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Complexity in haemodynamics

The main obstacle to make mathematical models

extensively useful and reliable in the clinical

context is that they have to be personalized

Many quantities required by the numerical

simulations cannot be always obtained through

direct measurements and thus need to be

estimated using the available clinical

measurements

The ultimate goal would be to optimize the

therapeutic intervention depending on the patient

attributes
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attributes
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Models and problems

surface reconstruction of blood flow profiles

inverse problems: reconstruction of boundary

conditions by experimental measures/observations

flow control: vorticity reduction by

suction/injection of fluid through the

boundary

Steady state system: advection-diffusion, Stokes or Navier-Stokes equations

Control variables: distributed in the domain or along the boundary

Parameters: they can be physical/geometrical quantities describing the state system

or related to observation measurements in the cost functional
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Optimal control problems [Lions, 1971]

In general, an optimal control problem (OCP) consists of:

a control function u, which can be

seen as an input for the system,

a controlled system, i.e. an

input-output process: E(y , u) = 0,

being y the state variable

an objective functional to be

minimized: J (y , u)

STATE

PROBLEM

STATE

PROBLEM

µ

Output J (y, u)

Output

yd (µ) (data)

J (y, u; µ)

y(u)

Optimization:

update control u

u
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Optimal control problems [Lions, 1971]

In general, an optimal control problem (OCP) consists of:

a control function u, which can be

seen as an input for the system,

a controlled system, i.e. an

input-output process: E(y , u) = 0,

being y the state variable

an objective functional to be

minimized: J (y , u)

STATE

PROBLEM

STATE

PROBLEM

µ

Output J (y, u)

Output

yd (µ) (data)

J (y, u; µ)

y(u)

Optimization:

update control u

u

find the optimal control u∗ and the state y(u∗) such that the cost functional

J (y , u) is minimized subject to E(y , u) = 0
(OCP)

We restrict attention to:

quadratic cost functionals, e.g. J (y , u) = 1
2
‖y − yd‖2 + α

2
‖u‖2
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Parametrized optimal control problems

A parametrized optimal control problem (OCPµ) consists of:

a control function u(µ), which can

be seen as an input for the system,

a controlled system, i.e. an

input-output process:

E(y(µ), u(µ);µ) = 0,

an objective functional to be

minimized: J (y(µ), u(µ);µ)

STATE

PROBLEM

STATE

PROBLEM

µ

Output J (y, u)

Output

yd (µ) (data)

J (y, u; µ)
y(u(µ))

Optimization:

update control u

u(µ)

given µ ∈ D, find the optimal control u∗(µ) and the state y∗(µ) such that the

cost functional J (y(µ), u(µ);µ) is minimized subject to E(y(µ), u(µ);µ) = 0
(OCPµ)

where µ ∈ D ⊂ Rp denotes a p-vector whose components can represent:

coefficients in boundary conditions

geometrical configurations

physical parametrization

data (observation)
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Reduction strategies for Parametrized Optimal Control Problems

PROBLEM: given µ ∈ D ⊂ Rp ,

min
y ,u

J (y , u;µ)

s.t. E(y , u;µ) = 0

STATE

PROBLEM E

µ

Output

yd (µ) (data)

J (y, u; µ)
y(u(µ))

Optimization:

update control u

u(µ)

The computational effort may be unacceptably high and, often, unaffordable when

performing the optimization process for many different parameter values

(many-query context)

for a given new configuration, we want to compute the solution in a rapid way

(real-time context)

Goal: to achieve the accuracy and reliability of a high fidelity approximation

but at greatly reduced cost of a low order model
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Main ingredients: linear state equation case

We build the Reduced Basis (RB) approximation directly on the optimality (KKT) system:

we firstly recast the problem in the framework of saddle-point problem [Gunzburger &

Bochev, 2004]

we then apply the well-known Brezzi-Babuška theory [Brezzi & Fortin, 1991]

This way we can exploit the analogies with the already developed theory of RB method for

Stokes-type problems [Rozza & Veroy, 2007] [Rozza et al., n.d.] [Gerner & Veroy, 2012]

The usual ingredients of the RB methodology are provided:

Galerkin projection onto a low-dimensional space of

basis functions properly selected by a greedy algorithm

for optimal parameters sampling;

affine parametric dependence → Offline-Online

computational procedure [EIM];

an efficient and rigorous a posteriori error estimation

on the solution variables as well as on the cost

functional.

Main ingredients

In order to develop the Reduced Basis (RB) method:

we firstly recast the problem in the framework of saddle-point problem [Gunzburger,

Bochev, 2004]

we then apply the well-known Brezzi theory [Brezzi, Fortin, 1991]

↪→ existence, uniqueness, stability and optimality conditions

This way we can exploit the analogies with the already developed theory of RB method for

Stokes-type problems [Rozza, Veroy, 07; Rozza, Huynh, Manzoni 10] The usual ingredients

of the RB methodology are provided:

Galerkin projection onto a low-dimensional space of

basis functions properly selected by a greedy algorithm;

an affine parametric dependence enabling to perform

competitive Offline-Online splitting in the

computational procedure;

an efficient and rigorous a posteriori error estimation

on the state, control and adjoint variables as well as

on the cost functional.

MN

XN

MN = {UN (µ) ∈ XN : µ ∈ D}

XN = span{UN (µi ), i = 1, . . . ,N}
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Main ingredients: nonlinear state equation (Navier-Stokes) case

Again, we work directly on the optimality system, in this case a nonlinear system of PDEs

Newton-SQP method: sequence of saddle-point problems featuring the same

structure of the optimality system in the linear case [Ito & Kunisch, 2008]

we then apply the Brezzi-Rappaz-Raviart theory [Brezzi, Rappaz, Raviart, 1980]

This way we can exploit the analogies with the already developed theory of RB method for

nonlinear equations (in particular Navier-Stokes) [Patera, Veroy, R., Deparis, Manzoni]

The usual ingredients of the RB methodology are provided:

Galerkin projection onto a low-dimensional space of

basis functions properly selected by a greedy algorithm

for optimal parameters sampling;

affine parametric dependence → Offline-Online

computational procedure [EIM];

an efficient and rigorous a posteriori error estimation

on the solution variables as well as on the cost

functional [in progress].

