, \quad u^{\star}=0 \text { on } \partial \mathcal{D} .
$$

The effective matrix A^{\star} is given by

$$
\left[A^{\star}\right]_{i j}=\int_{Q} e_{i}^{T} A_{\mathrm{per}}(y)\left(e_{j}+\nabla w_{e_{j}}(y)\right) d y, \quad Q=\text { unit cube }=(0,1)^{d},
$$

where, for any $p \in \mathbb{R}^{d}$, w_{p} solves the so-called corrector problem:

$$
-\operatorname{div}\left[A_{\mathrm{per}}(y)\left(p+\nabla w_{p}\right)\right]=0, \quad w_{p} \text { is } \mathbb{Z}^{d} \text {-periodic. }
$$

\rightarrow The corrector problem is set on the bounded domain Q : easy!

Stochastic homogenization: setting

We consider statistically homogeneous random materials:

$$
-\operatorname{div}\left[A\left(\frac{x}{\varepsilon}, \omega\right) \nabla u^{\varepsilon}\right]=f \quad \text { in } \quad \mathcal{D}
$$

The tensor $A(x, \omega)$ is such that, for any $k \in \mathbb{Z}^{d}$,

$$
A(x, \omega) \text { and } A(x+k, \omega) \text { share the same probability distribution. }
$$

For a given realization of the randomness, properties may be different. But, on average, they are identical: the material is statistically homogeneous (and $\mathbb{E}[A(x, \cdot)]$ is \mathbb{Z}^{d} periodic).

There is some order in the randomness.

Averaging theorems

- Periodic case: for any $F_{\text {per }} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ that is \mathbb{Z}^{d}-periodic,

$$
F_{\mathrm{per}}\left(\frac{x}{\varepsilon}\right) \underset{\varepsilon \rightarrow 0}{\stackrel{*}{\longrightarrow}} \int_{Q} F_{\mathrm{per}}(y) d y \quad \text { in } L^{\infty}\left(\mathbb{R}^{d}\right), \quad Q=(0,1)^{d}
$$

- Stochastic case: for any $F \in L^{\infty}\left(\mathbb{R}^{d}, L^{1}(\Omega)\right)$ that is statistically homogeneous (i.e. random ergodic stationary),

$$
F\left(\frac{x}{\varepsilon}, \omega\right) \underset{\varepsilon \rightarrow 0}{*} \mathbb{E}\left(\int_{Q} F(y, \cdot) d y\right) \quad \text { in } L^{\infty}\left(\mathbb{R}^{d}\right), \text { almost surely. }
$$

Stochastic homogenization: result

$-\operatorname{div}\left[A\left(\frac{x}{\varepsilon}, \omega\right) \nabla u^{\varepsilon}\right]=f \quad$ in $\mathcal{D}, \quad u^{\varepsilon}=0$ on $\partial \mathcal{D}, \quad A$ stat. homog.
$u^{\varepsilon}(\cdot, \omega)$ converges (a.s.) to u^{\star} solution to

$$
-\operatorname{div}\left[A^{\star} \nabla u^{\star}\right]=f \quad \text { in } \quad \mathcal{D}, \quad u^{\star}=0 \text { on } \partial \mathcal{D},
$$

Stochastic homogenization: result

$$
-\operatorname{div}\left[A\left(\frac{x}{\varepsilon}, \omega\right) \nabla u^{\varepsilon}\right]=f \quad \text { in } \mathcal{D}, \quad u^{\varepsilon}=0 \text { on } \partial \mathcal{D}, \quad A \text { stat. homog. }
$$

$u^{\varepsilon}(\cdot, \omega)$ converges (a.s.) to u^{\star} solution to

$$
-\operatorname{div}\left[A^{\star} \nabla u^{\star}\right]=f \quad \text { in } \quad \mathcal{D}, \quad u^{\star}=0 \text { on } \partial \mathcal{D},
$$

where the homogenized matrix A^{\star} is given by

$$
\begin{gathered}
{\left[A^{\star}\right]_{i j}=\mathbb{E}\left(\int_{Q} e_{i}^{T} A(y, \cdot)\left(e_{j}+\nabla w_{e_{j}}(y, \cdot)\right) d y\right),} \\
\left\{\begin{array}{l}
-\operatorname{div}\left[A(y, \omega)\left(p+\nabla w_{p}(y, \omega)\right)\right]=0 \quad \text { in } \quad \mathbb{R}^{d}, \quad p \in \mathbb{R}^{d}, \\
\nabla w_{p} \text { is stat. homog., } \mathbb{E}\left(\int_{Q} \nabla w_{p}(y, \cdot) d y\right)=0 .
\end{array}\right.
\end{gathered}
$$

In contrast to the periodic case, the corrector problem is set on \mathbb{R}^{d}.

