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Motivation

Consider a stochastic dynamical model in the form

t 7→ (Xε
t , E

ε
t ),

where X denotes an effective variable, and E is an environment variable.

General problem: we want to prove (rigorously) the convergence when
ε→ 0 of the dynamics of the effective variable towards a dynamics in
closed form.
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Ex1: Overdamped Langevin dynamics

Model: a classical Hamiltonian system H : R
6N → R:

H(p, q) =
1

2
|p|2 + V (q)

M = Id rescaled mass coordinates.

Introduction of a strong coupling with a stochastic thermostat of
temperature, β−1 = kbT .

CEMRACS 2013 – p.3



Ex1: Overdamped Langevin dynamics

The “simplest “ case is given by the following equations of motion:







dQε
t = P ε

t dt,

dP ε
t = −∇V (Qε

t ) dt−
1

ε
P ε

t dt
︸ ︷︷ ︸

Dissipation

+

√
2

βε
dWt

︸ ︷︷ ︸

Fluctuation

Physically: ε = ratio between the timescale of vibrations in the
Hamiltonian ( slow), and the timescale of dissipation (fast).

The invariant probability distribution is Gibbs ∝ e−βH(q,p)dq dp and
independant of ε.
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Ex1: Overdamped equations

On large times of order 1/ε, it is well known that the position variable is
solution to the overdamped equation:

dQt = −∇V (Qt) dt+
√

2β−1dWt.

Thus in this case momenta p are the environment variables, and
positions q are the effective variables .
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Ex2: Stochastic acceleration

Model: a classical Hamiltonian system H : R
6 → R with one particle :

H(p, q) =
1

2
pT p+ V (q).

V is a mixing and stationary random potential on R
3.

V is smooth and has vanishing average (E(∂kV (0)) = 0 ∀k ≥ 0).

The particle travels at high kinetic energy compare to V (weak coupling).
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Ex2: Stochastic acceleration

Efective dynamics occurs at diffusive scaling for momenta (”central limit
theorem scaling”).

We look at a space scale of order 1/ε2, a particle kinetic energy of order
1, a potential energy of order ε.

If V is made of ”obstacles” the particle on time 1 hits 1/ε2 obstacles of
null average and of size ε (”central limit scaling”).

Hamiltonian + Equation of motion:







Hε(p, q) =
1

2
pT p+ εV (q/ε2)

pt=0 = O(1).







d

dt
Qε

t = P ε
t ,

d

dt
P ε

t = −
1

ε
∇V (Qε

t/ε
2)
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Ex2: Asymptotic stochastic acceleration

When ε→ 0, the particle exhibits a Landau diffusion (diffusion of
velocity on the unit sphere).

Define 





R(q) = E (V (0)V (q)) [Two point correl.],

A(p) = −

∫ +∞

0

HessR(p t) dt (≥ 0)
︸ ︷︷ ︸

sym. matrix sense

.

Equations of motion (SDE):







dQt = Pt dt

dPt = divA(Pt) dt+A1/2(Pt) dWt
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Ex2: Asymptotic stochastic acceleration

In this case position and momenta (Q,P ) are the effective variables, and
the field V (q) is the environment variable.
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Many references

Overdamped Langevin (stochastic averaging): Khas’minskii (’66),
Papanicolaou Stroock Varhadan (’77), Kushner (’79), Stuart Pavliotis
(’08).

Stochastic acceleration: Kesten Papanicoalou (’85), Dürr Goldstein
Lebowitz (’87), Ryzhik (’06), Kirkpatrick (’07).

Problem: either extremely technical and ad hoc, or restricted to
stochastic averaging with an environment variable in compact space.

Goal: Give a more user-friendly general setting, robust to different
models.
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The general martingale approach

The steps of the proof are standard

(i) Put a topology on path spaces (say uniform convergence).

(ii) Consider for each small parameter ε > 0 the probability distribution
µε on path space (say the space of continuous trajectories) of the
effective variable.

(iii) Prove tightness = relative compacity for convergence in probability
distribution of µε when ε→ 0.

(iv) Extract a limit, denoted µ0.

(v) Prove that under µ0 and for a sufficiently large set of tests functions
ϕ, then

t 7→ ϕ(X0
t ) − ϕ(X0

0 ) −

∫ t

0

L0ϕ(X0
s ) ds

is a σ(X0)-martingale, where L0 is a Markov generator.
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Probability measures on path spaces

Define a metric or norm on path space for instance the uniform norm on
CRd [0, T ] (continuous paths) such that the topological space is Polish
(separable = countable base of open sets, complete ).

