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Setting

Homogenization of random materials often leads to very expensive

computations, and thus many practical difficulties.

Simplify the situation from the theoretical viewpoint: consider the simple

scalar linear PDE

−div
[

A
(x

ε
, ω

)

∇uε
]

= f in some domain D, uε = 0 on ∂D.

Thermal diffusion, . . .
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Outline of the talk

Some background materials on random homogenization

Variance reduction by the control variate approach

A weakly stochastic model (rare defects) due to A. Anantharaman

and C. Le Bris

Use this model to build a surrogate model and design a control

variate approach to reduce the variance

F. Legoll, CEMRACS 2013 seminar, 7 august 2013 – p. 3



Random homogenization
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Homogenization 1.0.1: the periodic setting

−div
[

Aper

(x

ε

)

∇uε
]

= f in D, uε = 0 on ∂D, Aper is Z
d-periodic.
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Homogenization 1.0.1: the periodic setting

−div
[

Aper

(x

ε

)

∇uε
]

= f in D, uε = 0 on ∂D, Aper is Z
d-periodic.

When ε → 0, uε converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D.

The effective matrix A⋆ is given by

[A⋆]ij =

∫

Q

eTi Aper(y)
(

ej +∇wej (y)
)

dy, Q = unit cube = (0, 1)d,

where, for any p ∈ Rd, wp solves the so-called corrector problem:

−div [Aper(y) (p+∇wp)] = 0, wp is Z
d-periodic.
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Homogenization 1.0.1: the periodic setting

−div
[

Aper

(x

ε

)

∇uε
]

= f in D, uε = 0 on ∂D, Aper is Z
d-periodic.

When ε → 0, uε converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D.

The effective matrix A⋆ is given by

[A⋆]ij =

∫

Q

eTi Aper(y)
(

ej +∇wej (y)
)

dy, Q = unit cube = (0, 1)d,

where, for any p ∈ Rd, wp solves the so-called corrector problem:

−div [Aper(y) (p+∇wp)] = 0, wp is Z
d-periodic.

→ The corrector problem is set on the bounded domain Q: easy!
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Stochastic homogenization: setting

We consider statistically homogeneous random materials:

−div
[

A
(x

ε
, ω

)

∇uε
]

= f in D

The tensor A(x, ω) is such that, for any k ∈ Zd,

A(x, ω) and A(x+ k, ω) share the same probability distribution.

For a given realization of the randomness, properties may be different.

But, on average, they are identical: the material is statistically

homogeneous (and E [A(x, ·)] is Z
d periodic).

There is some order

in the randomness.
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Averaging theorems

Periodic case: for any Fper ∈ L∞
(

Rd
)

that is Zd-periodic,

Fper

(x

ε

)

∗−⇀
ε→0

∫

Q

Fper(y) dy in L∞(Rd), Q = (0, 1)d.

Stochastic case: for any F ∈ L∞
(

R
d, L1(Ω)

)

that is statistically

homogeneous (i.e. random ergodic stationary),

F
(x

ε
, ω

)

∗−⇀
ε→0

E

(
∫

Q

F (y, ·) dy
)

in L∞(Rd), almost surely.
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Stochastic homogenization: result

−div
[

A
(x

ε
, ω

)

∇uε
]

= f in D, uε = 0 on ∂D, A stat. homog.

uε(·, ω) converges (a.s.) to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D,
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Stochastic homogenization: result

−div
[

A
(x

ε
, ω

)

∇uε
]

= f in D, uε = 0 on ∂D, A stat. homog.

uε(·, ω) converges (a.s.) to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D,

where the homogenized matrix A⋆ is given by

[A⋆]ij = E

(
∫

Q

eTi A (y, ·)
(

ej +∇wej (y, ·)
)

dy

)

,















−div [A (y, ω) (p+∇wp(y, ω))] = 0 in Rd, p ∈ Rd,

∇wp is stat. homog., E

(
∫

Q

∇wp(y, ·) dy
)

= 0.

