Convergence in distribution of stochastic dynamics

Mathias Rousset⁽¹⁾

(1) INRIA Roquencourt, France

MICMAC project-team.

Consider a stochastic dynamical model in the form

 $t\mapsto (X_t^\varepsilon, E_t^\varepsilon),$

where X denotes an *effective variable*, and E is an *environment variable*.

• General problem: we want to prove (rigorously) the convergence when $\varepsilon \rightarrow 0$ of the dynamics of the effective variable towards a dynamics in closed form.

Ex1: Overdamped Langevin dynamics

• Model: a classical Hamiltonian system $H : \mathbb{R}^{6N} \to \mathbb{R}$:

$$H(p,q) = \frac{1}{2} |p|^2 + V(q)$$

- M = Id rescaled mass coordinates.
- Introduction of a strong coupling with a stochastic thermostat of temperature, $\beta^{-1} = k_b T$.

The "simplest " case is given by the following equations of motion:

$$\begin{cases} dQ_t^{\varepsilon} = P_t^{\varepsilon} dt, \\ dP_t^{\varepsilon} = -\nabla V(Q_t^{\varepsilon}) dt - \underbrace{\frac{1}{\varepsilon} P_t^{\varepsilon} dt}_{Dissipation} + \underbrace{\sqrt{\frac{2}{\beta \varepsilon}} dW_t}_{Fluctuation} \end{cases}$$

- Physically: ε = ratio between the timescale of vibrations in the Hamiltonian (slow), and the timescale of dissipation (fast).
- The invariant probability distribution is Gibbs $\propto e^{-\beta H(q,p)} dq dp$ and independent of ε .

• On large times of order $1/\varepsilon$, it is well known that the position variable is solution to the overdamped equation:

$$dQ_t = -\nabla V(Q_t) \, dt + \sqrt{2\beta^{-1}} \, dW_t.$$

• Thus in this case momenta p are the environment variables, and positions q are the effective variables.

• Model: a classical Hamiltonian system $H : \mathbb{R}^6 \to \mathbb{R}$ with one particle :

$$H(p,q) = \frac{1}{2}p^T p + V(q).$$

- V is a mixing and stationary random potential on \mathbb{R}^3 .
- V is smooth and has vanishing average $(\mathbb{E}(\partial^k V(0)) = 0 \quad \forall k \ge 0).$
- The particle travels at high kinetic energy compare to V (weak coupling).

- Efective dynamics occurs at diffusive scaling for momenta ("central limit theorem scaling").
- We look at a space scale of order $1/\varepsilon^2$, a particle kinetic energy of order 1, a potential energy of order ε .
- If V is made of "obstacles" the particle on time 1 hits $1/\varepsilon^2$ obstacles of null average and of size ε ("central limit scaling").
- Hamiltonian + Equation of motion:

$$\begin{cases} H_{\varepsilon}(p,q) = \frac{1}{2}p^{T}p + \varepsilon V(q/\varepsilon^{2}) \\ p_{t=0} = O(1). \end{cases}$$

$$\begin{cases} \frac{d}{dt}Q_t^{\varepsilon} = P_t^{\varepsilon}, \\ \frac{d}{dt}P_t^{\varepsilon} = -\frac{1}{\varepsilon}\nabla V(Q_t^{\varepsilon}/\varepsilon^2) \end{cases}$$

- When $\varepsilon \to 0$, the particle exhibits a Landau diffusion (diffusion of velocity on the unit sphere).
- Define

$$\begin{cases} R(q) = \mathbb{E} \left(V(0)V(q) \right) & \text{[Two point correl.],} \\ A(p) = -\int_{0}^{+\infty} \underset{\text{Hess}R(p\,t)}{\text{Hess}R(p\,t)} dt & (\geq 0) \\ & \text{sym. matrix sense} \end{cases}$$

Equations of motion (SDE):

$$\begin{cases} dQ_t = P_t \, dt \\ dP_t = \operatorname{div} A(P_t) \, dt + A^{1/2}(P_t) \, dW_t \end{cases}$$

• In this case position and momenta (Q, P) are the effective variables, and the field V(q) is the environment variable.

