Properties of a stochastic variational inequality and random mechanics Presentation at CEMRACS 2013, Marseille.

Laurent Mertz, Université de Nice-Sophia Antipolis, France

August 9, 2013

Motivation: risk analysis of failure for mechanical structures under random forcing

- Engineering Mechanics:
 - \blacktriangleright \rightarrow study of elastic-plastic oscillators with noise
 - 2 References in Engineering literature:
 - \rightarrow an elasto-plastic model with noise (Karnopp & Scharton, 1966)
 - \rightarrow estimation of the variance of the deformation (Feau, 2007)

Motivation: risk analysis of failure for mechanical structures under random forcing

- Engineering Mechanics:
 - \blacktriangleright \rightarrow study of elastic-plastic oscillators with noise
 - 2 References in Engineering literature:
 - \rightarrow an elasto-plastic model with noise (Karnopp & Scharton, 1966)
 - \rightarrow estimation of the variance of the deformation (Feau, 2007)

Mathematical Framework:

- \blacktriangleright \rightarrow study of stochastic variational inequalities (SVI)
- <u>A mathematical reference:</u>

 → connection between this 1D elasto-plastic model and a SVI (Bensoussan & Turi 2007)
- mathematical properties of SVI? Can we improve engineering methods with this new mathematical framework?

Outline of the presentation

- Example of a mechanical structure modeled by an elasto-plastic oscillator
- Pramework of the stochastic variational inequality for the elasto-plastic problem and ergodic property
- 3 Short cycles : a new characterization of the ergodic measure
- Long cycles : characterization of the growth rate of the deformation
- Open problems

Example of a mechanical structure modeled by an elasto-plastic oscillator

Illustrative example: piping system

For a class of structures: A one dimensional (1d) model

• global behavior of the structure

Seismic excitation (left) / Mass displacement (right): Test vs 1d model results

Elastic behavior: start with a linear oscillator ...

- $c_0 > 0$: damping coefficient
 - k > 0 : stiffness

- " $\frac{dw(t)}{dt}$ " : external force white noise
 - x(t) : response of the oscillator

Elastic behavior: start with a linear oscillator ...

 $c_0 > 0$: damping coefficient k > 0: stiffness " $\frac{dw(t)}{dt}$ ": external force white noise x(t): response of the oscillator

linear case: x(t) solves

$$\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = kx(t)$$

Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves $\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = "\frac{dw(t)}{dt}$ "

• $|F(t)| \le kY$, Y : elasto-plastic bound θ_1 : first time going into plastic phase

Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves

$$\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = k(x(t) - \Delta(t))$$

• \rightarrow a plastic deformation $\Delta(t)$ occurs in x(t) when |F(t)| = kY. τ_1 : first time going out of plastic phase

Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves

$$\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = k(x(t) - \Delta(t))$$

 $\Delta(t)$ stops increasing when x(t) stops increasing.

Balance between elastic and plastic

Denote

$$y(t) = \dot{x}(t)$$
 , $z(t) = x(t) - \Delta(t)$

then

$$\ddot{x}(t) + c_0 \dot{x}(t) + kz(t) = "rac{dw(t)}{dt}$$
"

becomes

• elastic |z(t)| < Y:

$$\begin{cases} \dot{y}(t) = -(c_0 y(t) + kz(t)) + \frac{dw(t)}{dt}, \\ \dot{z}(t) = y(t) \end{cases}$$

• plastic z(t) = Y, y(t) > 0 or z(t) = -Y, y(t) < 0: $\begin{cases} \dot{y}(t) = -(c_0 y(t) \pm kY) + \frac{dw(t)}{dt}, \\ \dot{z}(t) = 0 \end{cases}$

Key idea: Switching between elastic and plastic phases

An example of phase transition

An example of phase transition

A numerical example of the deformation

Figure: on the top t, x(t) (red) $t, \Delta(t)$ (black : plastic deformation) and at the bottom t, z(t) for $c_0 = 1, k = 1, Y = 1$

Part 2: SVI for the elasto-plastic problem

Stochastic variational inequality modeling an elasto-plastic problem with noise

The problem can be seen as a

 (y(t), z(t)) reflected diffusion, Δ(t): reflection process <u>References:</u> SVIs: [Bensoussan-Lions1982].