In contrast to the periodic case, the corrector problem is set on Rd.
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Standard discretization

Solve the corrector problem on a truncated domain:







−div
[

A (y, ω)
(

p+∇wN
p (y, ω)

)]

= 0,

wN
p is QN -periodic, QN = (−N,N)d.

This yields an approximate (apparent) homogenized matrix

[A⋆
N ]ij(ω) =

1

|QN |

∫

QN

eTi A (y, ω)
(

ej +∇wN
ej
(y, ω)

)

dy.

Due to numerical truncation, A⋆
N is random!

Bourgeat & Piatnitski, 2004:

lim
N→∞

A⋆
N (ω) → A⋆ a.s.
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An academic random material

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak independent identically distributed

ak = α or β with equal probability.
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Monte Carlo approximation

Consider M independent realizations Am(y, ω), compute for each

the corrector wN,m
p on QN :

−div
[

Am (y, ω)
(

p+∇wN,m
p (y, ω)

)]

= 0, wN,m
p is QN -periodic,

and the approximate homogenized matrix A⋆
N,m(ω).

Approximate E(A⋆
N ) by IM =

1

M

M
∑

m=1

A⋆
N,m(ω).
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Monte Carlo approximation

Consider M independent realizations Am(y, ω), compute for each

the corrector wN,m
p on QN :

−div
[

Am (y, ω)
(

p+∇wN,m
p (y, ω)

)]

= 0, wN,m
p is QN -periodic,

and the approximate homogenized matrix A⋆
N,m(ω).

Approximate E(A⋆
N ) by IM =

1

M

M
∑

m=1

A⋆
N,m(ω).

Classical confidence interval: with a probability equal to 95 %,

∣

∣

∣
E([A⋆

N ]ij)− [IM ]ij

∣

∣

∣
≤ 1.96

√

Var([A⋆
N ]ij)√

M
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In practice, on a typical example

IM ≈ E([A⋆
N ]11) (along with confidence intervals) for a given number M

of realizations, and several sizes for QN .

 7.92

 7.94

 7.96

 7.98

 8

 8.02

 8.04

 10000  20000  30000  40000

Number of cells in QN
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Objective

A⋆ − A⋆
N (ω) = A⋆ − E [A⋆

N ]
systematic error

+ E [A⋆
N ]− A⋆

N (ω)
statistical error

several studies on convergence rates wrt N :

Yurinskii 1986, Bourgeat & Piatniski 2004

Naddaf & Spencer 1998

Gloria & Otto 2011-13

this is NOT the question we want to address here.

Our aim: for fixed N , compute E(A⋆
N ) more efficiently.

Central Limit Theorem (CLT):
∣

∣

∣
E([A⋆

N ]ij)− [IM ]ij

∣

∣

∣
≤ 1.96

√

Var([A⋆
N ]ij)√

M

Can we reduce the prefactor in the CLT? For the same M (same

cost), get a smaller confidence interval?
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Variance reduction
using control variate

Let X(ω) be a scalar random variable. We want to compute E(X).

Later, we will take X(ω) = [A⋆
N(ω)]ij for some 1 ≤ i, j ≤ d.
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Estimating E(X)

standard Monte Carlo method: generate M independent

realizations of X(ω), and approximate E(X) by

IMC
M =

1

M

M
∑

m=1

X(ωm) that satisfies
∣

∣

∣
E(X)−IMC

M

∣

∣

∣
≤ 1.96

√

Var(X)√
M

F. Legoll, CEMRACS 2013 seminar, 7 august 2013 – p. 15



Estimating E(X)

standard Monte Carlo method: generate M independent

realizations of X(ω), and approximate E(X) by

IMC
M =

1

M

M
∑

m=1

X(ωm) that satisfies
∣

∣

∣
E(X)−IMC

M

∣

∣

∣
≤ 1.96

√

Var(X)√
M

control variate method: consider Xapp(ω) a random variable “close”

to X(ω), s.t. E [Xapp] is analytically computable, and introduce

C(ω) = X(ω)− ρ
(

Xapp(ω)− E [Xapp]
)

where ρ is a deterministic parameter.

