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Why does water fall from an inverted glass ?

� Intuitive answer : water is “heavier” than air

� Experiment:

Water

Air :��P=�1�atm
= 0.001 g/cm3

= 1 g/cm3

Cardboard

Glass 
height: h=10 cm
Section: S=20 cm
Volume: V=20 cl

2
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Water is “heavier” than air ?

� Mass of water:
M = ρwV = 200g

• with V = 20cl, ρW = 1g/cm3

� What mass can air at atmospheric pressure sustain
on the surface S of the glass ?

Mmax = Pair S
g = 20 kg

• with earth gravity g = 10 m/s2, Pair = 1atm, S = 20 cm2

� Equivalent of a 10 m water column
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But why does not the card fall ?

� Hydrostatic equilibrium Þ in water P = Pair − ρW gz.

Pair

Pwater

z

P

Pwater Pair=

� The force exerted by water on the card is (almost) equal to
that exerted by air.
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But why does not the card fall ?
� Hydrostatic equilibrium Þ in water P = Pair − ρW gz.

Pair

Pwater

z

P

Pwater Pair=

� The force exerted by water on the card is (almost) equal to
that exerted by air.

� Surface tension effects stabilize the configuration and
compensate for the mass of the card.

CEMRACS 14 Aug. 2013 4 / 21



Hydrostatic equilibrium without a card

� If water and air are in balance, then their interface
should not move, even without a card.

Gauze

� What is the purpose of gauze ?

• Not a mechanical barrier : no strength, porous

• It helps surface tension “smooth” the interface.

Gauze suppresses small ripples at the interface
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Rippled interface

a

air

w > air

x=0 x=l/2x=-l/2

g

� Imagine that:
• The interface is still
• Pair (x = 0) = PW (x = 0) = P0

� Then, hydrostatic balance implies that:
• Pair (−`/2) = P0 − ρair g a/2 & PW (−`/2) = P0 − ρW g a/2

[Pair − PW ](−`/2) = (ρW − ρair ) g a/2 > 0

• Opposite at x = +`/2:

[Pair − PW ](+`/2) = −(ρW − ρair ) g a/2 < 0

� This simple reasoning:
• Shows that a rippled interface cannot be still
• Suggests that air pushes water around and goes up at x = −`/2

and that water pushes air around and goes down at x = +`/2.
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Rayleigh-Taylor instability (RTI)

a

g

grad

� Velocity ux , uz Þ vorticity ω = ∂xuy − ∂yux

Euler eq. : ∂t
ω

ρ
= −∇ρ ∧∇P

ρ3

� Normal mode analysis:

a(t) = a0e
√

At gκt

At = ρW−ρair
ρW +ρair

, κ = wave number of the perturbation

� RTI is the reason why water falls from the glass.
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A simple Rayleigh-Taylor experiment

Soluble coffe

� Surface tension holds the
coffe grains

� The grains mix with water

� Mixed water is denser
than fresh water Þ RTI
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A simple Rayleigh-Taylor experiment

Soluble coffe

� Surface tension holds the
coffe grains

� The grains mix with water

� Mixed water is denser
than fresh water Þ RTI

Þ
� Mushroom shaped

structures appear

� Eventually, some
chaotic, random mixing
Þ turbulence

CEMRACS 14 Aug. 2013 8 / 21



Non-linear stage of RTI

From Peng et al., Phys. Fluids, Vol. 15, No. 12, 2013

� Shear instability (Kelvin-Helmotz) at the tip of the bubble

� Creates two contra-rotative vortices

⇒ mushroom shape
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Transition to turbulence

From Peng et al., Phys. Fluids, Vol. 15, No. 12, 2013

� Shear instability and RTI keep on producing smaller vortices

� Richardson’s cascade:
Big whirls have little whirls

that feed on their velocity,
and little whirls have lesser whirls,

and so on to viscosity
– in the molecular sense.

� Eventually, vortices with a continuous spectrum of scales are
created.
• From ` ∼ size of the largest mushroom
• To η ∼molecular dissipation scale
• `/η can reach values up to 106 and more
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About RTI small scales (1/2)

� Kolmogorov-Obukhov (KO,1941) gave a more precise
description of the Richardson’s cascade in Homogeneous
Isotropic Turbulence (HIT).