Main ingredients

In order to develop the Reduced Basis (RB) method:

we firstly recast the problem in the framework of saddle-point problem [Gunzburger,

Bochev, 2004]

we then apply the well-known Brezzi theory [Brezzi, Fortin, 1991]

↪→ existence, uniqueness, stability and optimality conditions

This way we can exploit the analogies with the already developed theory of RB method for

Stokes-type problems [Rozza, Veroy, 07; Rozza, Huynh, Manzoni 10] The usual ingredients

of the RB methodology are provided:

Galerkin projection onto a low-dimensional space of

basis functions properly selected by a greedy algorithm;

an affine parametric dependence enabling to perform

competitive Offline-Online splitting in the

computational procedure;

an efficient and rigorous a posteriori error estimation

on the state, control and adjoint variables as well as

on the cost functional.

MN

XN

MN = {UN (µ) ∈ XN : µ ∈ D}

XN = span{UN (µi ), i = 1, . . . ,N}
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Optimality system

Let x = (y , u) be the optimization variable (state and control variables),

given µ ∈ D ⊂ Rp , min
x∈X

J (x ;µ) s.t. E(x ;µ) = 0 in Q′

Lagrangian functional: L(x , p;µ) = J (x ,µ) + 〈E(x ,µ), p〉,

By requiring the first derivatives to

vanish we obtain the optimality

(KKT) system

Optimality system{
Jx (x ;µ) + Ex (x ;µ)∗p = 0

E(x ;µ) = 0
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Optimality system

Let x = (y , u) be the optimization variable (state and control variables),

given µ ∈ D ⊂ Rp , min
x∈X

J (x ;µ) s.t. E(x ;µ) = 0 in Q′

Lagrangian functional: L(x , p;µ) = J (x ,µ) + 〈E(x ,µ), p〉,

By requiring the first derivatives to

vanish we obtain the optimality

(KKT) system

Optimality system{
Jx (x ;µ) + Ex (x ;µ)∗p = 0

E(x ;µ) = 0

Linear state equation: E(·;µ) : X → Q′ is linear,

let E(x ;µ) = B(µ)x − g(µ) =⇒ Ex (x ;µ)∗ = B∗(µ) independent of x

J (x ;µ) =
1

2
〈A(µ)x , x〉 − 〈f (µ), x〉 =⇒ Jx (x ;µ) = A(µ)x − f (µ)

Algebraic formulation:

(
A(µ) BT (µ)

B(µ) 0

)(
x(µ)

p(µ)

)
=

(
F(µ)

G(µ)

)
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Optimality system

Let x = (y , u) be the optimization variable (state and control variables),

given µ ∈ D ⊂ Rp , min
x∈X

J (x ;µ) s.t. E(x ;µ) = 0 in Q′

Lagrangian functional: L(x , p;µ) = J (x ,µ) + 〈E(x ,µ), p〉,

By requiring the first derivatives to

vanish we obtain the optimality

(KKT) system

Optimality system{
Jx (x ;µ) + Ex (x ;µ)∗p = 0

E(x ;µ) = 0

Nonlinear state equation: E(·;µ) : X → Q′ is nonlinear. Newton’s method on the

optimality system: for k = 1, 2, . . .

solve for (sk
x , s

k
p )

{
Lxx (xk , pk ;µ) sk

x + Ex (xk ;µ)∗sk
p = −Lx (xk , pk ;µ)

Ex (xk ;µ) sk
x = −E(xk ,µ)

update xk+1 = xk + sk
x , pk+1 = pk + sk

p
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Optimality system

Let x = (y , u) be the optimization variable (state and control variables),

given µ ∈ D ⊂ Rp , min
x∈X

J (x ;µ) s.t. E(x ;µ) = 0 in Q′

Lagrangian functional: L(x , p;µ) = J (x ,µ) + 〈E(x ,µ), p〉,

By requiring the first derivatives to

vanish we obtain the optimality

(KKT) system

Optimality system{
Jx (x ;µ) + Ex (x ;µ)∗p = 0

E(x ;µ) = 0

Nonlinear state equation: E(·;µ) : X → Q′ is nonlinear. Newton’s method on the

optimality system: for k = 1, 2, . . .

solve for (sk
x , s

k
p)

(
Ak (µ) Bk (µ)T

Bk (µ) 0

)(
sk

x (µ)

sk
p(µ)

)
=

(
Fk (µ)

Gk (µ)

)

update xk+1 = xk + sk
x , pk+1 = pk + sk

p
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The abstract optimization problem

Notation: y , z ∈ Y state space u, v ∈ U control space

p, q ∈ Q (≡ Y ) adjoint space Z observation space s.t. Y ⊂ Z

Parametrized optimal control problem: given µ ∈ D

minimize J(y , u;µ) =
1

2
m(y − yd (µ), y − yd (µ);µ) +

α

2
n(u, u;µ)

s.t. a(y , q;µ) = c(u, q;µ) + 〈G(µ), q〉 ∀q ∈ Q.