Approximate E(X) = E(C) by

ICV
M =

1

M

M
∑

m=1

C(ωm) that satisfies
∣

∣

∣
E(X)−ICV

M

∣

∣

∣
≤ 1.96

√

Var(C)√
M

Accuracy gain iff Var(C) < Var(X).
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Choice of the control variate Xapp(ω)

C(ω) = X(ω)− ρ
(

Xapp(ω)− E [Xapp]
)

, ρ deterministic parameter

ICV
M =

1

M

M
∑

m=1

C(ωm) satisfies
∣

∣

∣
E(X)− ICV

M

∣

∣

∣
≤ 1.96

√

Var(C)√
M

Extreme cases:

Xapp is deterministic: then C(ω) = X(ω) and no gain!

Xapp = X: for ρ = 1, C is deterministic (hence small variance!), but

the algorithm requires E [Xapp] = E(X), which is what we are

looking for! Not practical!

In general, we need something in-between (problem-dependent).
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Choice of the deterministic parameter ρ

C(ω) = X(ω)− ρ
(

Xapp(ω)− E [Xapp]
)

, ρ deterministic parameter

We wish to minimize the variance of C.

For any choice of Xapp(ω), there exists an optimal ρ that minimizes

the variance of C:
ρopt =

Cov(X,Xapp)

Var(Xapp)

Not exactly computable in practice, but can be well enough

approximated by an empirical mean.

For this optimal choice of ρ,

Var(C)

Var(X)
= 1−

(

Cov(X,Xapp)
)2

Var(X)Var(Xapp)
< 1

The more X and Xapp are correlated, the better!
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A weakly stochastic case:
Rare defects in a periodic structure

A. Anantharaman and C. Le Bris,
– C. R. Acad. Sciences 348 (2010)
– SIAM MMS 9 (2011)
– Comm. Comp. Phys. 11 (2012)

Our aim wrt variance reduction: build a surrogate model close to
A⋆

N(ω).
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A defect model (A. Anantharaman and C. Le Bris, CRAS 2010)

Aper: fiber

Aper + Cper = Id : no fiber (defect)

A(x, ω) = Aper(x) + bη(x, ω)Cper(x)

where Aper and Cper are both Z
d-periodic, and

bη(x, ω) =
∑

k∈Zd

1Q+k(x)B
k
η (ω), Q = (0, 1)d,

where
{

Bk
η

}

k∈Zd are i.i.d. random variables:

P(Bk
η = 1) = η, P(Bk

η = 0) = 1− η.

When η is a small parameter, A = Aper “most of the time”.
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Defects may be not so rare!

Left: perfect (periodic) material: η = 0.

Right: a realization of the material with defects of probability η = 0.4.

When η = 1/2, defects are as frequent as non-defects!

A realization of the matrix A on QN is determined by the collection of

the Bη
k (0: fiber; 1: no fiber = defect) in each cell k of QN .
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Genericity of the setting

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, P(ak = α) = P(ak = β) = 1/2.

Then A(x, ω) = Aper(x) + bη(x, ω)Cper(x)

with Aper(x) = α, Aper(x) + Cper(x) = β, η = 1/2.
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Homogenized matrix expansion (Anantharaman Le Bris, CRAS 2010)

Approximate homogenized matrix:

A⋆
N (ω)p =

1

|QN |

∫

QN

A (y, ω)
(

∇wN
p (y, ω) + p

)

dy

where we solve the corrector problem on QN = (−N,N)d:

−div
[

A (y, ω)
(

p+∇wN
p (y, ω)

)]

= 0, wN
p is QN -periodic.

By enumerating all possible realizations of A(x, ω) on QN , we

obtain an expansion of E [A⋆
N ] in powers of η:

E [A⋆
N ] =

∑

ω s.t. 0 defect

A⋆
N (ω)P(ω) +

∑

ω s.t. 1 defect

A⋆
N (ω)P(ω) + . . .