The σ-field on CRd [0, T ] is the Borel σ-field = all the sets obtained by a
countable set operation of open sets. Topology ⇒ measurable sets. You
can now consider probability measures on it .

Brownian motion is the only probability on CRd [0, T ] such that a random
variable realization (Wt)t≥0 verifies for any 0 ≤ s ≤ t ≤ T







Law(Wt −Ws) = N (mean = 0, co-variance = (t− s) × Id)

Wt −Ws independant of W0≤r≤s.
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What is tightness ?

The set of probability distribution on CRd [0, T ] is topologized (again
Polish:= separable, metric, complete) with weak convergence on
continuous bounded test functions = convergence in distribution.

Prohorov theorem: whatever the state space E (Polish:= separable,
metric, complete), say here E = C(Rd, [0, T ]). Then tightness of (Xε)ε≥0

= ”the main mass stays in a compact set” = for any ε > 0 there is a
compact KC(Rd,[0,T ]),ε ⊂ E such that P

(
Xε ∈ KC(Rd,[0,T ]),ε

)
≥ 1 − ε is

equivalent to relative compactness of convergence in distribution .

Ascoli theorem characterize compact sets in path space C(Rd, [0, T ])

through uniform modulus of continuity.
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Stochastic analysis

Filtration = (Ft)t≥ = information of interest until time t = σ-field
generated by the random processes of interest until time t.

Adaptation of process X = the past of X until t is contained in (Ft)t≥ .

Markov process X with respect to (Ft)t≥0 = ” the future law depends on
the past only through the present state ” = for any t0 ≥ 0 the law of
Xt0≤t≤T conditionally on Ft0 and the present position of the process
σ(Xt0) are the same.

Martingale M ∈ R
d with respect to (Ft)t≥0 = ” whatever the past, the

future average is zero ” = for any t0 ≥ 0 the E(Mt0+h|Ft0) = 0.

Stopping times with respect to (Ft)t≥0 = inf {t ≥ 0|St = 0} with
St ∈ {0, 1} adapted.
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What are martingale problems ?

Consider t 7→ Xt a Markov process, and L its generator that is to say
(formally):

L(ϕ)(x) :=
d

dt

∣
∣
∣
∣
t=0

E(ϕ(Xt)|X0 = x).

Ex: For Brownian motion, L = ∆
2 , for ODE, L = F∇ where F is a vector

field, Kernel operators for processes with jumps, etc... General
classification in R

d through the Levy-Kintchine formula .

The Markov property implies the martingale property: if ϕ ∈ D(L), then:

Mt := ϕ(Xt) − ϕ(X0) −

∫ t

0

Lϕ(Xs) ds

is a martingale (same reference filtration).
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What are martingale problems ?

Well-posed martingale problems gives the uniqueness: if ∀ϕ ∈ D(L),

Mt := ϕ(Xt) − ϕ(X0) −

∫ t

0

Lϕ(Xs) ds

is a σ(Xs, 0 ≤ s ≤ t)-martingale, then the probability distribution of
t 7→ Xt is unique and is Markov with respect to σ(Xs, 0 ≤ s ≤ t) and of
generator L.

Enables identification of limits obtained by compacity.

Can be generalized to non-Markov.

NB: Typically Lipschitz generators in R
d yields well-posed martingale

problems through well-posed strong solutions of stochastic differential
equations and a coupling argument (∼ coupling + Cauchy-Lipschitz).
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Standard references for limit theorems

Ethier, Kurtz: Markov processes: characterization convergence, 87
(Markov generator oriented).

Jacod, Shiryaev: Limit Theorems for Stochastic Processes, 87 (cad-lag
semi-martingales oriented).

Rq: Very technical to rather tedious.
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Plugging in perturbation analysis

We now want to ”plug in” some singular perturbation analysis in the
martingale approach (Papanicolaou, Stroock, Varhadan ’77).