Let X ≡ Y × U be the state and control space, the constrained optimization

problem can be recast in the form:

Saddle-point formulation: given µ ∈ Dmin J (x ;µ) =
1

2
A(x , x ;µ)− 〈F (µ), x〉, s.t.

B(x , q;µ) = 〈G(µ), q〉 ∀q ∈ Q.

notation:

x = (y , u) ∈ X

w = (z , v) ∈ X

where

A(x ,w ;µ) = m(y , z ;µ) +αn(u, v ;µ), 〈F (µ),w〉 = m(yd (µ), z ;µ)

B(w , q;µ) = a(z , q;µ)− c(v , q;µ)



Introduction Linear Control Problems Geometrical reduction Results Nonlinear Control Problems Results

The abstract optimization problem: saddle-point formulation

Notation: y , z ∈ Y state space u, v ∈ U control space
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Saddle-point formulation: applying Brezzi theory

the optimal control problem

min
x∈X

J (x ;µ) subject to B(x , q;µ) = 〈G(µ), q〉 ∀q ∈ Q.

has a unique solution x = (y , u) ∈ X for any µ ∈ D

that solution can be determined by solving the optimality systemA(x(µ),w ;µ) + B(w , p(µ);µ) = 〈F (µ),w〉 ∀w ∈ X ,

B(x(µ), q;µ) = 〈G(µ), q〉 ∀q ∈ Q,

Compact form

given µ ∈ D, find U(µ) ∈ X s.t:

B(U(µ),W;µ) = F(W;µ) ∀W ∈ X .

X = X × Q, U = (x , p), W = (w , q)

B(U,W;µ) = A(x ,w ;µ) +B(w , p;µ) +B(x , q;µ)

F(W;µ) = 〈F (µ),w〉+ 〈G(µ), q〉

at this point we may apply the Galerkin-FE approximation
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Optimize - then - discretize

Pb(µ; U(µ))

µ-OCP, optimality system

U(µ) ∈ X : B(U(µ),W;µ) = F(W) ∀W ∈ X

PbN (µ; UN (µ))

Truth approximation (FEM)

UN (µ) ∈ XN : B(UN (µ),W;µ) = F(W) ∀W ∈ XN

Sampling (Greedy)

Space Construction

(Hierarchical Lagrange basis)

OFFLINE

SN = {µi , i = 1, . . . ,N}

XN = span{UN (µi ), i = 1, . . . ,N}

dim(XN ) = N � N = dim(XN )

Main ingredients

In order to develop the Reduced Basis (RB) method:

we firstly recast the problem in the framework of saddle-point problem [Gunzburger,

Bochev, 2004]

we then apply the well-known Brezzi theory [Brezzi, Fortin, 1991]

↪→ existence, uniqueness, stability and optimality conditions

This way we can exploit the analogies with the already developed theory of RB method for

Stokes-type problems [Rozza, Veroy, 07; Rozza, Huynh, Manzoni 10] The usual ingredients

of the RB methodology are provided:

Galerkin projection onto a low-dimensional space of

basis functions properly selected by a greedy algorithm;

an affine parametric dependence enabling to perform

competitive Offline-Online splitting in the

computational procedure;

an efficient and rigorous a posteriori error estimation

on the state, control and adjoint variables as well as

on the cost functional.

MN

XN

MN = {UN (µ) ∈ XN : µ ∈ D}

XN = span{UN (µi ), i = 1, . . . ,N}

PbN (µ; UN (µ))

Galerkin projection

ONLINE

Reduced Basis (RB) approximation

UN (µ) ∈ XN : B(UN (µ),W;µ) = F(W) ∀W ∈ XN

[Patera, Rozza 2006] [Rozza et al., 2008] (review)
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Reduced Basis Method: approximation stability

Reduced Basis (RB) approximation: given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN × QN :{
A(xN (µ),w ;µ) + B(w , pN (µ);µ) = 〈F (µ),w〉 ∀w ∈ XN

B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN

(∗)

How to define the reduced basis spaces?

we have to provide a spaces pair {XN ,QN} that

guarantee the fulfillment of an equivalent parametrized Brezzi inf-sup condition [Negri et al.,

2012]

βN (µ) = inf
q∈QN

sup
w∈XN

B(w , q;µ)

‖w‖X ‖q‖Q
≥ β0, ∀µ ∈ D.

For the state and adjoint variables: aggregated spaces

YN ≡ QN = span
{

yN (µn), pN (µn)
}N

n=1

For the control variable:

WN = span
{

uN (µn)
}N

n=1

Let XN = YN ×WN , we can prove that

βN (µ) ≥ αN (µ) > 0 being αN (µ) the coercivity constant associated to the FE

approximation of the PDE operator

Brezzi theorem =⇒ for any µ ∈ D, the RB approximation (∗) has a unique solution

depending continuously on the data



Introduction Linear Control Problems Geometrical reduction Results Nonlinear Control Problems Results

Reduced Basis Method: approximation stability

Reduced Basis (RB) approximation: given µ ∈ D, find (xN (µ), pN (µ)) ∈ XN × QN :{
A(xN (µ),w ;µ) + B(w , pN (µ);µ) = 〈F (µ),w〉 ∀w ∈ XN

B(xN (µ), q;µ) = 〈G(µ), q〉 ∀q ∈ QN

(∗)

How to define the reduced basis spaces? we have to provide a spaces pair {XN ,QN} that

guarantee the fulfillment of an equivalent parametrized Brezzi inf-sup condition [Negri et al.,

2012]

βN (µ) = inf
q∈QN

sup
w∈XN

B(w , q;µ)

‖w‖X ‖q‖Q
≥ β0, ∀µ ∈ D.