Theorem (Bensoussan-Turi 2007) The process (y(t), z(t)) is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

 $\begin{aligned} dy(t) &= -(c_0 y(t) + kz(t))dt + dw(t), \\ (dz(t) - y(t)dt)(\phi - z(t)) \geq \mathbf{0}, \quad \forall |\phi| \leq \mathbf{Y}, \quad |z(t)| \leq \mathbf{Y} \end{aligned}$

The problem can be formulated

Stochastic variational inequality modeling an elasto-plastic problem with noise

The problem can be seen as a

 (y(t), z(t)) reflected diffusion, Δ(t): reflection process <u>References:</u> SVIs: [Bensoussan-Lions1982].

Theorem (Bensoussan-Turi 2007) The process (y(t), z(t)) is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

 $\begin{aligned} dy(t) &= -(c_0 y(t) + kz(t))dt + dw(t), \\ (dz(t) - y(t)dt)(\phi - z(t)) \geq \mathbf{0}, \quad \forall |\phi| \leq \mathbf{Y}, \quad |z(t)| \leq \mathbf{Y} \end{aligned}$

The problem can be formulated

• without the plastic deformation $\Delta(t)$,

Stochastic variational inequality modeling an elasto-plastic problem with noise

The problem can be seen as a

 (y(t), z(t)) reflected diffusion, Δ(t): reflection process <u>References:</u> SVIs: [Bensoussan-Lions1982].

Theorem (Bensoussan-Turi 2007)

The process (y(t), z(t)) is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

 $\begin{aligned} dy(t) &= -(c_0 y(t) + k z(t)) dt + dw(t), \\ (dz(t) - y(t) dt)(\phi - z(t)) &\geq 0, \quad \forall |\phi| \leq Y, \quad |z(t)| \leq Y \end{aligned}$

The problem can be formulated

- without the plastic deformation $\Delta(t)$,
- without the instants of phase transition.
 The variational inequality: nicely adapted to plastic/elastic transition.
 → noise effect at the transition from plastic to elastic

Characterization of the invariant probability (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)

(y(t), z(t)) ergodic Markov process

• unique invariant probability distribution ν for (y(t), z(t)) and $(y(t), z(t)) \xrightarrow{\mathcal{L}}_{t \to \infty} \nu$ (independently of the initial condition).

• elastic domain: $D := (-\infty, +\infty) \times (-Y, Y)$

Characterization of the invariant probability (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007) (y(t), z(t)) organic Markov property

(y(t), z(t)) ergodic Markov process

• unique invariant probability distribution ν for (y(t), z(t)) and $(y(t), z(t)) \xrightarrow{\mathcal{L}} \nu$ (independently of the initial condition).

- elastic domain: $D := (-\infty, +\infty) \times (-Y, Y)$
- plastic domains: $D^- := (-\infty, 0) \times \{-Y\}$ and $D^+ := (0, +\infty) \times \{Y\}$

Characterization of the invariant probability (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007) (y(t), z(t)) ergodic Markov process

• unique invariant probability distribution ν for (y(t), z(t)) and $(y(t), z(t)) \xrightarrow[t \to \infty]{\mathcal{L}} \nu$ (independently of the initial condition).

- elastic domain: $D := (-\infty, +\infty) \times (-Y, Y)$
- plastic domains: $D^- := (-\infty, 0) \times \{-Y\}$ and $D^+ := (0, +\infty) \times \{Y\}$
- ν has a density denoted by *m* is characterized by: $\forall \varphi$ smooth,

$$A\varphi := \int_{D} m(y, z) \{-y\varphi_{z} + (c_{0}y + kz)\varphi_{y} - \frac{1}{2}\varphi_{yy}\} dydz + \int_{D^{+}} m(y, Y) \{(c_{0}y + kY)\varphi_{y}(y, Y) - \frac{1}{2}\varphi_{yy}(y, Y)\} dy$$
$$= -\int_{D^{-}} m(y, -Y) \{(c_{0}y - kY)\varphi_{y}(y, -Y) - \frac{1}{2}\varphi_{yy}(y, -Y)\} dy = 0.$$
$$= -\varphi := 0.$$

Alternative method to the Monte-Carlo simulation (1):

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

• For all bounded function f and $\forall (y_0, z_0) \in \overline{D}$,

$$\lim_{t\to\infty} \mathbb{E}f(y^{y_0}(t), z^{z_0}(t)) = \int_D f(y, z)m(y, z)dydz + \int_{D^+} f(Y, y)m(Y, y)dy + \int_{D^-} f(-Y, y)m(-Y, y)dy.$$

Alternative method to the Monte-Carlo simulation (1):