Typically, the Markov generator of the full process t 7→ (Xε
t , E

ε
t ) is of the

form:

Lε :=
1

ε2
Le +

1

ε
Lx,

Le can be interpreted as the ” 1
ε2 fast” dynamics of the environment e. Lx

is the ” 1
ε fast” dynamics of the effective variable x, null ”on average” of the

effective variable.
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Plugging in perturbation analysis

We assume the existence of an averaging operator 〈 〉 of the
environment variables, such that:

(i) 〈 〉 is an invariant probability of Le in the sense that we have (in a
perhaps ”very formal” way) the following representation: if t 7→ Et is
Markov with generator Le:

L−1
e ϕ(e, x) = −

∫ +∞

0

E (ϕ(Et, x)|E0 = e) dt.

if 〈ϕ〉 = 0 for any x.

(ii) Dynamics of the effective variable null on average: 〈Lxϕ0〉 = 0,
where ϕ0 ≡ ϕ0(x) depends on x only.
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Plugging perturbation analysis

We now seek for a perturbed test function ϕε of ϕ0(x) such that:







ϕε(x, e) = ϕ0(x) + oε(1)

Lεϕε(x, e) = L0ϕ0 + oε(1).

Formally, the perturbation analysis yields at order N :







ϕε(x, e) =
N∑

n=0

εnϕn(x, e)

ϕn+1 = L−1
e (〈Lxϕn〉 − Lxϕn).
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Plugging perturbation analysis

This yields the effective generator L0 through:

Lεϕε = 〈Lxϕ1〉 + oε(1)

= −
〈
LxL

−1
e Lx

〉

︸ ︷︷ ︸

L0

ϕ0 + oε(1)

Typically, Lx is a first order differential operator, and L0 a second-order
(diffusion) operator.
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Proving tightness using variants of the Kurtz/Aldous criteriae (Ethier Kurtz 85’)

Let Γε,δ(ϕ0) be the sup forward averaged variation of the path
t 7→ ϕ0(X

ε
t ):

Γε,δ(ϕ0) := sup
t,|h|≤δ

∣
∣E

(
ϕ0(X

ε
t+h) − ϕ0(X

ε
t )|Xε

s , 0 ≤ s ≤ t
)∣
∣ .

Then tightness follows from:

(i) Compact containment: For any ε > 0 there is a compact Kε such
that P

(
Xε

t ∈ KRd,ε, ∀t ∈ [0, T ]
)
≥ 1 − ε.

(ii) Uniform continuity of mean forward variation

lim
δ→0

sup
ε

EΓε,δ(ϕ0) = 0, ∀ϕ0 ∈ D.

(iii) D is a dense algebra in Cb(R
d) for uniform convergence on

compacts.
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Proving tightness

This is good since perturbation analysis yields formally:

ϕ0(X
ε
t+h) − ϕ0(X

ε
t )

= ϕε(X
ε
t+h, E

ε
t+h) − ϕε(X

ε
t , E

ε
t ) + oε(1)

=

∫ t+h

t

Lεϕε(X
ε
s , E

ε
s) ds+ martingale + oε(1)

=

∫ t+h

t

L0ϕ0(X
ε
s ) ds+ martingale + oε(1).

And formally the forward averaged variation satisfies:

E
(
ϕ0(X

ε
t+h) − ϕ0(X

ε
t )|Xε

s , 0 ≤ s ≤ t
)

= oε(1) +O(h).
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Proving martingale property

To prove that the limit of t 7→ Xε
t is solution of a martingale problem , we

use the facts that:

By definition of Lε:

Mε
t := ϕε(X

ε
t , E

ε
t ) − ϕε(X

ε
0 , E

ε
0) −

∫ t

0

Lεϕε(X
ε
s , E

ε
s) ds,

is a σ(Xε)-martingale

Being a martingale is an information on finite dimensional path
functionals for any k ≥ 0, t1 > · · · > t−k and ϕ1 · · ·ϕk

E
(
(Mt1 −Mt0)ϕ1(Mt−1

) · · ·ϕk(Mt−k
)
)

= 0.

Pass to the limit ε→ 0 using Lebesgue dominated convergence
and the perturbation analysis.
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The perturbed test function criteria

Then several final sufficient criteriae for convergence to an effective
dynamics may be obtained, e.g.:

(i) t 7→ Xε
t stays in some compact uniformly in ε with high probability.

(ii) Define the rest terms:







Aε
t (ϕ0) := E ((ϕε − ϕ0)(X

ε
t , E

ε
t )|Xε

t , 0 ≤ s ≤ t) ,

Bε
t (ϕ0) := E ((Lεϕε − L0ϕ0) (Xε

t , E
ε
t )|Xε

s , 0 ≤ s ≤ t) .