For the state and adjoint variables: aggregated spaces

YN ≡ QN = span
{

yN (µn), pN (µn)
}N

n=1
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RB method: Offline/Online decomposition

Algebraic formulation:

(
AN (µ) BT

N (µ)

BN (µ) 0

)
︸ ︷︷ ︸

KN (µ)

(
xN (µ)

pN (µ)

)
︸ ︷︷ ︸

UN (µ)

=

(
FN (µ)

GN (µ)

)
︸ ︷︷ ︸

FN (µ)

affine decomposition: KN (µ) =

Qb∑
q=1

Θq
b(µ)K q

N FN (µ) =

Qf∑
q=1

Θq
f (µ)F q

N

Qb∑
q=1

Θq
b(µ)K q

N UN (µ) =

Qf∑
q=1

Θq
f (µ)F q

N

Offline pre-processing: compute and store the basis functions { ζi , 1 ≤ i ≤ 5N},
store the matrices K q

N and the vectors F q
N

Operation count: depends on N, Qb, Qf and N

Online: evaluate coefficients Θq
∗(µ), assemble the matrix KN (µ) and the vector FN (µ)

and solve the reduced system of dimension 5N × 5N

Operation count: O((5N)3 + QbN2 + Qf N) independent of N , N � N
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RB Method: a posteriori error estimation

Goal: provide rigorous, sharp and inexpensive estimators for the error on the solution

variables and for the error on the cost functional

A posteriori error estimation on the solution variables

‖UN (µ)− UN (µ)‖X ≤
‖r(·;µ)‖X ′
β̂LB(µ)

:= ∆N (µ)

0 < β̂LB(µ) ≤ β̂N (µ) is a constructible lower bound of the Babuška inf-sup constant

β̂(µ) = inf
W∈X

sup
U∈X

B(U,W;µ)

‖U‖X ‖W‖X
≥ β̂0, ∀µ ∈ D

given by the successive constraint method (SCM) (or by an interpolant surrogate);

Offline/Online strategy

residual of the optimality system: r(W;µ) = F(W;µ)− B(UN ,W;µ); we can provide

the standard Offline/Online stratagem for the efficient computation of ‖r(·;µ)‖X ′ ;

A posteriori error estimation on the cost functional

|JN (µ)− JN (µ)| ≤
1

2
‖r(·;µ)‖X ′‖UN (µ)− UN (µ)‖X ≤

1

2

‖r(·;µ)‖2
X ′

β̂LB(µ)
:= ∆J

N (µ).
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RB Method: the “complete game”

FE kernel

affine decomposition

assembly K
q
N , Fq

N

successive constraint

method (SCM)

β̂LB(µ)

basis selection

by greedy algorithm

assembly K
q
N
, Fq

N

a posteriori

error estimation

∆N (µ)

assembly

KN (µ), FN (µ)

solution of the RB-OCPµ

KN (µ)UN (µ) = FN (µ)
Θq
∗(µ)µ ∈ D

certification

solution UN (µ),∆N (µ)

functional JN (µ),∆J
N (µ)

offline

online

Offline stage involves precomputation of FE structures required for the RB space

construction and the certified error estimates.

Online stage has complexity only depending on N and allows resolution of the Optimal

Control Problem for any µ ∈ D with a certified error bound.

Implementation in Matlab using MLife and rbMIT libraries.
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Computational reduction

http://augustine.mit.edu
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Geometrical Parametrization

X RB framework requires a geometrical map T (·;µ) : Ω→ Ωo (µ) in order to combine

discretized solutions for the space construction

X This procedure enables to avoid shape deformation and remeshing (that, e.g. normally

occur at each step of an iterative optimization procedure)

X Reduction in the complexity of parametrization: versatility, low-dimensionality,

automatic generation of maps, capability to represent realistic configurations, ...

Left: Different carotid bifurcation specimens obtained by autopsy (adults aged 30-75);

picture taken from Z. Ding et al., Journal of Biomechanics 34 (2001),1555-1562.

Right: Different carotid bifurcation obtained through radial basis functions techniques.
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Shape Parametrization Techniques

Cartesian geometries:

Affine/nonaffine mapping “by hands”

Complex realistic geometries:

Automatic affine transformation (DD) rbMIT

Free-shape nonaffine transformations based on

control points (e.g. Free-Form Deformation

[Sederberg & Parry], Radial Basis Functions

[Bookstein, Buhmann])

Transfinite Mappings [Gordon, Hall]
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Free-Form Deformation (FFD) Techniques

Construction:

Parametric map: T (x,µ) =
L∑

l=0

M∑
m=0

bL,M
l,m (Ψ(x))(Pl,m + µl,m) where

bL,M
`,m (s, t) = bL

` (s)bM
m (t) =

(L

`

)(M

m

)
(1− s)L−`s`(1− t)M−mtm

are tensor products of Bernstein basis polynomials

FFD mapping defined as Ωo (µ) = Ψ−1 ◦ T̂ ◦Ψ(Ω;µ) =: T (Ω;µ)

Parameters µ1, . . . , µP are displacements of selected control points
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L0 - Boundary control for a Graetz convection-diffusion problem

Ω1
o Ω2

o(µ)

(1 + µ2, 0)

(1 + µ2, 1)(1, 1)(0, 1)

(0, 0) (1, 0)

Γo
N

Γo
C

Γo
CΓo

D

Γo
D

Γo
D

Ω̂o

Ω̂o observation function: yd (µ) = µ3χΩ̂o

parameter domain:

D = [6, 20]× [1, 3]× [0.5, 3]

We consider the following optimal control problem:

minimize J(yo (µ), uo (µ);µ) =
1

2
‖yo (µ)− yd (µ)‖2

L2(Ω̂o )
+
α

2
‖uo (µ)‖2

L2(Γo
C

)

s.t.