= (1− η)N
d

A⋆
per +

∑

k∈IN

η(1− η)N
d−1A⋆

N (1 defect in k) + . . .

= A⋆
per + ηA

⋆,N

1 + η2A
⋆,N

2 +O(η3)
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E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

Leading order term given by the periodic (no defect!) situation:

−div
[

Aper

(

p+∇w0
p

)]

= 0, w0
p is Q-periodic

and

A⋆
perp =

∫

Q

Aper(∇w0
p + p).
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E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

A
⋆,N
1 p =

1

|QN |
∑

k∈IN

[
∫

QN

Ak
1(∇w1,k

p + p)−
∫

QN

Aper(∇w0
p + p)

]

=
1

|QN |
∑

k∈IN

A1 def
k p

where w0
p is the periodic corrector (no defect) and w1,k

p is the corrector

associated to

Ak
1 = Aper + 1Q+kCper (material with a single defect in Q+ k)

−div
[

Ak
1

(

p+∇w1,k
p

)]

= 0

w1,k
p is QN -periodic.

Remark: here, due to periodic BC,

A1 def
k independent of k.
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E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

A
⋆,N
1 p =

1

|QN |
∑

k∈IN

A1 def
k p

where A1 def
k is the marginal contribution of a single defect in k.
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E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

A
⋆,N
1 p =

1

|QN |
∑

k∈IN

A1 def
k p

where A1 def
k is the marginal contribution of a single defect in k.

Similar expression for second order:

A
⋆,N

2 p =
1

2|QN |
∑

k 6=ℓ

A2 def
k,ℓ p

Marginal contribution from

pairs of defects.
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E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

A
⋆,N
1 p =

1

|QN |
∑

k∈IN

A1 def
k p

where A1 def
k is the marginal contribution of a single defect in k.

Similar expression for second order:

A
⋆,N

2 p =
1

2|QN |
∑

k 6=ℓ

A2 def
k,ℓ p

Marginal contribution from

pairs of defects.

Possible to use a Reduced Basis approach to compute w2,k,ℓ
p , corrector

associated to Ak,ℓ
2 = Aper + 1Q+kCper + 1Q+ℓCper.

C. Le Bris and F. Thomines, CAM 2012.
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A control variate approach
Joint work with W. Minvielle.

 7.92

 7.94

 7.96

 7.98

 8

 8.02

 8.04

 10000  20000  30000  40000

Number of cells in QN

Our aim: at any given N , compute E(A⋆
N) more efficiently.
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Control variate - 1

E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

where
ηA

⋆,N

1 =
η

|QN |
∑

k∈IN

A1 def
k

is the contribution to the homogenized matrix due to all the defects in

the system, considered isolated one from each other.

We see that
ηA

⋆,N

1 = E

[

A⋆,N
1

]

where
A⋆,N

1 (ω) =
1

|QN |
∑

k∈IN

Bk
η (ω) A1 def

k

where Bk
η = 1 if defect in cell Q+ k (which happens with probability η).
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Control variate - 2

E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·

We introduce

A⋆
app(ω) := A⋆

per +A⋆,N
1 (ω) with A⋆,N

1 (ω) :=
1

|QN |
∑

k∈IN

Bk
η (ω) A1 def

k ,

notice that

E [A⋆
N ] = E

[

A⋆
app

]

+ η2A
⋆,N

2 + · · ·

and think of A⋆
app(ω) as a good approximation of A⋆

N (ω).