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

• For all bounded function f and $\forall (y_0, z_0) \in \overline{D}$,

$$\lim_{t\to\infty} \mathbb{E}f(y^{y_0}(t), z^{z_0}(t)) = \int_D f(y, z)m(y, z)dydz + \int_{D^+} f(Y, y)m(Y, y)dy + \int_{D^-} f(-Y, y)m(-Y, y)dy.$$

But, it is also well known that

$$\lim_{t\to\infty}\mathbb{E}f(y^{y_0}(t),z^{z_0}(t))=\lim_{\lambda\to0}\lambda\int_0^\infty e^{-\lambda t}\mathbb{E}f(y^{y_0}(t),z^{z_0}(t))dt.$$

Alternative method to the Monte-Carlo simulation (2)

• Denote $u_{\lambda}(y_0, z_0; f) = \mathbb{E}\left[\int_0^{\infty} \exp(-\lambda t) f(y^{y_0}(t), z^{z_0}(t)) dt\right].$

Alternative method to the Monte-Carlo simulation (2)

• Denote $u_{\lambda}(y_0, z_0; f) = \mathbb{E}\left[\int_0^\infty \exp(-\lambda t) f(y^{y_0}(t), z^{z_0}(t)) dt\right].$

Equivalent characterization of the asymptotic limit:

$$\lambda u_{\lambda} + Au_{\lambda} = f(y, z)$$
 in D
 $\lambda u_{\lambda} + B_{+}u_{\lambda} = f(y, Y)$ in D^{+}
 $\lambda u_{\lambda} + B_{-}u_{\lambda} = f(y, -Y)$ in D^{-}

Nonlocal problem : $y \rightarrow u_{\lambda}(y, \pm Y; f)$ are continuous. $\forall (y_0, z_0) \in \overline{D}$

$$\lim_{\lambda \to 0} \lambda u_{\lambda}(y_0, z_0; f) = \int_D f(y, z) m(y, z) dy dz$$

+
$$\int_{D^+} f(y, Y) m(y, Y) dy + \int_{D^-} f(y, -Y) m(y, -Y) dy$$

Alternative method to the Monte-Carlo simulation (2)

• Denote $u_{\lambda}(y_0, z_0; f) = \mathbb{E}\left[\int_0^\infty \exp(-\lambda t) f(y^{y_0}(t), z^{z_0}(t)) dt\right].$

Equivalent characterization of the asymptotic limit:

$$\lambda u_{\lambda} + Au_{\lambda} = f(y, z)$$
 in D
 $\lambda u_{\lambda} + B_{+}u_{\lambda} = f(y, Y)$ in D^{+}
 $\lambda u_{\lambda} + B_{-}u_{\lambda} = f(y, -Y)$ in D^{-}

Nonlocal problem : $y \rightarrow u_{\lambda}(y, \pm Y; f)$ are continuous. $\forall (y_0, z_0) \in \overline{D}$

$$\lim_{\lambda \to 0} \lambda u_{\lambda}(y_0, z_0; f) = \int_D f(y, z) m(y, z) dy dz$$

+
$$\int_{D^+} f(y, Y) m(y, Y) dy + \int_{D^-} f(y, -Y) m(y, -Y) dy$$

<u>This result is fundamental for the numerical resolution of m</u>: alternative method to Monte-Carlo, that requires simulations for long durations.
 <u>Publication:</u> [Bensoussan, Mertz, Pironneau, Turi 2009], <u>SIAM Journal on Numerical Analysis</u>, Volume 47 Issue 5

Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

0

$$\begin{cases} \lambda v_{\lambda} + Av_{\lambda} = f & \text{in } D, \\ \lambda v_{\lambda} + B_{+}v_{\lambda} = f_{+} & \text{in } D^{+}, \\ \lambda v_{\lambda} + B_{-}v_{\lambda} = f_{-} & \text{in } D^{-}, \end{cases}$$

with $v_{\lambda}(0^{+}, Y) = 0, v_{\lambda}(0^{-}, -Y) = 0,$

19/44

Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

0

$$\begin{cases} \lambda \mathbf{v}_{\lambda} + \mathbf{A}\mathbf{v}_{\lambda} = f & \text{in } D, \\ \lambda \mathbf{v}_{\lambda} + \mathbf{B}_{+}\mathbf{v}_{\lambda} = f_{+} & \text{in } D^{+}, \\ \lambda \mathbf{v}_{\lambda} + \mathbf{B}_{-}\mathbf{v}_{\lambda} = f_{-} & \text{in } D^{-}, \end{cases}$$