Standard discretization

- Solve the corrector problem on a truncated domain:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left[A(y, \omega)\left(p+\nabla w_{p}^{N}(y, \omega)\right)\right]=0 \\
w_{p}^{N} \quad \text { is } Q_{N} \text {-periodic, } \quad Q_{N}=(-N, N)^{d}
\end{array}\right.
$$

- This yields an approximate (apparent) homogenized matrix

$$
\left[A_{N}^{\star}\right]_{i j}(\omega)=\frac{1}{\left|Q_{N}\right|} \int_{Q_{N}} e_{i}^{T} A(y, \omega)\left(e_{j}+\nabla w_{e_{j}}^{N}(y, \omega)\right) d y
$$

Due to numerical truncation, A_{N}^{\star} is random!

- Bourgeat \& Piatnitski, 2004:

$$
\lim _{N \rightarrow \infty} A_{N}^{\star}(\omega) \rightarrow A^{\star} \quad \text { a.s. }
$$

An academic random material

$A(x, \omega)=\sum_{k \in \mathbb{Z}^{2}} 1_{Q+k}(x) a_{k}(\omega) \operatorname{ld}_{2}, \quad a_{k}$ independent identically distributed
$a_{k}=\alpha$ or β with equal probability.

Monte Carlo approximation

- Consider M independent realizations $A^{m}(y, \omega)$, compute for each
- the corrector $w_{p}^{N, m}$ on Q_{N} :

$$
-\operatorname{div}\left[A^{m}(y, \omega)\left(p+\nabla w_{p}^{N, m}(y, \omega)\right)\right]=0, \quad w_{p}^{N, m} \text { is } Q_{N} \text {-periodic, }
$$

- and the approximate homogenized matrix $A_{N, m}^{\star}(\omega)$.
- Approximate $\mathbb{E}\left(A_{N}^{\star}\right)$ by $I_{M}=\frac{1}{M} \sum_{m=1}^{M} A_{N, m}^{\star}(\omega)$.

Monte Carlo approximation

- Consider M independent realizations $A^{m}(y, \omega)$, compute for each
- the corrector $w_{p}^{N, m}$ on Q_{N} :

$$
-\operatorname{div}\left[A^{m}(y, \omega)\left(p+\nabla w_{p}^{N, m}(y, \omega)\right)\right]=0, \quad w_{p}^{N, m} \text { is } Q_{N} \text {-periodic, }
$$

- and the approximate homogenized matrix $A_{N, m}^{\star}(\omega)$.
- Approximate $\mathbb{E}\left(A_{N}^{\star}\right)$ by $\quad I_{M}=\frac{1}{M} \sum_{m=1}^{M} A_{N, m}^{\star}(\omega)$.

Classical confidence interval: with a probability equal to 95 \%,

$$
\left|\mathbb{E}\left(\left[A_{N}^{\star}\right]_{i j}\right)-\left[I_{M}\right]_{i j}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}\left(\left[A_{N}^{\star}\right]_{i j}\right)}}{\sqrt{M}}
$$

In practice, on a typical example

$I_{M} \approx \mathbb{E}\left(\left[A_{N}^{\star}\right]_{11}\right)$ (along with confidence intervals) for a given number M of realizations, and several sizes for Q_{N}.

Objective

$$
A^{\star}-A_{N}^{\star}(\omega)=\underset{\text { systematic error }}{A^{\star}-\underset{\text { statistical error }}{\mathbb{E}}\left[A_{N}^{\star}\right]}+\underset{\text { stan }}{\mathbb{E}}\left[A_{N}^{\star}\right]-A_{N}^{\star}(\omega)
$$

- several studies on convergence rates wrt N :
- Yurinskii 1986, Bourgeat \& Piatniski 2004
- Naddaf \& Spencer 1998
- Gloria \& Otto 2011-13
- this is NOT the question we want to address here.

Our aim: for fixed N, compute $\mathbb{E}\left(A_{N}^{\star}\right)$ more efficiently.

- Central Limit Theorem (CLT):

$$
\left|\mathbb{E}\left(\left[A_{N}^{\star}\right]_{i j}\right)-\left[I_{M}\right]_{i j}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}\left(\left[A_{N}^{\star}\right]_{i j}\right)}}{\sqrt{M}}
$$

- Can we reduce the prefactor in the CLT? For the same M (same cost), get a smaller confidence interval?

Variance reduction using control variate

Let $X(\omega)$ be a scalar random variable. We want to compute $\mathbb{E}(X)$.