- Overdamped Langevin (stochastic averaging): Khas'minskii ('66), Papanicolaou Stroock Varhadan ('77), Kushner ('79), Stuart Pavliotis ('08).
- Stochastic acceleration: Kesten Papanicoalou ('85), Dürr Goldstein Lebowitz ('87), Ryzhik ('06), Kirkpatrick ('07).
- Problem: either extremely technical and ad hoc, or restricted to stochastic averaging with an environment variable in compact space.
- Goal: Give a more user-friendly general setting, robust to different models.

- The steps of the proof are standard
 - (i) Put a topology on path spaces (say uniform convergence).
 - (ii) Consider for each small parameter $\varepsilon > 0$ the probability distribution μ_{ε} on path space (say the space of continuous trajectories) of the effective variable.
 - (iii) Prove tightness = relative compacity for convergence in probability distribution of μ_{ε} when $\varepsilon \to 0$.
 - (iv) Extract a limit, denoted μ_0 .
 - (v) Prove that under μ_0 and for a sufficiently large set of tests functions φ , then

$$t \mapsto \varphi(X_t^0) - \varphi(X_0^0) - \int_0^t \mathcal{L}_0 \varphi(X_s^0) \, ds$$

is a $\sigma(X^0)$ -martingale, where \mathcal{L}_0 is a Markov generator.

- Define a metric or norm on path space for instance the uniform norm on $C_{\mathbb{R}^d}[0,T]$ (continuous paths) such that the topological space is Polish (separable = countable base of open sets, complete).
- The σ -field on $C_{\mathbb{R}^d}[0,T]$ is the Borel σ -field = all the sets obtained by a countable set operation of open sets. Topology \Rightarrow measurable sets. You can now consider probability measures on it.
- Brownian motion is the only probability on $C_{\mathbb{R}^d}[0,T]$ such that a random variable realization $(W_t)_{t>0}$ verifies for any $0 \le s \le t \le T$

 $\begin{cases} \text{Law}(W_t - W_s) = \mathcal{N}(\text{mean} = 0, \text{co-variance} = (t - s) \times \text{Id}) \\ W_t - W_s \text{ independent of } W_{0 \le r \le s}. \end{cases}$

- The set of probability distribution on $C_{\mathbb{R}^d}[0,T]$ is topologized (again Polish:= separable, metric, complete) with weak convergence on continuous bounded test functions = convergence in distribution.
- Prohorov theorem: whatever the state space E (Polish:= separable, metric, complete), say here $E = C(\mathbb{R}^d, [0, T])$. Then tightness of $(X^{\varepsilon})_{\varepsilon \geq 0}$ = "the main mass stays in a compact set" = for any $\varepsilon > 0$ there is a compact $K_{C(\mathbb{R}^d, [0,T]), \varepsilon} \subset E$ such that $\mathbb{P}(X^{\varepsilon} \in K_{C(\mathbb{R}^d, [0,T]), \varepsilon}) \geq 1 - \varepsilon$ is equivalent to relative compactness of convergence in distribution.
- Ascoli theorem characterize compact sets in path space $C(\mathbb{R}^d, [0, T])$ through uniform modulus of continuity.

- Filtration = $(\mathcal{F}_t)_{t\geq}$ = information of interest until time $t = \sigma$ -field generated by the random processes of interest until time t.
- Adaptation of process X = the past of X until t is contained in $(\mathcal{F}_t)_{t\geq}$.
- Markov process X with respect to $(\mathcal{F}_t)_{t\geq 0} =$ "the future law depends on the past only through the present state " = for any $t_0 \geq 0$ the law of $X_{t_0\leq t\leq T}$ conditionally on \mathcal{F}_{t_0} and the present position of the process $\sigma(X_{t_0})$ are the same.
- Martingale $M \in \mathbb{R}^d$ with respect to $(\mathcal{F}_t)_{t\geq 0}$ = "whatever the past, the future average is zero" = for any $t_0 \geq 0$ the $\mathbb{E}(M_{t_0+h}|\mathcal{F}_{t_0}) = 0$.
- Stopping times with respect to $(\mathcal{F}_t)_{t\geq 0} = \inf \{t \geq 0 | S_t = 0\}$ with $S_t \in \{0, 1\}$ adapted.