with $v_{\lambda}(0^+, Y) = 0, v_{\lambda}(0^-, -Y) = 0$,

$$\begin{cases} \lambda \pi_{\lambda}^{+} + \mathbf{A} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}, \\ \lambda \pi_{\lambda}^{+} + \mathbf{B}_{+} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}^{+}, \\ \lambda \pi_{\lambda}^{+} + \mathbf{B}_{-} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}^{-}, \end{cases}$$

with $\pi^{+}(\mathbf{0}^{+}, \mathbf{Y}) = \mathbf{1}, \pi^{+}(\mathbf{0}^{-}, -\mathbf{Y}) = \mathbf{0},$

Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

 $\begin{cases} \lambda \mathbf{v}_{\lambda} + \mathbf{A}\mathbf{v}_{\lambda} = f & \text{in } D, \\ \lambda \mathbf{v}_{\lambda} + \mathbf{B}_{+}\mathbf{v}_{\lambda} = f_{+} & \text{in } D^{+}, \\ \lambda \mathbf{v}_{\lambda} + \mathbf{B}_{-}\mathbf{v}_{\lambda} = f_{-} & \text{in } D^{-}, \end{cases}$

with $v_{\lambda}(0^+, Y) = 0, v_{\lambda}(0^-, -Y) = 0$,

$$\begin{cases} \lambda \pi_{\lambda}^{+} + \mathbf{A} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}, \\ \lambda \pi_{\lambda}^{+} + \mathbf{B}_{+} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}^{+}, \\ \lambda \pi_{\lambda}^{+} + \mathbf{B}_{-} \pi_{\lambda}^{+} &= \mathbf{0} \quad \text{in } \mathbf{D}^{-}, \end{cases}$$

with $\pi^{+}(\mathbf{0}^{+}, \mathbf{Y}) = \mathbf{1}, \pi^{+}(\mathbf{0}^{-}, -\mathbf{Y}) = \mathbf{0},$

$$\begin{cases} \lambda \pi_{\lambda}^{-} + \mathbf{A} \pi_{\lambda}^{-} = \mathbf{0} & \text{in } \mathbf{D}, \\ \lambda \pi_{\lambda}^{-} + \mathbf{B}_{+} \pi_{\lambda}^{-} = \mathbf{0} & \text{in } \mathbf{D}^{+}, \\ \lambda \pi_{\lambda}^{-} + \mathbf{B}_{-} \pi_{\lambda}^{-} = \mathbf{0} & \text{in } \mathbf{D}^{-}, \end{cases}$$

with $\pi^{+}(\mathbf{0}^{+}, \mathbf{Y}) = \mathbf{0}, \pi^{-}(\mathbf{0}^{-}, -\mathbf{Y}) =$

1.

Alternative method to the Monte-Carlo simulation (4)

• We look for p_+ and p_- :

 $v_{\lambda} + p_{+}\pi_{\lambda}^{+} + p_{-}\pi_{\lambda}^{-}$ continuous in (0, ±*Y*)

Alternative method to the Monte-Carlo simulation (4)

• We look for p_+ and p_- :

 $v_{\lambda} + p_{+}\pi_{\lambda}^{+} + p_{-}\pi_{\lambda}^{-}$ continuous in (0, $\pm Y$)

 Finally, we solve the following linear system: with

$$\Pi := \begin{pmatrix} \pi^+(0^+, Y) - \pi^+(0^-, Y) & \pi^-(0^+, Y) - \pi^-(0^-, Y) \\ \pi^+(-0^+, -Y) - \pi^+(0^-, -Y) & \pi^-(0^+, -Y) - \pi^-(0^-, -Y) \end{pmatrix}$$

then

$$\Pi\begin{pmatrix}\boldsymbol{p}_{+}\\\boldsymbol{p}_{-}\end{pmatrix} = \begin{pmatrix}\boldsymbol{v}_{\lambda}(0^{-},\boldsymbol{Y}) - \boldsymbol{v}_{\lambda}(0^{+},\boldsymbol{Y})\\\boldsymbol{v}_{\lambda}(0^{-},-\boldsymbol{Y}) - \boldsymbol{v}_{\lambda}(0^{+},-\boldsymbol{Y})\end{pmatrix}$$

Numerical result: $c_0 = 1, k = 1$ and Y = 1

• plot of *m* with the deterministic method, $-1 \le z \le 1, -7 \le y \le 7.$ Numerical result: $c_0 = 1, k = 1$ and Y = 2

"m2.txt" ------

• plot of *m* with the deterministic method, $-2 \le z \le 2, -7 \le y \le 7.$

Part 3: Short cycles for a new characterization of the ergodic measure

Short cycle (trajectory)

Short cycle: path, solution of the SVI, starting from a point $(y, z) \in D$ and which contains

- only one phase evolving in *D* (elastic domain)
- and only one phase evolving in D^+ or D^- (plastic domains).