−
1

µ1
∆yo (µ) + xo2(1− xo2)

∂yo (µ)

∂xo1
= 0 in Ωo (µ)

yo (µ) = 1 on Γo
D

1

µ1
∇yo (µ) · n = uo (µ) on Γo

C (µ)

1

µ1
∇yo (µ) · n = 0 on Γo

N (µ),

I the problem is mapped to a reference domain Ω = Ωo (µref) with µref = (·, 1, ·)

I we obtain an affine decomposition with QB = 6, QF = 5



Introduction Linear Control Problems Geometrical reduction Results Nonlinear Control Problems Results

Boundary control for a Graetz convection-diffusion problem

Representative solution for µ = (12, 2, 2.5)

1 1.5 2 2.5 3

0

0.5

1

1.5

optimal control uN on ΓC

Number of FE dof N 8915

Number of parameters P 3

Number of RB functions N 39

Dimension of RB linear system 39 · 5
Affine operator components Q 6

Linear system dimension reduction 50:1

FE evaluation tFE (s) 14.5

RB evaluation tonline
RB (s) 0.1

RB evaluation toffline
RB (s) 3970
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Error estimation (•) and true error (•) for the solution (left) and the cost functional (right)
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Towards reduced data reconstruction/assimilation

Sectional axial flow profile (top) and vorticity (bottom) and salient locations along a bend.

Picture taken from D. Doorly and S. Sherwin, Geometry and flow,

In Cardiovascular Mathematics, L. Formaggia, A. Quarteroni and A. Veneziani (Eds.)
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L1 - Reduced data reconstruction/assimilation

goal: to reconstruct, from areal data provided by

eco-dopplers measurements, the blood velocity field in

a section of a carotid artery

surface estimation starting from scattered data: the

reconstruction should take into account the shape of

the domain and preserve the no-slip condition
Duplex US image of a carotid artery bifurcation

Intravascular US image of a coronary artery (cross-section)

Surface estimation problem [Azzimonti et al., 2011]

min
y,u

J(y , u;µ) =
m∑

i=1

∫
Ωobs,i

|y(µ)− zi |2dΩ +
α

2
‖u(µ)‖2

L2

s.t.

{
−∆y(µ) = u(µ) in Ω(µg )

y(µ) = 0 on ∂Ω(µg )
observation
domains 

Geometrical parametrization: Free Form Deformation

P = 4 displacements of the control points • •,
µg ∈ (−0.15, 0.15)4 [Manzoni, Phd thesis]

Parametrized observation values: µi
obs = zi , 1 ≤ i ≤ m = 5

−1 −0.5 0 0.5 1
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0
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µ
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µ
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L1 - Reduced data reconstruction/assimilation [Rozza et al., 2012, ECCOMAS]

Number of FE dof N 3.3 · 104

Regularization parameter α 10−4

Number of parameters P 4 + 5

Number of RB functions N 42

Affine components QB 53

Linear system dimension red. 160:1

RB solution tonline
RB (s) 0.013

RB certification tonline
∆ (s) 0.98

To fulfill the affine parametric dependence

assumption we rely on the Empirical

Interpolation Method [Barrault et al, 2004]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

µ
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µ
1

µ
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µ
4
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−0.5

0

0.5

1

Example of reconstructed profiles given different sets of (virtual) observation values:
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Stokes constraint: how to extend the method

minimize J(v, π, u;µ) =
1

2
m(v − vd (µ), v − vd (µ);µ) +

α

2
n(u, u;µ) subject to{

a(v, ξ;µ) + b(ξ, π;µ) = 〈F (µ), ξ〉+ c(u, ξ;µ) ∀ξ ∈ V ,

b(v, τ ;µ) = 〈G(µ), τ〉 ∀τ ∈ M,

Functional setting: V = [H1(Ω)]2 M = L2(Ω) velocity and pressure spaces

Y = V ×M state space, Q ≡ Y adjoint space, U control space

two nested saddle-point

• outer: optimal control • inner: Stokes constraint

reduced basis functions computed by solving N times the FE approximation (with

stable spaces pair for velocity and pressure variables)

stability of the RB approximation of the Stokes constraint fulfilled by introducing

suitable supremizer operators [Rozza & Veroy, 2007; Rozza et al., n.d.]

stability of the RB approximation of the whole optimal control problem fulfilled by

defining suitable aggregated spaces for the state and adjoint variables [Negri et al.,

2013]
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Stokes constraint: how to extend the method

minimize J(v, π, u;µ) =
1

2
m(v − vd (µ), v − vd (µ);µ) +

α

2
n(u, u;µ) subject to{

a(v, ξ;µ) + b(ξ, π;µ) = 〈F (µ), ξ〉+ c(u, ξ;µ) ∀ξ ∈ V ,

b(v, τ ;µ) = 〈G(µ), τ〉 ∀τ ∈ M,

Functional setting: V = [H1(Ω)]2 M = L2(Ω) velocity and pressure spaces

Y = V ×M state space, Q ≡ Y adjoint space, U control space

Reminder: enrichment by supremizers operators for the Stokes equations

MN = span{πN (µn), n = 1, . . . ,N}, pressure

V µ
N = span{vN (µn), Tµ(πN (µn)), n = 1, . . . ,N}, velocity

being Tµ : M → V the supremizer operator s.t.

(Tµq,w)V = b(q,w;µ) ∀ w ∈ V ,

so that {V µ
N ,MN} fulfill an equivalent RB Brezzi inf-sup stability condition [R., Veroy, et al.]
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L2 - Vorticity minimization on the downstream portion of a bluff body
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GOAL: minimize the vorticity in the

wake of the body through

suction/injection of fluid on the

control boundary ΓC

The state velocity and pressure variables {v, π} satisfy the Stokes equations in Ω(µ1) with

the following boundary conditions:

v = 0 on ΓD (µ1),

v = g(µ2) on Γin,

−πn + ν∇v n = 0 on Γout(µ1),

v1 = 0 on ΓC ,

v2 = u on ΓC ,

where g(µ2) is a parabolic inflow profile with peak velocity equal to µ2.