What are martingale problems ?

• Consider $t \mapsto X_t$ a Markov process, and \mathcal{L} its generator that is to say (formally):

$$\mathcal{L}(\varphi)(x) := \left. \frac{d}{dt} \right|_{t=0} \mathbb{E}(\varphi(X_t) | X_0 = x).$$

- Ex: For Brownian motion, $\mathcal{L} = \frac{\Delta}{2}$, for ODE, $\mathcal{L} = F\nabla$ where *F* is a vector field, Kernel operators for processes with jumps, etc... General classification in \mathbb{R}^d through the Levy-Kintchine formula.
- The Markov property implies the martingale property: if $\varphi \in D(\mathcal{L})$, then:

$$M_t := \varphi(X_t) - \varphi(X_0) - \int_0^t \mathcal{L}\varphi(X_s) \, ds$$

is a martingale (same reference filtration).

• Well-posed martingale problems gives the uniqueness: if $\forall \varphi \in D(\mathcal{L})$,

$$M_t := \varphi(X_t) - \varphi(X_0) - \int_0^t \mathcal{L}\varphi(X_s) \, ds$$

is a $\sigma(X_s, 0 \le s \le t)$ -martingale, then the probability distribution of $t \mapsto X_t$ is unique and is Markov with respect to $\sigma(X_s, 0 \le s \le t)$ and of generator \mathcal{L} .

- Enables identification of limits obtained by compacity.
- Can be generalized to non-Markov.
- NB: Typically Lipschitz generators in \mathbb{R}^d yields well-posed martingale problems through well-posed strong solutions of stochastic differential equations and a coupling argument (\sim coupling + Cauchy-Lipschitz).

- Ethier, Kurtz: Markov processes: characterization convergence, 87 (Markov generator oriented).
- Jacod, Shiryaev: Limit Theorems for Stochastic Processes, 87 (cad-lag semi-martingales oriented).
- Rq: Very technical to rather tedious.

- We now want to "plug in" some singular perturbation analysis in the martingale approach (Papanicolaou, Stroock, Varhadan '77).
- Typically, the Markov generator of the full process $t \mapsto (X_t^{\varepsilon}, E_t^{\varepsilon})$ is of the form:

$$\mathcal{L}_{\varepsilon} := rac{1}{\varepsilon^2} \mathcal{L}_e + rac{1}{\varepsilon} \mathcal{L}_x,$$

• \mathcal{L}_e can be interpreted as the " $\frac{1}{\varepsilon^2}$ fast" dynamics of the environment *e*. \mathcal{L}_x is the " $\frac{1}{\varepsilon}$ fast" dynamics of the effective variable *x*, null "on average" of the effective variable.

- We assume the existence of an averaging operator () of the environment variables, such that:
 - (i) $\langle \rangle$ is an invariant probability of \mathcal{L}_e in the sense that we have (in a perhaps "very formal" way) the following representation: if $t \mapsto E_t$ is Markov with generator \mathcal{L}_e :

$$\mathcal{L}_e^{-1}\varphi(e,x) = -\int_0^{+\infty} \mathbb{E}\left(\varphi(E_t,x)|E_0=e\right) dt.$$

if $\langle \varphi \rangle = 0$ for any x.