Short cycle (PDE)

• Goal: characterization of a short cycle by a PDE approach of

 $\mathbb{E}\int_0^{\tau} f(y(s), z(s)) ds, \quad \forall f \text{ bounded function on } D.$

Short cycle (PDE)

• Goal: characterization of a short cycle by a PDE approach of

 $\mathbb{E}\int_0^{\tau} f(y(s), z(s)) ds, \quad \forall f \text{ bounded function on } D.$

• Define v(y, z; f) the solution of

 $\begin{cases} (elastic phase) \\ -yv_z + (c_0y + kz)v_y - \frac{1}{2}v_{yy} &= f \text{ in } D, \\ (plastic phase) & (P_v) \\ (c_0y + kY)v_y - \frac{1}{2}v_{yy} &= f \text{ in } D^+, \\ (c_0y - kY)v_y - \frac{1}{2}v_{yy} &= f \text{ in } D^- \end{cases}$

with the local boundary conditions

$$v(0^+, Y; f) = 0$$
 and $v(0^-, -Y; f) = 0$.

We call v(y, z; f) a short cycle.

Analysis of short cycles/ new ergodic theorem

Theorem (Analysis of short cycles, A. Bensoussan, L.M.) There exists a unique solution to (P_v) of the form

$$v(y, z; f) = \varphi^+(y; f) \mathbf{1}_{\{y>0\}} + \varphi^-(y; f) \mathbf{1}_{\{y<0\}} + w(y, z; f)$$

where

w is a bounded function

$$-(c_0y + kY)\varphi_y^+ + \frac{1}{2}\varphi_{yy}^+ = f(y, Y), \quad y > 0, \quad \varphi^+(0^+; f) = 0 \text{ and} \\ -(c_0y - kY)\varphi_y^- + \frac{1}{2}\varphi_{yy}^- = f(y, -Y), \quad y < 0, \quad \varphi^-(0^-; f) = 0.$$

Analysis of short cycles/ new ergodic theorem

Theorem (Analysis of short cycles, A. Bensoussan, L.M.) There exists a unique solution to (P_v) of the form

 $v(y, z; f) = \varphi^+(y; f) \mathbf{1}_{\{y>0\}} + \varphi^-(y; f) \mathbf{1}_{\{y<0\}} + w(y, z; f)$

where

w is a bounded function

$$-(c_0y + kY)\varphi_y^+ + \frac{1}{2}\varphi_{yy}^+ = f(y, Y), \quad y > 0, \quad \varphi^+(0^+; f) = 0 \text{ and} \\ -(c_0y - kY)\varphi_y^- + \frac{1}{2}\varphi_{yy}^- = f(y, -Y), \quad y < 0, \quad \varphi^-(0^-; f) = 0.$$

Theorem (New ergodic theorem, A. Bensoussan, L.M.) A new characterization of the ergodic measure:

$$\nu(f) = \frac{\nu(0^-, Y; f) + \nu(0^+, -Y; f)}{2\nu(0^-, Y; 1)}$$

[Bensoussan, Mertz 2012], CRAS <u>An analytical approach to</u> <u>the ergodic theory of a stochastic variational inequality</u> [Khasminskii,1980] \rightarrow ergodic measures written as cycle ratio

How can we apply the short cycles in engineering?

the frequency of occurence of short cycles = the frequency of occurence of plastic phases

Therefore

The frequency of plastic phases =

$$=\frac{1}{2v(0^{-}, Y; 1)}$$

This quantity is used in engineering methods for estimating the variance of the plastic deformation.

Part 3 : Long cycles for the characterization of the growth rate related to the deformation

Long cycle behavior

• Find a repeating pattern (independent) in the trajectory.

Long cycle behavior

• Find a repeating pattern (independent) in the trajectory.

 Long cycle: path, solution of the SVI, starting and ending in one of the two points of {(0, Y), (0, −Y)}, knowing that the trajectory had a stop by the other point.

Long cycle behavior

• Find a repeating pattern (independent) in the trajectory.