The cost functional is given by:

J (v(µ), u(µ);µ) =
1

2

∫
Ωobs

|∇ × v(µ)|2 dΩ +
µ3

2
‖u(µ)‖2

H1(ΓC )
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L2 - Vorticity minimization on the downstream portion of a bluff body
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Average computed error and bound between the

truth FE solution and the RB approximation.
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3 ∈ [1, 200]

Number of FE dof N 3.6 · 104

Number of parameters P 3

Number of RB functions N 19

Dimension of RB linear system 19 · 13

Affine operator components Q 14

Linear system dim reduction 150:1

FE evaluation tFE (s) ≈ 15

RB evaluation tonline
RB (s) 0.1

Stability factor: Babuška inf-sup w.r.t. to µ1
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L3 - An (idealized) application in haemodynamics: a data assimilation problem

we consider an inverse boundary problem in hemodynamics, inspired by the work [D’Elia

et. al, 2011]

parametrized geometrical model of an arterial bifurcation (with FFD)

we suppose to have a measured velocity profile on the red section, but not the Neumann

flux on ΓC that will be our control variable

starting from the velocity measures we want to find the control variable in order to

retrieve the velocity and pressure fields in the whole domain.

−1 0 1 2 3 4

−1

−0.5

0

0.5

1

 

 

given new geometrical configuration (µg)

and parametrized measurements µobs
on the red section

ONLINE

vd(µobs) ΓC(µg)

ΓC(µg)
Γin

g(µin)

find the unknown Neumann boundary

condition on ΓC and retrieve the

whole velocity and pressure fields

Figure 1: An (idealized) example of inverse boundary problem in haemodynamics. Given a geometrical

configuration and some velocity measurements on some sections of the domain (both obtainable via

medical image and data assimilation devices, e.g. MRI), we want to retrieve the whole pressure and

velocity fields in order to detect possible pathologies, e.g. occlusions or flow disturbance in arterial

bifurcations.
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An (idealized) application in haemodynamics: a data assimilation problem

Free Form Deformation

the geometrical

parameter µg is

related to the angle of

rotation of the lower

branch

 

 

The state velocity and pressure variables {v, π} satisfy the following Stokes problem in Ω(µ):

−ν∆v +∇π = 0 in Ω(µg ),

div v = 0 in Ω(µg ),

v = 0 on ΓD (µg ),

v = g(µin) on Γin,

−πn + ν
∂v

∂n
= u on ΓC (µg ),

where g(µin) is a parabolic inflow profile.

Then we consider the following parametrized cost functional to be minimized

J (v, π, u;µ) =
1

2

∫
Γobs

|v − vd (µobs )|2 dΓ + regularization(u)
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L3 - An (idealized) application in haemodynamics: a data assimilation problem
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Average computed error and bound between the truth

FE solution and the RB approximation.

Number of FE dof N 4 · 104

Number of parameters P 3

Number of RB functions N 17

Dimension of RB linear system 17 · 13

Affine operator components Q 20

FE evaluation tFE (s) ≈ 20

RB evaluation tonline
RB (s) 0.15
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Boundary control of Navier-Stokes flow

Find (v, π,µ) such that the cost functional

J (v, π, u;µ) = F(v, π;µ) + G(u;µ)

is minimized subject to the steady Navier-Stokes equations:

−ν∆v + (v · ∇)v +∇π = f in Ω(µ)

div v = 0 in Ω(µ)

v = u on ΓC (µ)

v = 0 on ΓD (µ)

−πn + ν∇v · n = 0 on ΓN (µ).

Possible choices for F , viscous energy dissipation or velocity tracking type functionals:

F(v, π;µ) =
ν

2

∫
Ω(µ)
|∇v|2 dΩ, F(v, π;µ) =

1

2

∫
Ωobs(µ)

|v − vd (µ)|2 dΩ

Regularization contribute: G(u;µ) =
α

2

∫
ΓC (µ)

(|∇u|2+|u|2)dΓ

[Gunzburger et al., 1991], [Hou & Ravindran, 1999], [Biros & Ghattas, 1999, 2005]
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Boundary control of Navier-Stokes flow

Find (v, π,µ) such that the cost functional

J (v, π, u;µ) = F(v, π;µ) + G(u;µ)

is minimized subject to the steady Navier-Stokes equations:

−ν∆v + (v · ∇)v +∇π = f in Ω(µ)

div v = 0 in Ω(µ)

v = u on ΓC (µ)

v = 0 on ΓD (µ)

−πn + ν∇v · n = 0 on ΓN (µ).

Possible choices for F , viscous energy dissipation or velocity tracking type functionals:

F(v, π;µ) =
ν

2

∫
Ω(µ)
|∇v|2 dΩ, F(v, π;µ) =

1

2

∫
Ωobs(µ)

|v − vd (µ)|2 dΩ

Regularization contribute: G(u;µ) =
α

2

∫
ΓC (µ)

(|∇u|2+|u|2)dΓ

[Gunzburger et al., 1991], [Hou & Ravindran, 1999], [Biros & Ghattas, 1999, 2005]
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Boundary control of Navier-Stokes flow: optimality system quadratic nonlinearity

State equation

−ν∆v + (v · ∇)v +∇π = f

div v = 0

v = u on ΓC + other BCs

Adjoint equation

−ν∆λ + (∇v)Tλ− (v · ∇)λ +∇η = ν∆v

divλ = 0

λ = 0 on ΓC + other BCs

Optimality equation

−α(∆ΓC
u + u) = ηn− ν(∇λ +∇v) · n on ΓC

Variational formulation: find U = (v, π; u;λ, η) ∈ X s.t.

G(U,W ;µ) = 0 ∀W ∈ X ,

Newton method: for k = 1, 2, . . .

dG [Uk ](Uk+1,W ;µ) = −G(Uk ,W ;µ) ∀W ∈ X

where dG [U](V ,W ;µ) denotes the Fréchet derivative of G(·, ·;µ)
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Boundary control of Navier-Stokes flow: optimality system quadratic nonlinearity

State equation

−ν∆v + (v · ∇)v +∇π = f

div v = 0

v = u on ΓC + other BCs

Adjoint equation

−ν∆λ + (∇v)Tλ− (v · ∇)λ +∇η = ν∆v

divλ = 0

λ = 0 on ΓC + other BCs

Optimality equation

−α(∆ΓC
u + u) = ηn− ν(∇λ +∇v) · n on ΓC

Variational formulation: find U = (v, π; u;λ, η) ∈ X s.t.