This is confirmed by the fact that, for any function ϕ,

E [ϕ (A⋆
N )] = E

[

ϕ
(

A⋆
app

)]

+O
(

η2
)

.
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Control variate - 3

Procedure:

draw Bk
η (ω) in each cell Q+ k (defect or not?). This determines the

field A(x, ω) on QN .

compute the associated A⋆
N (ω) (corrector pb on QN )

build the control variate (ρ deterministic parameter)

C⋆
N (ω) = A⋆

N (ω)− ρ
(

A⋆
per +A⋆,N

1 (ω)− E

[

A⋆
per +A⋆,N

1 (ω)
])

with A⋆,N
1 (ω) =

1

|QN |
∑

k∈IN

Bk
η (ω)A1 def

k (expectation analyt. computable).
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Control variate - 4

C⋆
N (ω) = A⋆

N (ω)− ρ
(

A⋆
per + A⋆,N

1 (ω)− E

[

A⋆
per + A⋆,N

1 (ω)
])

Expect A⋆
app(ω) = A⋆

per + A⋆,N
1 (ω) to be a good approx. of A⋆

N (ω)

(at least for η ≪ 1).

Observe that E [A⋆
N (ω)] = E [C⋆

N (ω)]

IDEA: approximate E [A⋆
N (ω)] = E [C⋆

N (ω)] by

JM =
1

M

M
∑

m=1

C⋆
N (ωm)

[

Confidence interval: VarC⋆
N

]
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Control variate - 4

C⋆
N (ω) = A⋆

N (ω)− ρ
(

A⋆
per + A⋆,N

1 (ω)− E

[

A⋆
per + A⋆,N

1 (ω)
])

Expect A⋆
app(ω) = A⋆

per + A⋆,N
1 (ω) to be a good approx. of A⋆

N (ω)

(at least for η ≪ 1).

Observe that E [A⋆
N (ω)] = E [C⋆

N (ω)]

IDEA: approximate E [A⋆
N (ω)] = E [C⋆

N (ω)] by

JM =
1

M

M
∑

m=1

C⋆
N (ωm)

[

Confidence interval: VarC⋆
N

]

Optimal ρ that minimizes the variance of (an entry of the matrix) C⋆
N :

ρopt =
Cov(A⋆

N , A⋆,N
1 )

Var(A⋆,N
1 )

well approx. by empirical mean
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Control variate based on second order approximation - 1

E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 + η2A
⋆,N

2 + · · ·
where

η2A
⋆,N

2 =
η2

2|QN |
∑

k 6=ℓ

A2 def
k,ℓ

is the contribution to the homogenized matrix due to all pairs of defects

in the system, located at k and ℓ. We see that

η2A
⋆,N
2 = E

[

A⋆,N
2

]

where

A⋆,N
2 (ω) =

1

2|QN |
∑

k 6=ℓ

Bk
η (ω)B

ℓ
η(ω) A2 def

k,ℓ

where Bk
η = 1 if defect in cell Q+ k (which happens with probability η).

A⋆
app(ω) := A⋆

per +A⋆,N
1 (ω) + A⋆,N

2 (ω) is such that E [A⋆
N ] = E

[

A⋆
app

]

+O(η3).
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Control variate based on second order approximation - 2

Second order control variate approach:

C⋆
N (ω) = A⋆

N (ω)−ρ
(

A⋆
per + A⋆,N

1 (ω)− E [. . . ]
)

−ρ2

(

A⋆,N
2 (ω)− E [. . . ]

)

For any entry 1 ≤ i, j ≤ d, optimal parameters ρ and ρ2 by

minimizing Var([C⋆
N ]

ij
) (inverse a 2× 2 matrix).

Here, we systematically refer to the situation “no defect”, η ≪ 1.

It is also possible to refer to the situation “all defects”, 1− η ≪ 1.

The first order correction turns out to be the same, but not the

second order correction:

C⋆
N (ω) = A⋆

N (ω)− ρ
(

A⋆
per + A⋆,N

1 (ω)
)

− ρ2A
⋆,N
2, wrt η=0(ω)

− ρ3A
⋆,N
2, wrt η=1(ω)− E [. . . ]
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Numerical test case

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak independent identically distributed

P(ak = α) = η, P(ak = β) = 1− η.