 Long cycle: path, solution of the SVI, starting and ending in one of the two points of {(0, Y), (0, −Y)}, knowing that the trajectory had a stop by the other point.

• Long cycles help to characterize the plastic behavior.

Definition and analysis of long cycles

Define

$$\begin{cases} t_0 = \inf\{t > 0, \quad y(t) = 0, |z(t)| = Y\},\\ \delta = \operatorname{sign}(z(t_0)),\\ s_0 = \inf\{t > t_0, \quad y(t) = 0, z(t) = -\delta Y\}. \end{cases}$$

Definition and analysis of long cycles

Define

$$t_1 = \inf\{t > s_0, \quad y(t) = 0, z(t) = \delta Y\},\$$

Long cycle behavior of the variance of the deformation

Theorem (Long cycle behavior, A. Bensoussan, L.M.) In this context, we have proven

$$\lim_{t \to +\infty} \frac{\sigma^2(\Delta(t))}{t} = \frac{\mathbb{E}(\Delta(t_1) - \Delta(t_0))^2}{\mathbb{E}(t_1 - t_0)}$$

Key idea: We use a PDE framework to show $\mathbb{E}(t_1 - t_0)$ is finite

- Formulation of relevant quantity for the risk analysis of failure of a simple mechanical structure which is
 - Exact
 - Simple
 - and Easy to implement.

CRAS [Bensoussan, Mertz 2012] <u>Behavior of the plastic</u> deformation of an elasto-perfectly-plastic oscillator with noise

PDEs related to Long cycles (type one way)

$$\begin{aligned} A\bar{v} &= f, \quad B_+\bar{v} = f, \quad B_-\bar{v} = f \text{ and } \bar{v}(0^+, Y) = 0 \\ \text{where nonlocal problem : } y &\to \bar{v}(y, -Y) \text{ is continuous} \\ \bar{v}(0, -Y) &= ``\mathbb{E}_{(0, -Y)} \left(\int_{t_0}^{s_0} f(y(s), z(s)) ds \right) " \end{aligned}$$

PDEs related to Long cycles (type return)

 $\begin{array}{l} A\underline{\mathrm{v}}=f, \quad B_{+}\underline{\mathrm{v}}=f, \quad B_{-}\underline{\mathrm{v}}=f \text{ and } \underline{\mathrm{v}}(0^{-},-Y)=0\\ \text{where nonlocal problem : } y \to \underline{\mathrm{v}}(y,Y) \text{ is continuous}\\ \\ \underline{\mathrm{v}}(0,Y)=``\mathbb{E}_{(0,Y)}\left(\int_{s_{0}}^{t_{1}}f(y(s),z(s))ds\right)"\end{array}$

Numerical results in support of our prediction

In this section, we provide computational results which confirm our theoretical results.

$c_0 = 1, k = 1$				
Y	$\frac{\sigma^2(\Delta(t))}{t}, t = 500$	$\frac{\mathbb{E}(\Delta(t_1) - \Delta(t_0))^2}{\mathbb{E}(t_1 - t_0)}$	$\mathbb{E}(t_1-t_0)$	Relative error %
0.1	0.807 ^{±0.031}	0.834 ^{±0.069}	6.61 ^{±0.11}	3.2
0.2	0.649 ^{±0.026}	$0.624^{\pm 0.047}$	$8.74^{\pm0.13}$	3.8
0.3	0.493 ^{±0.020}	$0.464^{\pm 0.034}$	$10.45^{\pm0.16}$	5.8
0.4	0.361 ^{±0.014}	$0.355^{\pm 0.026}$	$12.12^{\pm0.18}$	1.7
0.5	0.266 ^{±0.011}	0.257 ^{±0.019}	$13.80^{\pm 0.21}$	3.3
0.6	0.195 ^{±0.008}	0.198 ^{±0.014}	$16.15^{\pm 0.26}$	1.5
0.7	0.137 ^{±0.005}	0.149 ^{±0.011}	$18.84^{\pm0.31}$	8
0.8	0.103 ^{±0.004}	$0.112^{\pm 0.008}$	22.80 ^{±0.39}	8
0.9	$0.071^{\pm 0.003}$	0.086 ^{±0.006}	$26.79^{\pm 0.47}$	15

Table: Monte-Carlo simulations t = 500, $\delta t = 10^{-4}$ and MC = 10000. 95% of confidence