(ii) Dynamics of the effective variable null on average: $\langle \mathcal{L}_x \varphi_0 \rangle = 0$, where $\varphi_0 \equiv \varphi_0(x)$ depends on x only. • We now seek for a perturbed test function φ_{ε} of $\varphi_0(x)$ such that:

$$\begin{cases} \varphi_{\varepsilon}(x,e) = \varphi_0(x) + o_{\varepsilon}(1) \\ \mathcal{L}_{\varepsilon}\varphi_{\varepsilon}(x,e) = \mathcal{L}_0\varphi_0 + o_{\varepsilon}(1) \end{cases}$$

• Formally, the perturbation analysis yields at order N:

$$\begin{cases} \varphi_{\varepsilon}(x,e) = \sum_{n=0}^{N} \varepsilon^{n} \varphi_{n}(x,e) \\ \varphi_{n+1} = \mathcal{L}_{e}^{-1} \left(\langle \mathcal{L}_{x} \varphi_{n} \rangle - \mathcal{L}_{x} \varphi_{n} \right) \end{cases}$$

• This yields the effective generator \mathcal{L}_0 through:

$$\mathcal{L}_{\varepsilon}\varphi_{\varepsilon} = \langle \mathcal{L}_{x}\varphi_{1} \rangle + o_{\varepsilon}(1)$$
$$= \underbrace{- \langle \mathcal{L}_{x}\mathcal{L}_{e}^{-1}\mathcal{L}_{x} \rangle}_{\mathcal{L}_{0}}\varphi_{0} + o_{\varepsilon}(1)$$

• Typically, \mathcal{L}_x is a first order differential operator, and \mathcal{L}_0 a second-order (diffusion) operator.

Proving tightness using variants of the Kurtz/Aldous criteriae (Ethier Kurtz 85

• Let $\Gamma_{\varepsilon,\delta}(\varphi_0)$ be the sup forward averaged variation of the path $t \mapsto \varphi_0(X_t^{\varepsilon})$:

$$\Gamma_{\varepsilon,\delta}(\varphi_0) := \sup_{t,|h| \le \delta} \left| \mathbb{E} \left(\varphi_0(X_{t+h}^{\varepsilon}) - \varphi_0(X_t^{\varepsilon}) | X_s^{\varepsilon}, 0 \le s \le t \right) \right|.$$

Then tightness follows from:

- (i) Compact containment: For any $\varepsilon > 0$ there is a compact K_{ε} such that $\mathbb{P}\left(X_t^{\varepsilon} \in K_{\mathbb{R}^d,\varepsilon}, \forall t \in [0,T]\right) \ge 1 \varepsilon$.
- (ii) Uniform continuity of mean forward variation

$$\lim_{\delta \to 0} \sup_{\varepsilon} \mathbb{E} \Gamma_{\varepsilon,\delta}(\varphi_0) = 0, \quad \forall \varphi_0 \in D.$$

(iii) D is a dense algebra in $C_b(\mathbb{R}^d)$ for uniform convergence on compacts.

This is good since perturbation analysis yields formally:

$$\begin{split} \varphi_0(X_{t+h}^{\varepsilon}) &- \varphi_0(X_t^{\varepsilon}) \\ &= \varphi_{\varepsilon}(X_{t+h}^{\varepsilon}, E_{t+h}^{\varepsilon}) - \varphi_{\varepsilon}(X_t^{\varepsilon}, E_t^{\varepsilon}) + o_{\varepsilon}(1) \\ &= \int_t^{t+h} \mathcal{L}_{\varepsilon} \varphi_{\varepsilon}(X_s^{\varepsilon}, E_s^{\varepsilon}) \, ds + \text{martingale} + o_{\varepsilon}(1) \\ &= \int_t^{t+h} \mathcal{L}_0 \varphi_0(X_s^{\varepsilon}) \, ds + \text{martingale} + o_{\varepsilon}(1). \end{split}$$

And formally the forward averaged variation satisfies:

$$\mathbb{E}\left(\varphi_0(X_{t+h}^{\varepsilon}) - \varphi_0(X_t^{\varepsilon}) | X_s^{\varepsilon}, 0 \le s \le t\right) = o_{\varepsilon}(1) + O(h).$$