Not always clear to decide who is the defect / background (e.g. when

η = 1/2).
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Small contrast test case: (α, β) = (3,23) - Homogenized coefficient

Blue curve: standard Monte Carlo estimator IMC
M = M−1

M
∑

m=1

A⋆
N (ωm)

Black curves: weakly stochastic approximation (expansion wrt η = 0 or

η = 1): inaccurate when 0.4 ≤ η ≤ 0.7.
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Ratios Var(A⋆
N)/Var(C

⋆
N) ≡ CPU time gain

Black curves: control variate approach using first order approximation.

Red curves: control variate approach using second order approximation

(wrt η = 0 OR η = 1).

Blue curve: control variate approach simultaneously using first and

second order approximations at both ends (η = 0 AND η = 1).
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Small contrast test case: (α, β) = (3,23) - Efficiency at η = 1/2

C⋆
N (ω) = A⋆

N (ω)− ρ
(

A⋆
per + A⋆,N

1 (ω)− E [. . . ]
)

− ρ2

(

A⋆,N
2, wrt. η=0(ω)− E [. . . ]

)

− ρ3

(

A⋆,N
2, wrt. η=1(ω)− E [. . . ]

)

Control variate using first order approximation (ρ2 = ρ3 = 0):

variance ratio = 6

computing the control variate is inexpensive, hence

CPU time gain = Variance ratio = 6

Control variate using second order approximation (optimal ρ, ρ2
and ρ3):

variance ratio = 44

using a RB approach (Le Bris & Thomines, 2012), computing

the control variate is inexpensive:

CPU time gain = Variance ratio = 44
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Robustness (η = 1/2) wrt supercell size
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Number of cells in QN

Variance reduction ratio (first order or second order approximation):

insensitive to the supercell size.
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Large contrast test case: (α, β) = (3,103) - Homogenized coefficient

Blue curve: standard Monte Carlo estimator IMC
M = M−1

M
∑

m=1

A⋆
N (ωm)

Black curves: weakly stochastic approximation (with α or β as

background): inaccurate when 0.3 ≤ η ≤ 0.7.
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Variance ratios (CPU time gain)

Black curves: control variate approach using first order approximation

Red curves: control variate approach using second order approximation

(wrt η = 0 OR η = 1).
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Quantitative estimation of the variance reduction (η ≪ 1)

Three approaches to compute E [A⋆
N ]:

Standard Monte Carlo approach with M realizations:

error = statistical error ∝
√

Var(A⋆
N )/M ∝

√

η/M
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Quantitative estimation of the variance reduction (η ≪ 1)

Three approaches to compute E [A⋆
N ]:

Standard Monte Carlo approach with M realizations:

error = statistical error ∝
√

Var(A⋆
N )/M ∝

√

η/M

Control Variate approach (first order) with M realizations:

error = statistical error ∝
√

Var(C⋆
N )/M ∝

√

η2/M

At equal cost, more accurate that Monte Carlo.
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Quantitative estimation of the variance reduction (η ≪ 1)

Three approaches to compute E [A⋆
N ]:

Standard Monte Carlo approach with M realizations:

error = statistical error ∝
√

Var(A⋆
N )/M ∝

√

η/M

Control Variate approach (first order) with M realizations:

error = statistical error ∝
√

Var(C⋆
N )/M ∝

√

η2/M

At equal cost, more accurate that Monte Carlo.

Expansion of E [A⋆
N ] (Anantharaman / Le Bris) using the same

information as the Control Variate approach:

E [A⋆
N ] = A⋆

per + ηA
⋆,N

1 +O(η2), error = systematic error ∝ η2.

CV approach needs M ∝ 1/η2 ≫ 1 to reach a similar accuracy.

Regime of interest for our CV approach: η neither close to 0 nor 1.
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Conclusions

We have proposed a control variate approach based on a

defect-type model to better compute E [A⋆
N ].

When none of the phase dominates (η ≈ 1/2), the defect model

becomes inaccurate per se, but remains useful as a control variate.

In a nutshell: use a weakly stochastic model to improve efficiency

for fully stochastic cases.

For the moment, all computations have been done with the exact

A⋆,N
2 (ω). If we indeed use the RB approach, what impact on the

variance reduction?

Up to what can we degrade the surrogate model?
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