Later, we will take $X(\omega)=\left[A_{N}^{\star}(\omega)\right]_{i j}$ for some $1 \leq i, j \leq d$.

Estimating $\mathbb{E}(X)$

- standard Monte Carlo method: generate M independent realizations of $X(\omega)$, and approximate $\mathbb{E}(X)$ by
$I_{M}^{\mathrm{MC}}=\frac{1}{M} \sum_{m=1}^{M} X\left(\omega_{m}\right)$ that satisfies $\left|\mathbb{E}(X)-I_{M}^{\mathrm{MC}}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}(X)}}{\sqrt{M}}$

Estimating $\mathbb{E}(X)$

- standard Monte Carlo method: generate M independent realizations of $X(\omega)$, and approximate $\mathbb{E}(X)$ by
$I_{M}^{\mathrm{MC}}=\frac{1}{M} \sum_{m=1}^{M} X\left(\omega_{m}\right) \quad$ that satisfies

$$
\left|\mathbb{E}(X)-I_{M}^{\mathrm{MC}}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}(X)}}{\sqrt{M}}
$$

- control variate method: consider $X_{\text {app }}(\omega)$ a random variable "close" to $X(\omega)$, s.t. $\mathbb{E}\left[X_{\text {app }}\right]$ is analytically computable, and introduce

$$
C(\omega)=X(\omega)-\rho\left(X_{\mathrm{app}}(\omega)-\mathbb{E}\left[X_{\mathrm{app}}\right]\right)
$$

where ρ is a deterministic parameter.
Approximate $\mathbb{E}(X)=\mathbb{E}(C)$ by
$I_{M}^{\mathrm{CV}}=\frac{1}{M} \sum_{m=1}^{M} C\left(\omega_{m}\right)$ that satisfies $\left|\mathbb{E}(X)-I_{M}^{\mathrm{CV}}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}(C)}}{\sqrt{M}}$

- Accuracy gain iff $\operatorname{Var}(C)<\operatorname{Var}(X)$.

Choice of the control variate $X_{\text {app }}(\omega)$

$C(\omega)=X(\omega)-\rho\left(X_{\text {app }}(\omega)-\mathbb{E}\left[X_{\text {app }}\right]\right), \quad \rho$ deterministic parameter

$$
I_{M}^{\mathrm{CV}}=\frac{1}{M} \sum_{m=1}^{M} C\left(\omega_{m}\right) \quad \text { satisfies } \quad\left|\mathbb{E}(X)-I_{M}^{\mathrm{CV}}\right| \leq 1.96 \frac{\sqrt{\operatorname{Var}(C)}}{\sqrt{M}}
$$

Extreme cases:

- $X_{\text {app }}$ is deterministic: then $C(\omega)=X(\omega)$ and no gain!
- $X_{\text {app }}=X$: for $\rho=1, C$ is deterministic (hence small variance!), but the algorithm requires $\mathbb{E}\left[X_{\text {app }}\right]=\mathbb{E}(X)$, which is what we are looking for! Not practical!

In general, we need something in-between (problem-dependent).

Choice of the deterministic parameter ρ

$C(\omega)=X(\omega)-\rho\left(X_{\text {app }}(\omega)-\mathbb{E}\left[X_{\text {app }}\right]\right), \quad \rho$ deterministic parameter We wish to minimize the variance of C.

- For any choice of $X_{\text {app }}(\omega)$, there exists an optimal ρ that minimizes the variance of C :

$$
\rho_{\text {opt }}=\frac{\operatorname{Cov}\left(X, X_{\mathrm{app}}\right)}{\operatorname{Var}\left(X_{\mathrm{app}}\right)}
$$

Not exactly computable in practice, but can be well enough approximated by an empirical mean.

- For this optimal choice of ρ,

$$
\frac{\operatorname{Var}(C)}{\operatorname{Var}(X)}=1-\frac{\left(\operatorname{Cov}\left(X, X_{\text {app }}\right)\right)^{2}}{\operatorname{Var}(X) \operatorname{Var}\left(X_{\text {app }}\right)}<1
$$

The more X and $X_{\text {app }}$ are correlated, the better!

A weakly stochastic case:

Rare defects in a periodic structure

A. Anantharaman and C. Le Bris,

- C. R. Acad. Sciences 348 (2010)
- SIAM MMS 9 (2011)
- Comm. Comp. Phys. 11 (2012)

Our aim wrt variance reduction: build a surrogate model close to $A_{N}^{\star}(\omega)$.