How can we apply the long cycles for the risk of failure analysis?1/2

with Cyril Feau, CEA (French Atomic Commission) Define

• $f_{|C} := \frac{1}{\mathbb{E}(t_1 - t_0)}$ frequency of occurrence of long cycles, so that

 $[f_{|C}t] =$ number of long cycles up to the time *t*,

- $\sigma_{|C} := \sqrt{\mathbb{E} \left[(\Delta(t_1) \Delta(t_0))^2 \right]}$ the standard deviation of the plastic deformation on a long cycle,
- and define a surrogate variable for $\Delta(t)$:

$$\Delta_{app}(t) := \sigma_{\mathsf{IC}} \sum_{k=1}^{[f_{\mathit{IC}}t]} \beta_k,$$

where $\{\beta_k, k \ge 1\}$ are i.i.d. and $\mathbb{P}(\beta = -1) = \mathbb{P}(\beta = 1) = \frac{1}{2}$.

How can we apply the long cycles for the risk of failure analysis?1/2

with Cyril Feau, CEA (French Atomic Commission) Define

• $f_{|C} := \frac{1}{\mathbb{E}(t_1 - t_0)}$ frequency of occurrence of long cycles, so that

 $[f_{|C}t] =$ number of long cycles up to the time *t*,

- $\sigma_{|C} := \sqrt{\mathbb{E} \left[(\Delta(t_1) \Delta(t_0))^2 \right]}$ the standard deviation of the plastic deformation on a long cycle,
- and define a surrogate variable for $\Delta(t)$:

$$\Delta_{app}(t) := \sigma_{\mathsf{IC}} \sum_{k=1}^{[f_{\mathit{IC}}t]} \beta_k,$$

where $\{\beta_k, k \ge 1\}$ are i.i.d. and $\mathbb{P}(\beta = -1) = \mathbb{P}(\beta = 1) = \frac{1}{2}$.

How can we apply the long cycles for the risk of failure analysis?2/2

The risk of failure :

$$egin{cases} b o \mathbb{P}(\max_{t \in [0,T]} |\Delta(t)| \geq b) \ b o \mathbb{P}(\max_{t \in [0,T]} |\Delta_{app}(t)| \geq b) \end{cases}$$

Figure: $b \to \mathbb{P}(\max_{t \in [0,T]} |\Delta_{app}(t)| \ge b) \leftarrow$ there exists an explicit formula.

(1)

Open problems

Cycle properties for a SVI with a filtered noise

What are the right cycles when the dimension increases?

• A more realistic case to take $d\xi_{\alpha}(t)$ for the noise where

$$\mathsf{d}\xi_{\alpha}(t) = -\alpha\xi_{\alpha}(t)\mathsf{d}t + \mathsf{d}w(t), \alpha > \mathbf{0},$$

then

$$\begin{cases} dy(t) = -(c_0 y(t) + kz(t))dt + d\xi_{\alpha}(t), \\ (dz(t) - y(t)dt)(\phi - z(t)) \ge 0, \quad \forall |\phi| \le Y, \quad |z(t)| \le Y \end{cases}$$
(2)

Cycle properties for a SVI with a filtered noise

What are the right cycles when the dimension increases?

• A more realistic case to take $d\xi_{\alpha}(t)$ for the noise where

$$\mathsf{d}\xi_{\alpha}(t) = -\alpha\xi_{\alpha}(t)\mathsf{d}t + \mathsf{d}w(t), \alpha > \mathbf{0},$$

then

$$\begin{cases} dy(t) = -(c_0 y(t) + kz(t))dt + d\xi_{\alpha}(t), \\ (dz(t) - y(t)dt)(\phi - z(t)) \ge 0, \quad \forall |\phi| \le Y, \quad |z(t)| \le Y \end{cases}$$
(2)

 We can consider an unbounded behavior for the restoring force: therefore the SVI involves the total deformation in the drift

$$\begin{cases} dx(t) = y(t)dt \\ dy(t) = -(c_0y(t) + k(1-\alpha)z(t) + k\alpha x(t))dt + dw(t), \\ (dz(t) - y(t)dt)(\phi - z(t)) \ge 0, \quad \forall |\phi| \le Y, \quad |z(t)| \le Y. \end{cases}$$
(3)

Fragility (optimal stopping problem) (1/2):

Let

- T > 0 be a maturity
- and b > 0 be certain threshold of plastic deformation.