- To prove that the limit of $t \mapsto X_t^{\varepsilon}$ is solution of a martingale problem , we use the facts that:
 - By definition of $\mathcal{L}_{\varepsilon}$:

$$M_t^{\varepsilon} := \varphi_{\varepsilon}(X_t^{\varepsilon}, E_t^{\varepsilon}) - \varphi_{\varepsilon}(X_0^{\varepsilon}, E_0^{\varepsilon}) - \int_0^t \mathcal{L}_{\varepsilon}\varphi_{\varepsilon}(X_s^{\varepsilon}, E_s^{\varepsilon}) \, ds,$$

is a $\sigma(X^{\varepsilon})$ -martingale

Being a martingale is an information on finite dimensional path functionals for any $k \ge 0$, $t_1 > \cdots > t_{-k}$ and $\varphi_1 \cdots \varphi_k$

$$\mathbb{E}\left((M_{t_1} - M_{t_0})\varphi_1(M_{t_{-1}})\cdots\varphi_k(M_{t_{-k}})\right) = 0.$$

• Pass to the limit $\varepsilon \to 0$ using Lebesgue dominated convergence and the perturbation analysis.

- Then several final sufficient criteriae for convergence to an effective dynamics may be obtained, e.g.:
 - (i) $t \mapsto X_t^{\varepsilon}$ stays in some compact uniformly in ε with high probability.
 - (ii) Define the rest terms:

$$\begin{cases} A_t^{\varepsilon}(\varphi_0) := \mathbb{E}\left((\varphi_{\varepsilon} - \varphi_0)(X_t^{\varepsilon}, E_t^{\varepsilon}) | X_t^{\varepsilon}, 0 \le s \le t\right), \\ B_t^{\varepsilon}(\varphi_0) := \mathbb{E}\left((\mathcal{L}_{\varepsilon}\varphi_{\varepsilon} - \mathcal{L}_0\varphi_0)(X_t^{\varepsilon}, E_t^{\varepsilon}) | X_s^{\varepsilon}, 0 \le s \le t\right). \end{cases}$$

We ask $\forall \varphi_0 \in D$:

$$\begin{cases} \lim_{\varepsilon \to 0} \mathbb{E} \sup_{t} |A_t^{\varepsilon}(\varphi_0)| = 0, \\ \lim_{\varepsilon \to 0} \mathbb{E} \int_0^T |B_t^{\varepsilon}(\varphi_0)| \ dt = 0. \end{cases}$$

• The martingale problem associated to \mathcal{L}_0 is well-posed.

In practice, one introduces e.g. a stopping time cut-off τ_{η} with cut-off parameter $\eta > 0$ of the form:

$$\tau_{\eta} := \inf \left(t \ge 0 | s(X^{\varepsilon})_t = 0 \right),$$

where s is a continuous adapted functional $C(\mathbb{R}^d, [0, T]) \rightarrow C(\mathbb{R}^+, [0, T])$.

- We then ask that all the machinery holds for the processes stopped at τ_{η} .
- We then ask that under the law of the solution of the limit martingale problem associated to \mathcal{L}_0 :

$$\lim_{\eta \to 0} \mathbb{P}\left(\tau_{\eta} = +\infty\right) = 1.$$

• Example: τ_{η} = time of exiting a compact of size $1/\eta$.

Equations of motion:

$$\begin{cases} dQ_t = P_t \, dt, \\ dP_t = -\nabla V(Q_t) \, dt - \underbrace{\frac{1}{\varepsilon} P_t \, dt}_{Dissipation} + \underbrace{\sqrt{\frac{2}{\beta \varepsilon}} \, dW_t}_{Fluctuation} \end{cases}$$

• Generator:

$$\begin{cases} \mathcal{L}_{\varepsilon} = \frac{1}{\varepsilon^{2}} \mathcal{L}_{p} + \frac{1}{\varepsilon} \mathcal{L}_{q}, \\ \mathcal{L}_{p} = \frac{1}{\beta} e^{\beta \frac{|p|^{2}}{2}} \operatorname{div}_{p} \left(e^{-\beta \frac{|p|^{2}}{2}} \nabla_{p}. \right), & \text{[Orstein-Uhlenbeck process]} \\ \mathcal{L}_{q} = p \nabla_{q} - \nabla V(q) \nabla_{p} & \text{[Hamilton/Liouville operator]} \end{cases}$$

Then the environment variable (e) is p here and the averaging operator is:

$$\langle \rangle = \int e^{-\beta \frac{|p|^2}{2}} \frac{dp}{(2\pi)^{d/2}},$$

• And the effective dynamics is the drifted diffusion on q only :

$$\mathcal{L}_0 = -\left\langle \mathcal{L}_q \mathcal{L}_p^{-1} \mathcal{L}_q \right\rangle = -\nabla V(q) \nabla_q + \frac{1}{\beta} \Delta_q.$$

• Theorem: Let V be Lipschitz. The probability distribution of the path $t \mapsto Q_t^{\varepsilon}$ converges when $\varepsilon \to 0$ towards the Markov dynamics with generator \mathcal{L}_0 .