A defect model (A. Anantharaman and C. Le Bris, CRAS 2010)

$A_{\text {per }}$: fiber
$A_{\text {per }}+C_{\text {per }}=\mathrm{ld}:$ no fiber (defect)

$$
A(x, \omega)=A_{\text {per }}(x)+b_{\eta}(x, \omega) C_{\text {per }}(x)
$$

where $A_{\text {per }}$ and $C_{\text {per }}$ are both \mathbb{Z}^{d}-periodic, and

$$
b_{\eta}(x, \omega)=\sum_{k \in \mathbb{Z}^{d}} 1_{Q+k}(x) B_{\eta}^{k}(\omega), \quad Q=(0,1)^{d}
$$

where $\left\{B_{\eta}^{k}\right\}_{k \in \mathbb{Z}^{d}}$ are i.i.d. random variables:

$$
\mathbb{P}\left(B_{\eta}^{k}=1\right)=\eta, \quad \mathbb{P}\left(B_{\eta}^{k}=0\right)=1-\eta .
$$

When η is a small parameter, $A=A_{\text {per }}$ "most of the time".

Defects may be not so rare!

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Left: perfect (periodic) material: $\eta=0$.
Right: a realization of the material with defects of probability $\eta=0.4$.

When $\eta=1 / 2$, defects are as frequent as non-defects!
A realization of the matrix A on Q_{N} is determined by the collection of the B_{k}^{η} (0: fiber; 1: no fiber $=$ defect) in each cell k of Q_{N}.

Genericity of the setting

$$
A(x, \omega)=\sum_{k \in \mathbb{Z}^{2}} 1_{Q+k}(x) a_{k}(\omega) \operatorname{ld}_{2}, \quad \mathbb{P}\left(a_{k}=\alpha\right)=\mathbb{P}\left(a_{k}=\beta\right)=1 / 2
$$

Then $\quad A(x, \omega)=A_{\text {per }}(x)+b_{\eta}(x, \omega) C_{\text {per }}(x)$
with

$$
A_{\text {per }}(x)=\alpha, \quad A_{\text {per }}(x)+C_{\text {per }}(x)=\beta, \quad \eta=1 / 2 .
$$

Homogenized matrix expansion (Anantharaman Le Bris, CRAS 2010)

- Approximate homogenized matrix:

$$
A_{N}^{\star}(\omega) p=\frac{1}{\left|Q_{N}\right|} \int_{Q_{N}} A(y, \omega)\left(\nabla w_{p}^{N}(y, \omega)+p\right) d y
$$

where we solve the corrector problem on $Q_{N}=(-N, N)^{d}$:

$$
-\operatorname{div}\left[A(y, \omega)\left(p+\nabla w_{p}^{N}(y, \omega)\right)\right]=0, \quad w_{p}^{N} \text { is } Q_{N} \text {-periodic. }
$$

- By enumerating all possible realizations of $A(x, \omega)$ on Q_{N}, we obtain an expansion of $\mathbb{E}\left[A_{N}^{\star}\right]$ in powers of η :
$\mathbb{E}\left[A_{N}^{\star}\right]=\sum A_{N}^{\star}(\omega) \mathbb{P}(\omega)+\quad \sum \quad A_{N}^{\star}(\omega) \mathbb{P}(\omega)+\ldots$

$$
\begin{aligned}
& \omega \text { s.t. } 0 \text { defect } \\
= & (1-\eta)^{N^{d}} A_{\mathrm{per}}^{\star}+\sum_{k \in I_{N}} \eta(1-\eta)^{N^{d}-1} A_{N}^{\star}(1 \text { defect in } k)+\ldots \\
= & A_{\mathrm{per}}^{\star}+\eta \bar{A}_{1}^{\star, N}+\eta^{2} \bar{A}_{2}^{\star, N}+O\left(\eta^{3}\right)
\end{aligned}
$$

$$
\mathbb{E}\left[A_{N}^{*}\right]=A_{\text {per }}^{*}+\eta \bar{A}_{1}^{*, N}+\eta^{2} \bar{A}_{2}^{*, N}
$$

Leading order term given by the periodic (no defect!) situation:

$$
-\operatorname{div}\left[A_{\mathrm{per}}\left(p+\nabla w_{p}^{0}\right)\right]=0, \quad w_{p}^{0} \text { is } Q \text {-periodic }
$$

and

$$
A_{\mathrm{per}}^{\star} p=\int_{Q} A_{\mathrm{per}}\left(\nabla w_{p}^{0}+p\right) .
$$