G(U,W ;µ) = 0 ∀W ∈ X ,

Newton method: for k = 1, 2, . . .

dG [Uk ](Uk+1,W ;µ) = −G(Uk ,W ;µ) ∀W ∈ X

where dG [U](V ,W ;µ) denotes the Fréchet derivative of G(·, ·;µ)
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RB approximation and BRR error bound

As in the Stokes case:

reduced basis functions computed by solving N times the FE approximation

stability of the RB approximation: supremizer operators + aggregated spaces for the

state and adjoint variables

Nonlinear ingredients:

Galerkin projection on XN + Newton method: for k = 1, 2, . . . until convergence

dG [Uk
N ](Uk+1

N ,WN ;µ) = −G(Uk
N ,WN ;µ) ∀WN ∈ XN

Brezzi-Rappaz-Raviart error bound:

if τN (µ) = 4
γ(µ)εN (µ)

β̂2(µ)
< 1 where εN (µ) = ‖G(UN , ·;µ)‖X ′N

then

‖UN (µ)− UN (µ)‖X ≤ ∆N (µ) :=
β̂(µ)

2γ(µ)

(
1−

√
1− τN (µ)

)
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NL1 - Vorticity minimization on the downstream portion of a bluff body
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GOAL: minimize the vorticity in the wake

of the body through suction/injection of

fluid on the control boundary ΓC

µ−1
1 ∈ [5, 80] µ2 ∈ [10, 60]

The geometry is fixed. The parameters are the regularization constant µ1 in the functional

(tuning the size of the control) and the Reynolds number µ2.

minimize J (v, u;µ) =
1

2

∫
Ωobs

|∇ × v|2 dΩ +
µ1

2
‖u‖2

H1(ΓC )

s.t.



−
1

µ2
∆v + (v · ∇)v +∇π = 0 in Ω

div v = 0 in Ω

v = u on ΓC

+ other boundary conditions
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NL1 - Vorticity minimization on the downstream portion of a bluff body

Results: no greedy algorithm (due to

computational limitations), computation

of reduced basis in randomly chosen

parameter points.

Error bound for low Reynolds.
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Sharpness of the error bounds depends on Reynolds number through β̂(µ):
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NL1 - Vorticity minimization on the downstream portion of a bluff body

FE evaluation tFE (s) ≈ 60

RB evaluation tonline
RB (s) 0.9

Number of RB functions N 35

Uncontrolled solution
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NL2 - Arterial bypass design: minimize restenosis risk

Arterial bypass grafts tend to fail after some years due to the development of

intimal thickening (restenosis).

Restenosis formation is usually characterized by abnormally high or low values of

shear stress, high values of its gradient, recirculation regions and graft deformation.

The WSS, its gradient (WSSG) and the vorticity downstream the anastomosis are

indicators of the restenosis risk.

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 689–705 695

Fig. 3 – Schematic representation of the end-to-end
techniques for managing size discrepancy (small-to-big)
[13].

shear stress and systematize vessel wall remodeling and as a
result the presence of shear stresses changes. However, more
recent study by Schouten et al. [52] found no significant dif-
ference in patency rates between end-to-end and end-to-side
anastomosis bypass grafts.

3.2. End-to-side  anastomosis

The end-to-side configuration, due to its simplicity, is the most
common and researched anastomosis junctions. The general
idea of end-to-side anastomosis is redirecting the blood flow
into another alternative way around the blocked artery by
putting bypass graft over the blockage. Basically, the distal
segment of end-to-side anastomosis can be divided into three
types as shown in Fig. 4.

Taylor’s patch configuration utilizes a vein patch at the dis-
tal anastomosis that gives more  tapered funnel shape and is
known to decrease turbulence and circulation flows in anas-
tomosis junction. Furthermore, it is also known to prevent the
development of intimal hyperplasia and improve the hemody-
namics characteristics [54]. Miller cuff technique, on the other
hand, uses a segment of vein sutured to the circumference
of arteriotomy and this prosthetic graft is then sewn into the
venous cuff.

The hemodynamics investigations of these types of anas-
tomoses have focused on the factors that may initiate the
development of intimal hyperplasia in coronary revascular-
ization. These factors include anastomosis angles (Fig. 5),
ratios of graft–host diameter and out of plane anastomosis
[2,7,8,55–57]. In addition, it is well recognized that the flow
within end-to-side anastomosis is three dimensional and the
development of flow in various regions around the junctions
is highly depended on the input boundary conditions. These
authors reported the effect of boundary conditions and geom-
etry configurations on the development of IH, endothelial
rupture and degree of compliance associated with disturbed
flows of low and high WSS,  WSS  gradient as well as oscillat-
ing shear index (OSI) [2,49,58]. With respect to the effect of
angle, it was reported that a low angle of 18◦ minimized WSSG
and therefore reduced the development of intimal hyperplasia
(MIH) [59]. Other findings suggest that the highest fluid veloc-
ity was found in 30◦ of anstomosis while the lowest velocity

Fig. 4 – (A) Schematic representation of the conventional
end-to-side anastomosis, (B) Taylor-patch and (C)
Miller-cuff [53].

was found in 60◦. Moreover, the larger the anastomosis angle,
the thicker intimal hyperplasia at the floor of host artery.

In 2001, the method of using CFD to determine the influ-
ence of proximal artery conditions on the fluid flow was first
attempted by of Kute and Vorp [60]. Although the finding indi-
cated that the proximal artery was an important determinant
of the hemodynamics at the distal anastomosis of end-to-side,
the study had several limitations when looking at the end-to-
side configurations such as: only one anastomosis angle and
steady boundary conditions were used.