We ask ∀ϕ0 ∈ D:







lim
ε→0

E sup
t

|Aε
t (ϕ0)| = 0,

lim
ε→0

E

∫ T

0

|Bε
t (ϕ0)| dt = 0.

The martingale problem associated to L0 is well-posed.
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Localization

In practice, one introduces e.g. a stopping time cut-off τη with cut-off
parameter η > 0 of the form:

τη := inf (t ≥ 0|s(Xε)t = 0) ,

where s is a continuous adapted functional C(Rd, [0, T ]) → C(R+, [0, T ]).

We then ask that all the machinery holds for the processes stopped at
τη.

We then ask that under the law of the solution of the limit martingale
problem associated to L0:

lim
η→0

P (τη = +∞) = 1.

Example: τη = time of exiting a compact of size 1/η.
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The overdamped case

Equations of motion:







dQt = Pt dt,

dPt = −∇V (Qt) dt−
1

ε
Pt dt

︸ ︷︷ ︸

Dissipation

+

√
2

βε
dWt

︸ ︷︷ ︸

Fluctuation

Generator:







Lε = 1
ε2Lp + 1

εLq,

Lp = 1
β eβ

|p|2

2 divp

(

e−β
|p|2

2 ∇p .
)

, [Orstein-Uhlenbeck process]

Lq = p∇q −∇V (q)∇p [Hamilton/Liouville operator]
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The overdamped case

Then the environment variable (e) is p here and the averaging operator
is:

〈 〉 =

∫

e−β
|p|2

2

dp

(2π)d/2
,

And the effective dynamics is the drifted diffusion on q only :

L0 = −
〈
LqL

−1
p Lq

〉
= −∇V (q)∇q +

1

β
∆q.

Theorem: Let V be Lipschitz. The probability distribution of the path
t 7→ Qε

t converges when ε→ 0 towards the Markov dynamics with
generator L0.
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The stochastic acceleration case

Equations fo motion (NB: V mixing, stationary, null avearge)







d

dt
Qε

t = P ε
t ,

d

dt
P ε

t = −
1

ε
∇V (Qε

t/ε
2)

Effective variables: momenta p (the position q is unuseful), Environment
variables: the ”microscopic position” (y = q/ε2) and the random field V .

The generator writes down:







Lε = 1
ε2Ly + 1

εLp,

Ly = p∇y [transport]

Lp = −∇V (y)∇p.
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The stochastic acceleration case

Then the averaging operator is the expectation with respect to the field
randomness

〈 〉 = E ( ) =

∫

fields
. µ(dvpot),

Technical trick in the perturbed test funtion, transport operators cannot
be inverted and L−1

y is replaced by:

Lθ,−1
y ψ(p, y, vpot) = −

∫ θ

0

ψ(y + pt, p, vpot) dt

where θ is a cut-off parameter and ψ(p, y, vpot) is a test function with null
average with respect to µ(dvpot) field integration , and depends on vpot

through future directed points y+ only ((y+ − y).p ≥ 0).
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The stochastic acceleration case

We can the exploit the mixing properties of the field V using estimates
similar to :

∫ +∞

0

|E (ψ(y + pt, p, V )|V (y−), y−past directed)| dt < +∞,

where ”past directed” means (y− − y).p ≤ 0.

In this sense, the transport operator along velocities is invertible.
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The stochastic acceleration case

The effective generator is then:

L0 := −
〈
LpL

−1
y Lp

〉
= divp

∫ +∞

0

E (∇V (0) ⊗∇V (pt)) dt∇p

Theorem: Let d ≥ 3. Let V and its derivatives be (sufficiently)
polynomially mixing, with p0-moments for p0 ≥ 0 large enough. Then the
probability distribution of the path t 7→ P ε

t converges when ε→ 0 towards
the (Landau) diffusion with generator L0.

NB: technical cut-off in the proof necessary to prevent self-intersection
of paths. (This explains d ≥ 3).
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The stochastic acceleration case

The results improves previous results by including fields with ”rare but
peaky obstacles”, in which case the field V ≡ Vε depends on ε so that:







E (Vε(0) ⊗ Vε(x)) = O(1).

‖Vε‖∞ = O(1/εα), α ∈ [0, 1].

Ref: MR, Effective dynamics, perturbed test functions, and the
stochastic acceleration problem., in preparation.
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