$\mathbb{E}\left[A_{N}^{*}\right]=A_{\text {per }}^{*}+\eta \bar{A}_{1}^{*, N}+\eta^{2} \bar{A}_{2}^{*, N}$

$$
\begin{aligned}
\bar{A}_{1}^{\star, N} p & =\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}}\left[\int_{Q_{N}} A_{1}^{k}\left(\nabla w_{p}^{1, k}+p\right)-\int_{Q_{N}} A_{\mathrm{per}}\left(\nabla w_{p}^{0}+p\right)\right] \\
& =\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} \mathcal{A}_{k}^{1} \operatorname{def} p
\end{aligned}
$$

where w_{p}^{0} is the periodic corrector (no defect) and $w_{p}^{1, k}$ is the corrector associated to

$$
\left.A_{1}^{k}=A_{\mathrm{per}}+\mathbf{1}_{Q+k} C_{\text {per }} \quad \text { (material with a single defect in } Q+k\right)
$$

$$
-\operatorname{div}\left[A_{1}^{k}\left(p+\nabla w_{p}^{1, k}\right)\right]=0
$$

$w_{p}^{1, k}$ is Q_{N}-periodic.
Remark: here, due to periodic BC, $\mathcal{A}_{k}^{1 \text { def }}$ independent of k.

$\mathbb{E}\left[A_{N}^{\star}\right]=A_{\text {per }}^{\star}+\eta \bar{A}_{1}^{*, N}+\eta^{2} \bar{A}_{2}^{\star, N}+\cdots$

$$
\bar{A}_{1}^{\star, N} p=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} \mathcal{A}_{k}^{1 \operatorname{def}} p
$$

where $\mathcal{A}_{k}^{1 \text { def }}$ is the marginal contribution of a single defect in k.

$\mathbb{E}\left[A_{N}^{*}\right]=A_{\text {per }}^{*}+\eta \bar{A}_{1}^{*, N}+\eta^{2} \bar{A}_{2}^{*, N}$

$$
\bar{A}_{1}^{\star, N} p=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} \mathcal{A}_{k}^{1 \operatorname{def}} p
$$

where $\mathcal{A}_{k}^{1 \text { def }}$ is the marginal contribution of a single defect in k.

Similar expression for second order:

$$
\bar{A}_{2}^{\star, N} p=\frac{1}{2\left|Q_{N}\right|} \sum_{k \neq \ell} \mathcal{A}_{k, \ell}^{2 \text { def }} p
$$

Marginal contribution from pairs of defects.

$\mathbb{E}\left[A_{N}^{*}\right]=A_{\text {per }}^{*}+\eta \bar{A}_{1}^{*, N}+\eta^{2} \bar{A}_{2}^{*, N}$

$$
{\overline{A_{1}}}^{\star, N} p=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} \mathcal{A}_{k}^{1 \operatorname{def}} p
$$

where $\mathcal{A}_{k}^{1 \text { def }}$ is the marginal contribution of a single defect in k.

Similar expression for second order:

$$
\bar{A}_{2}^{\star, N} p=\frac{1}{2\left|Q_{N}\right|} \sum_{k \neq \ell} \mathcal{A}_{k, \ell}^{2 \text { def }} p
$$

Marginal contribution from
pairs of defects.

Possible to use a Reduced Basis approach to compute $w_{p}^{2, k, \ell}$, corrector associated to $A_{2}^{k, \ell}=A_{\text {per }}+\mathbf{1}_{Q+k} C_{\text {per }}+\mathbf{1}_{Q+\ell} C_{\text {per }}$.
C. Le Bris and F. Thomines, CAM 2012.

A control variate approach

Joint work with W. Minvielle.

Our aim: at any given N, compute $\mathbb{E}\left(A_{N}^{\star}\right)$ more efficiently.

Control variate - 1

$$
\mathbb{E}\left[A_{N}^{\star}\right]=A_{\mathrm{per}}^{\star}+\eta \bar{A}_{1}^{\star, N}+\eta^{2} \bar{A}_{2}^{\star, N}+\cdots
$$

where

$$
\eta \bar{A}_{1}^{\star, N}=\frac{\eta}{\left|Q_{N}\right|} \sum_{k \in I_{N}} \mathcal{A}_{k}^{1 \operatorname{def}}
$$

is the contribution to the homogenized matrix due to all the defects in the system, considered isolated one from each other.

We see that

$$
\eta \bar{A}_{1}^{\star, N}=\mathbb{E}\left[A_{1}^{\star, N}\right]
$$

where

$$
A_{1}^{\star, N}(\omega)=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} B_{\eta}^{k}(\omega) \mathcal{A}_{k}^{1 \mathrm{def}}
$$

where $B_{\eta}^{k}=1$ if defect in cell $Q+k$ (which happens with probability η).