� Velocity increment between two points

δu = u(x + r)− u(x) ∼ velocity of vortex of size r

� In HIT, energy decays: ∂t

D
1
2 |u|

2
E

= −〈ε〉 = −ν
D
|∇u|2

E
• 〈ε〉 is the mean kinetic energy dissipation
• 〈ε〉 remains finite when ν → 0

� Kolmogorov-Obukhov (but also Heisenberg, Onsager, von Weizsäcker)

conjectured that, for small scales `� r � η:

δu ∝ (〈ε〉 r)1/3

• In particular:
D
δu2

E
= Cr 〈ε〉2/3 r2/3

or in spectral space Eκ = C0 〈ε〉2/3 κ−5/3
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About RTI small scales (2/2)

� Kolmogorov (1941) gave one of the few (if not the sole) exact
laws of turbulence: D

δu3
‖

E
= − 4

5 〈ε〉 r

� Interpretation:
• Energy flux ΠR flowing from scales larger than R to scales smaller

than R

ΠR = −
1

4VR

I
Sphere(R)

δu|δu|2 ·
r
|r |

dS

• 4/5th law ΠR = 〈ε〉
• Energy flows from large to small scales at a constant rate 〈ε〉
≈ Richardson’s cascade

� In RTI, this phenomenology is almost unchanged:

• buoyancy only creates a small inverse cascade and adds
anisotropy
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About RTI large scales (1/2)

L Mixing zone

Heavy fluid

Light Fluid 

H > 

L

g
L

� Large scales reach a self-similar state

� Dimensional analysis: (NB: At = (ρH − ρL)/(ρH + ρL))

L = 2α(At )gt2

� α is the mixing width constant
• Most theoretical/numerical/experimental works about RTI in the

turbulent stage are devoted to finding the value of α.
• Most engineering models are calibrated to reproduce a

“correct” value of α.
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About RTI large scales (2/2)

� The mixing constant α is not universal.
� α depends on the initial perturbation at very large scales, i.e.

at scales larger than L, the mixing zone width.
� Very large scales have a slow evolution that can affect the flow

at large times.

From Grea B.-J., Phys. Fluids, 2013
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Some examples of RTI

� Geology:
• Significant deformation can occur in plate interiors
• Interaction between the lithosphere and underlying mantle
• Rayleigh-Taylor is suspected to be one of these interactions

From P. Molnar, univ. colorado

• Density contrast due to the contraction of lithosphere, or
compositional density variations.

• Timescale: 1-10 millions of years, Lengthscale: 100 km

CEMRACS 14 Aug. 2013 15 / 21



Some examples of RTI
� Inertial Confinement Fusion (ICF): (Images from LLNL, LANL)

� Timescale: 10−12 s, Lengthscale: < 10−6 m
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Some examples of RTI

� Type Ia supernovae: (Images from LLNL, LANL)

• RTI is thought to be the main mechanism destabilizing the nuclear
flame

• Nuclear combustion regime: from thin to thick flames
• Transition from deflagration to detonation ?

I Abundancy of some heavy elements
I Light curve: estimating distances

� Timescale: 1 s, Lengthscale: 106 m
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Interlude: impulsive acceleration

� In RTI, acceleration is continuous in time and space

� What happens when g is impulsive ?

� Richtmyer-Meshkov
instability

• Linear stage:
a(t) = a0At ∆Uκt

• Turbulent stage:
a(t) ∝ tθ

� “Balloon” instability
(Dalziel & Lund, 2011)
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How can we predict RTI turbulence ?

� Direct numerical simulations (DNS) of the Navier-Stokes
equations

� Largest DNS of RTI by Cook & Cabot (2006):
• 30723 = 29 · 109 numerical cells, ≈ 12 days on 131000 CPUs (IBM

Blue Gene).
• `/η on the order of 50− 100 Þ still a small separation of scale
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PDF approach

� DNS too costly for engineering applications
⇒ turbulent models

� Huge variety of turbulent models
• will only discuss so called “PDF models” (PDF is for

probability density function)

� Principle:
• The flow is decomposed

into “tiny” cells of fluid

• Model predicts the
trajectory and interactions
between these fluid
particles

Simulation of a turbulent flame with a PDF
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Project TURBULENT at CEMRACS

� Typical modelled PDF equation ≈ Fokker-Planck
equation

For instance, for a one componential velocity field:

∂t f + u∂x f = −∂u

„
∂x

D
u2
E

f −
C1

2
ωuf

«
+

C0ω
D

u2
E

2
∂2

u2 f

� Objective of project TURBULENT :

• Solve a PDF model like the one above in a simplified
RT configuration

• Work done by Nadezda Petrova, Viviana Letizia,
Casimir Emako, Remi Sainct, Vincent Perrier
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