Lei et al. [61] have carried out a comprehensive study with
the aim of analyzing the distribution of distal anastomotic
wall shear stress gradients for conventional geometries, so an
optimum anastomosis junction with minimum or low myoin-
timal hyperplasia, atheroma could be determined. The results

Fig. 5 – Illustration of the range of anastomosis angles of
conventional end-to-side anastomosis.

[from Owida et al., 2012]



Introduction Linear Control Problems Geometrical reduction Results Nonlinear Control Problems Results

NL2 - Arterial bypass design: minimize restenosis risk

Arterial bypass grafts tend to fail after some years due to the development of

intimal thickening (restenosis).

Restenosis formation is usually characterized by abnormally high or low values of

shear stress, high values of its gradient, recirculation regions and graft deformation.

The WSS, its gradient (WSSG) and the vorticity downstream the anastomosis are

indicators of the restenosis risk.
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NL2 - Arterial bypass design via boundary optimal control

Find (v, π, u) such that the cost functional

J (v, π, u;µ) =
1

2

∫
Ωobs(µ)

|∇ × v|2 dΩ +
α

2

∫
ΓC (µ)

|∇u|2dΓ

is minimized subject to the steady Navier-Stokes equations:

− 1

Re
∆v + (v · ∇)v +∇π = 0 in Ω(µ)

div v = 0 in Ω(µ)

−πn +
1

Re
∇v · n = 0 on ΓN

v = 0 on Γw (µ)

v = gres(µ) on ΓD

v = u on ΓC (µ).

Ωobs

[Lassila, Manzoni, Quarteroni, Rozza] [Gunzburger et al., 91; Hou & Ravindran, 99; Biros & Ghattas, 99, 05]
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NL2 - Arterial bypass design via boundary optimal control – parameters

We consider the following parameters:

µ1 ∈ [40, 100] : Reynolds number

µ2 ∈ [0, 40] : percentage of residual flow gres(µ2) = µ2/25 y(1− y)

µ3 ∈ [0.05, 10] : penalization parameter α in the cost functional

µ4 ∈ [0.5, 1.2] : length of the control boundary (graft diameter)

Total conservation of fluxes =⇒ additional constraint on the control variable:

∫
ΓC

u · n dΓ = QC (µ2)

(
:= QTOT −

∫
ΓD

gres(µ2) dΓ

)

Ωobs
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NL2 - Bypass design: sensitivity to the residual flow
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Fig. 3 – Schematic representation of the end-to-end
techniques for managing size discrepancy (small-to-big)
[13].

shear stress and systematize vessel wall remodeling and as a
result the presence of shear stresses changes. However, more
recent study by Schouten et al. [52] found no significant dif-
ference in patency rates between end-to-end and end-to-side
anastomosis bypass grafts.

3.2. End-to-side  anastomosis

The end-to-side configuration, due to its simplicity, is the most
common and researched anastomosis junctions. The general
idea of end-to-side anastomosis is redirecting the blood flow
into another alternative way around the blocked artery by
putting bypass graft over the blockage. Basically, the distal
segment of end-to-side anastomosis can be divided into three
types as shown in Fig. 4.

Taylor’s patch configuration utilizes a vein patch at the dis-
tal anastomosis that gives more  tapered funnel shape and is
known to decrease turbulence and circulation flows in anas-
tomosis junction. Furthermore, it is also known to prevent the
development of intimal hyperplasia and improve the hemody-
namics characteristics [54]. Miller cuff technique, on the other
hand, uses a segment of vein sutured to the circumference
of arteriotomy and this prosthetic graft is then sewn into the
venous cuff.

The hemodynamics investigations of these types of anas-
tomoses have focused on the factors that may initiate the
development of intimal hyperplasia in coronary revascular-
ization. These factors include anastomosis angles (Fig. 5),
ratios of graft–host diameter and out of plane anastomosis
[2,7,8,55–57]. In addition, it is well recognized that the flow
within end-to-side anastomosis is three dimensional and the
development of flow in various regions around the junctions
is highly depended on the input boundary conditions. These
authors reported the effect of boundary conditions and geom-
etry configurations on the development of IH, endothelial
rupture and degree of compliance associated with disturbed
flows of low and high WSS,  WSS  gradient as well as oscillat-
ing shear index (OSI) [2,49,58]. With respect to the effect of
angle, it was reported that a low angle of 18◦ minimized WSSG
and therefore reduced the development of intimal hyperplasia
(MIH) [59]. Other findings suggest that the highest fluid veloc-
ity was found in 30◦ of anstomosis while the lowest velocity

Fig. 4 – (A) Schematic representation of the conventional
end-to-side anastomosis, (B) Taylor-patch and (C)
Miller-cuff [53].

was found in 60◦. Moreover, the larger the anastomosis angle,
the thicker intimal hyperplasia at the floor of host artery.

In 2001, the method of using CFD to determine the influ-
ence of proximal artery conditions on the fluid flow was first
attempted by of Kute and Vorp [60]. Although the finding indi-
cated that the proximal artery was an important determinant
of the hemodynamics at the distal anastomosis of end-to-side,
the study had several limitations when looking at the end-to-
side configurations such as: only one anastomosis angle and
steady boundary conditions were used.

Lei et al. [61] have carried out a comprehensive study with
the aim of analyzing the distribution of distal anastomotic
wall shear stress gradients for conventional geometries, so an
optimum anastomosis junction with minimum or low myoin-
timal hyperplasia, atheroma could be determined. The results

Fig. 5 – Illustration of the range of anastomosis angles of
conventional end-to-side anastomosis.

[from Owida et al., 2012]
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NL2 - Bypass design: sensitivity to the residual flow
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NL2 - Bypass design: sensitivity to the parameters
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NL2 - Bypass design: sensitivity to the parameters
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Conclusions and perspectives
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