Control variate - 2

$$
\mathbb{E}\left[A_{N}^{\star}\right]=A_{\mathrm{per}}^{\star}+\eta \bar{A}_{1}^{\star, N}+\eta^{2} \bar{A}_{2}^{\star, N}+\cdots
$$

We introduce

$$
A_{\mathrm{app}}^{\star}(\omega):=A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega) \quad \text { with } \quad A_{1}^{\star, N}(\omega):=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} B_{\eta}^{k}(\omega) \mathcal{A}_{k}^{1 \mathrm{def}}
$$

notice that

$$
\mathbb{E}\left[A_{N}^{\star}\right]=\mathbb{E}\left[A_{\mathrm{app}}^{\star}\right]+\eta^{2} \bar{A}_{2}^{\star, N}+\cdots
$$

and think of $A_{\text {app }}^{\star}(\omega)$ as a good approximation of $A_{N}^{\star}(\omega)$.

This is confirmed by the fact that, for any function φ,

$$
\mathbb{E}\left[\varphi\left(A_{N}^{\star}\right)\right]=\mathbb{E}\left[\varphi\left(A_{\mathrm{app}}^{\star}\right)\right]+O\left(\eta^{2}\right) .
$$

Control variate - 3

Procedure:

- draw $B_{\eta}^{k}(\omega)$ in each cell $Q+k$ (defect or not?). This determines the field $A(x, \omega)$ on Q_{N}.
- compute the associated $A_{N}^{\star}(\omega)$ (corrector pb on Q_{N})
- build the control variate (ρ deterministic parameter)

$$
C_{N}^{\star}(\omega)=A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)-\mathbb{E}\left[A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)\right]\right)
$$

with $A_{1}^{\star, N}(\omega)=\frac{1}{\left|Q_{N}\right|} \sum_{k \in I_{N}} B_{\eta}^{k}(\omega) \mathcal{A}_{k}^{1 \text { def }}$
(expectation analyt. computable).

Control variate - 4

$$
C_{N}^{\star}(\omega)=A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)-\mathbb{E}\left[A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)\right]\right)
$$

- Expect $A_{\mathrm{app}}^{\star}(\omega)=A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)$ to be a good approx. of $A_{N}^{\star}(\omega)$ (at least for $\eta \ll 1$).
- Observe that $\mathbb{E}\left[A_{N}^{\star}(\omega)\right]=\mathbb{E}\left[C_{N}^{\star}(\omega)\right]$
- IDEA: approximate $\mathbb{E}\left[A_{N}^{\star}(\omega)\right]=\mathbb{E}\left[C_{N}^{\star}(\omega)\right]$ by

$$
J_{M}=\frac{1}{M} \sum_{m=1}^{M} C_{N}^{\star}\left(\omega_{m}\right) \quad\left[\text { Confidence interval: } \operatorname{Var} C_{N}^{\star}\right]
$$

Control variate - 4

$$
C_{N}^{\star}(\omega)=A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)-\mathbb{E}\left[A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)\right]\right)
$$

- Expect $A_{\mathrm{app}}^{\star}(\omega)=A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)$ to be a good approx. of $A_{N}^{\star}(\omega)$ (at least for $\eta \ll 1$).
- Observe that $\mathbb{E}\left[A_{N}^{\star}(\omega)\right]=\mathbb{E}\left[C_{N}^{\star}(\omega)\right]$
- IDEA: approximate $\mathbb{E}\left[A_{N}^{\star}(\omega)\right]=\mathbb{E}\left[C_{N}^{\star}(\omega)\right]$ by

$$
J_{M}=\frac{1}{M} \sum_{m=1}^{M} C_{N}^{\star}\left(\omega_{m}\right) \quad\left[\text { Confidence interval: } \operatorname{Var} C_{N}^{\star}\right]
$$

Optimal ρ that minimizes the variance of (an entry of the matrix) C_{N}^{\star} :

$$
\rho_{\text {opt }}=\frac{\operatorname{Cov}\left(A_{N}^{\star}, A_{1}^{\star, N}\right)}{\operatorname{Var}\left(A_{1}^{\star, N}\right)} \quad \text { well approx. by empirical mean }
$$