Equations fo motion (NB: V mixing, stationary, null avearge)

$$\begin{cases} \frac{d}{dt}Q_t^{\varepsilon} = P_t^{\varepsilon}, \\ \frac{d}{dt}P_t^{\varepsilon} = -\frac{1}{\varepsilon}\nabla V(Q_t^{\varepsilon}/\varepsilon^2) \end{cases}$$

- Effective variables: momenta p (the position q is unuseful), Environment variables: the "microscopic position" ($y = q/\epsilon^2$) and the random field V.
- The generator writes down:

$$\left\{egin{aligned} \mathcal{L}_arepsilon &= rac{1}{arepsilon^2} \mathcal{L}_y + rac{1}{arepsilon} \mathcal{L}_p, \ \mathcal{L}_y &= p
abla_y \quad ext{[transport]} \ \mathcal{L}_p &= -
abla V(y)
abla_p. \end{aligned}
ight.$$

Then the averaging operator is the expectation with respect to the field randomness

$$\langle \rangle = \mathbb{E}() = \int_{\text{fields}} \mu(dv_{\text{pot}}),$$

• Technical trick in the perturbed test function, transport operators cannot be inverted and \mathcal{L}_u^{-1} is replaced by:

$$\mathcal{L}_{y}^{\theta,-1}\psi(p,y,v_{\text{pot}}) = -\int_{0}^{\theta}\psi(y+pt,p,v_{\text{pot}})\,dt$$

where θ is a cut-off parameter and $\psi(p, y, v_{\text{pot}})$ is a test function with null average with respect to $\mu(dv_{\text{pot}})$ field integration , and depends on v_{pot} through future directed points y_+ only ($(y_+ - y).p \ge 0$).

We can the exploit the mixing properties of the field V using estimates similar to :

$$\int_{0}^{+\infty} |\mathbb{E}(\psi(y+pt,p,V)|V(y_{-}), y_{-} \text{past directed})| \ dt < +\infty,$$

where "past directed" means $(y_- - y).p \le 0$.

In this sense, the transport operator along velocities is invertible.

• The effective generator is then:

$$\mathcal{L}_0 := -\left\langle \mathcal{L}_p \mathcal{L}_y^{-1} \mathcal{L}_p \right\rangle = \operatorname{div}_p \int_0^{+\infty} \mathbb{E} \left(\nabla V(0) \otimes \nabla V(pt) \right) \, dt \, \nabla_p$$

- Theorem: Let $d \ge 3$. Let V and its derivatives be (sufficiently) polynomially mixing, with p_0 -moments for $p_0 \ge 0$ large enough. Then the probability distribution of the path $t \mapsto P_t^{\varepsilon}$ converges when $\varepsilon \to 0$ towards the (Landau) diffusion with generator \mathcal{L}_0 .
- NB: technical cut-off in the proof necessary to prevent self-intersection of paths. (This explains $d \ge 3$).

• The results improves previous results by including fields with "rare but peaky obstacles", in which case the field $V \equiv V_{\varepsilon}$ depends on ε so that:

$$\begin{cases} \mathbb{E} \left(V_{\varepsilon}(0) \otimes V_{\varepsilon}(x) \right) = O(1). \\ \|V_{\varepsilon}\|_{\infty} = O(1/\varepsilon^{\alpha}), \quad \alpha \in [0, 1]. \end{cases}$$

Ref: MR, Effective dynamics, perturbed test functions, and the stochastic acceleration problem., in preparation.