• Then, it could be relevant for engineering purposes to know $\min_{\tau \in \mathcal{T}_{0,T}} \{\mathbb{E}(|\Delta(\tau)| - b)^2\}, \text{ where } \mathcal{T}_{0,T} = \text{set of stopping times.}$

Fragility (optimal stopping problem) (1/2):

Let

- T > 0 be a maturity
- and b > 0 be certain threshold of plastic deformation.

• Then, it could be relevant for engineering purposes to know $\min_{\tau \in \mathcal{T}_{0,T}} \{ \mathbb{E}(|\Delta(\tau)| - b)^2 \}, \text{ where } \mathcal{T}_{0,T} = \text{set of stopping times.}$

- For engineering purposes, we can provide a rigorous framework to define a notion of fragility for a mechanical structure.
 - Mathematically: new type of free boundary problem for an optimal stopping problem.

Fragility time (optimal stopping problem) (2/2):

• Recall the elastic and plastic operators:

•
$$A\varphi = -y\varphi_z + (c_0y + kz)\varphi_y - \frac{1}{2}\varphi_{yy},$$

$$\bullet \ B_{\pm}\varphi = (c_0y \pm kY)\varphi_y - \frac{1}{2}\varphi_{yy},$$

Fragility time (optimal stopping problem) (2/2):

• Recall the elastic and plastic operators:

$$A\varphi = -y\varphi_z + (c_0y + kz)\varphi_y - \frac{1}{2}\varphi_{yy}, B_{\pm}\varphi = (c_0y \pm kY)\varphi_y - \frac{1}{2}\varphi_{yy},$$

• then the problem of finding $\min_{\tau \in \mathcal{T}_{0,T}} \{\mathbb{E}(\Delta(\tau) - b)^2\}$ corresponds to find $V(\Delta, y, z)$ such that

$$\max\left(\frac{\partial V}{\partial t} + AV, -((|\Delta| - b)^2 + V)\right) = 0 \text{ in } D$$
$$\max\left(\frac{\partial V}{\partial t} + B_+V, -((|\Delta| - b)^2 + V)\right) = 0 \text{ in } D^+$$
$$\max\left(\frac{\partial V}{\partial t} + B_-V, -((|\Delta| - b)^2 + V)\right) = 0, \text{ in } D^-$$

with a non local boundary condition

$$(\Delta, y) \rightarrow V(\Delta, y, \pm Y)$$
 is continuous.

Fragility time (optimal stopping problem) (2/2):

• Recall the elastic and plastic operators:

$$A\varphi = -y\varphi_z + (c_0y + kz)\varphi_y - \frac{1}{2}\varphi_{yy}, B_{\pm}\varphi = (c_0y \pm kY)\varphi_y - \frac{1}{2}\varphi_{yy},$$

• then the problem of finding $\min_{\tau \in \mathcal{T}_{0,T}} \{\mathbb{E}(\Delta(\tau) - b)^2\}$ corresponds to find $V(\Delta, y, z)$ such that

$$\max\left(\frac{\partial V}{\partial t} + AV, -((|\Delta| - b)^2 + V)\right) = 0 \text{ in } D$$
$$\max\left(\frac{\partial V}{\partial t} + B_+V, -((|\Delta| - b)^2 + V)\right) = 0 \text{ in } D^+$$
$$\max\left(\frac{\partial V}{\partial t} + B_-V, -((|\Delta| - b)^2 + V)\right) = 0, \text{ in } D^-$$

with a non local boundary condition

$$(\Delta, y) \rightarrow V(\Delta, y, \pm Y)$$
 is continuous.

Critical stochastic excitation

• We would like to calculate a function $\sigma(t)$ such that

$$\dot{y} = -(c_0y + kz) + \sigma(t)\dot{w},$$

 $(z - y)(\phi - z) \ge 0, \forall |\phi| \le Y, |z(t)| \le Y,$

and $\mathbb{E}(\Delta(T) - b)^2$ is minimal.

- For engineering purposes, we can characterize the type of excitation which leads to a certain level of plastic deformation.
 - Mathematically: a new problem of stochastic optimisation.

Our project in CEMRACS : MECALEA

With Mathieu Laurière,

• we study a penalized equation $(y_n(t), z_n(t)) \in \mathbb{R}^2$,

$$\begin{cases} dy_n(t) = -(c_0y_n(t) + kz_n(t))dt + dw(t), \\ dz_n(t) = y_n(t)dt - n(z_n(t) - \pi(z_n(t)))dt \end{cases}$$

where $\pi(z)$ is the projection of z on [-Y, Y].

(4)

The end.

Thanks for your attention, any questions?