Control variate based on second order approximation - 1

$$
\mathbb{E}\left[A_{N}^{\star}\right]=A_{\mathrm{per}}^{\star}+\eta{\overline{A_{1}^{\star}}}^{\star, N}+\eta^{2} \bar{A}_{2}^{\star, N}+\cdots
$$

where

$$
\eta^{2} \bar{A}_{2}^{\star, N}=\frac{\eta^{2}}{2\left|Q_{N}\right|} \sum_{k \neq \ell} \mathcal{A}_{k, \ell}^{2 \text { def }}
$$

is the contribution to the homogenized matrix due to all pairs of defects in the system, located at k and ℓ. We see that

$$
\eta^{2} \bar{A}_{2}^{\star, N}=\mathbb{E}\left[A_{2}^{\star, N}\right]
$$

where

$$
A_{2}^{\star, N}(\omega)=\frac{1}{2\left|Q_{N}\right|} \sum_{k \neq \ell} B_{\eta}^{k}(\omega) B_{\eta}^{\ell}(\omega) \mathcal{A}_{k, \ell}^{2 \text { def }}
$$

where $B_{\eta}^{k}=1$ if defect in cell $Q+k$ (which happens with probability η). $A_{\text {app }}^{\star}(\omega):=A_{\text {per }}^{\star}+A_{1}^{\star, N}(\omega)+A_{2}^{\star, N}(\omega)$ is such that $\mathbb{E}\left[A_{N}^{\star}\right]=\mathbb{E}\left[A_{\text {app }}^{\star}\right]+O\left(\eta^{3}\right)$.

Control variate based on second order approximation - 2

- Second order control variate approach:

$$
C_{N}^{\star}(\omega)=A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)-\mathbb{E}[\ldots]\right)-\rho_{2}\left(A_{2}^{\star, N}(\omega)-\mathbb{E}[\ldots]\right)
$$

For any entry $1 \leq i, j \leq d$, optimal parameters ρ and ρ_{2} by minimizing $\operatorname{Var}\left(\left[C_{N}^{\star}\right]_{i j}\right)$ (inverse a 2×2 matrix).

- Here, we systematically refer to the situation "no defect", $\eta \ll 1$. It is also possible to refer to the situation "all defects", $1-\eta \ll 1$.

The first order correction turns out to be the same, but not the second order correction:

$$
\begin{aligned}
C_{N}^{\star}(\omega)=A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)\right) & -\rho_{2} A_{2, \text { wrt } \eta=0}^{\star, N}(\omega) \\
& -\rho_{3} A_{2, \text { wrt } \eta=1}^{\star, N}(\omega)-\mathbb{E}[\ldots]
\end{aligned}
$$

Numerical test case

$A(x, \omega)=\sum_{k \in \mathbb{Z}^{2}} 1_{Q+k}(x) a_{k}(\omega) \operatorname{Id}_{2}, \quad a_{k}$ independent identically distributed
$\mathbb{P}\left(a_{k}=\alpha\right)=\eta, \quad \mathbb{P}\left(a_{k}=\beta\right)=1-\eta$.
Not always clear to decide who is the defect / background (e.g. when $\eta=1 / 2)$.

Small contrast test case: $(\alpha, \beta)=(3,23)$ - Homogenized coefficient

Blue curve: standard Monte Carlo estimator $I_{M}^{\mathrm{MC}}=M^{-1} \sum_{m=1}^{M} A_{N}^{\star}\left(\omega_{m}\right)$ Black curves: weakly stochastic approximation (expansion wrt $\eta=0$ or $\eta=1$): inaccurate when $0.4 \leq \eta \leq 0.7$.

Ratios $\operatorname{Var}\left(A_{N}^{\star}\right) / \operatorname{Var}\left(C_{N}^{\star}\right) \equiv$ CPU time gain

Black curves: control variate approach using first order approximation.
Red curves: control variate approach using second order approximation (wrt $\eta=0$ OR $\eta=1$).

Blue curve: control variate approach simultaneously using first and second order approximations at both ends ($\eta=0$ AND $\eta=1$).

Small contrast test case: $(\alpha, \beta)=(3,23)$ - Efficiency at $\eta=1 / 2$

$$
\begin{aligned}
C_{N}^{\star}(\omega) & =A_{N}^{\star}(\omega)-\rho\left(A_{\mathrm{per}}^{\star}+A_{1}^{\star, N}(\omega)-\mathbb{E}[\ldots]\right) \\
& -\rho_{2}\left(A_{2, \text { wrt. } \eta=0}^{\star, N}(\omega)-\mathbb{E}[\ldots]\right)-\rho_{3}\left(A_{2, \text { wrt. } \eta=1}^{\star}(\omega)-\mathbb{E}[\ldots]\right)
\end{aligned}
$$

- Control variate using first order approximation ($\rho_{2}=\rho_{3}=0$):
- variance ratio $=6$
. computing the control variate is inexpensive, hence

$$
\text { CPU time gain }=\text { Variance ratio }=6
$$

- Control variate using second order approximation (optimal ρ, ρ_{2} and ρ_{3}):
- variance ratio $=44$
- using a RB approach (Le Bris \& Thomines, 2012), computing the control variate is inexpensive:

CPU time gain $=$ Variance ratio $=44$

Robustness ($\eta=1 / 2$) wrt supercell size

Variance reduction ratio (first order or second order approximation): insensitive to the supercell size.

Large contrast test case: $(\alpha, \beta)=(3,103)$ - Homogenized coefficient

Blue curve: standard Monte Carlo estimator $I_{M}^{\mathrm{MC}}=M^{-1} \sum_{m=1}^{M} A_{N}^{\star}\left(\omega_{m}\right)$
Black curves: weakly stochastic approximation (with α or β as background): inaccurate when $0.3 \leq \eta \leq 0.7$.

Variance ratios (CPU time gain)

Black curves: control variate approach using first order approximation
Red curves: control variate approach using second order approximation (wrt $\eta=0$ OR $\eta=1$).

Quantitative estimation of the variance reduction ($\eta \ll 1$)

Three approaches to compute $\mathbb{E}\left[A_{N}^{\star}\right]$:

- Standard Monte Carlo approach with M realizations:

$$
\text { error }=\text { statistical error } \propto \sqrt{\operatorname{Var}\left(A_{N}^{\star}\right) / M} \propto \sqrt{\eta / M}
$$

Quantitative estimation of the variance reduction ($\eta \ll 1$)

Three approaches to compute $\mathbb{E}\left[A_{N}^{\star}\right]$:

- Standard Monte Carlo approach with M realizations:

$$
\text { error }=\text { statistical error } \propto \sqrt{\operatorname{Var}\left(A_{N}^{\star}\right) / M} \propto \sqrt{\eta / M}
$$

- Control Variate approach (first order) with M realizations:

$$
\text { error }=\text { statistical error } \propto \sqrt{\operatorname{Var}\left(C_{N}^{\star}\right) / M} \propto \sqrt{\eta^{2} / M}
$$

At equal cost, more accurate that Monte Carlo.

Quantitative estimation of the variance reduction ($\eta \ll 1$)

Three approaches to compute $\mathbb{E}\left[A_{N}^{\star}\right]$:

- Standard Monte Carlo approach with M realizations:

$$
\text { error }=\text { statistical error } \propto \sqrt{\operatorname{Var}\left(A_{N}^{\star}\right) / M} \propto \sqrt{\eta / M}
$$

- Control Variate approach (first order) with M realizations:

$$
\text { error }=\text { statistical error } \propto \sqrt{\operatorname{Var}\left(C_{N}^{\star}\right) / M} \propto \sqrt{\eta^{2} / M}
$$

At equal cost, more accurate that Monte Carlo.

- Expansion of $\mathbb{E}\left[A_{N}^{\star}\right]$ (Anantharaman / Le Bris) using the same information as the Control Variate approach:
$\mathbb{E}\left[A_{N}^{\star}\right]=A_{\mathrm{per}}^{\star}+\eta \bar{A}_{1}^{\star, N}+O\left(\eta^{2}\right), \quad$ error $=$ systematic error $\propto \eta^{2}$.
CV approach needs $M \propto 1 / \eta^{2} \gg 1$ to reach a similar accuracy.
Regime of interest for our CV approach: η neither close to 0 nor 1 .

Conclusions

- We have proposed a control variate approach based on a defect-type model to better compute $\mathbb{E}\left[A_{N}^{\star}\right]$.
- When none of the phase dominates ($\eta \approx 1 / 2$), the defect model becomes inaccurate per se, but remains useful as a control variate.

In a nutshell: use a weakly stochastic model to improve efficiency for fully stochastic cases.

- For the moment, all computations have been done with the exact $A_{2}^{\star, N}(\omega)$. If we indeed use the RB approach, what impact on the variance reduction?
Up to what can we degrade the surrogate model?

Some references

- Review article:

Anantharaman, Costaouec, Le Bris, L., Thomines, in Lecture Notes Series, National University of Singapore 2011.

- Variance reduction using antithetic variables:
- Costaouec, Le Bris, L., Boletin Soc. Esp. Mat. Apl. 2010.
- Blanc, Costaouec, Le Bris, L., Markov Processes and Related Fields 2012 and Lect. Notes Comput. Sci. Eng. 2012.
- L., Minvielle, arXiv 1302.0038 (nonlinear case), DCDS-S, in press.
- Multi-Level Monte Carlo approach:

Efendiev, Kronsbein, L., arXiv 1301.2798

- Control variate approach: L., Minvielle, in preparation.

