

Olivier Soulard

CEA-DAM

CEMRACS, Marseille 14 August 2013

Intuitive answer : water is "heavier" than air

Water is "heavier" than air ?

Mass of water:

$$M = \rho_W V = 200g$$

• with $V = 20cl, \rho_W = 1g/cm^3$

Water is "heavier" than air ?

Mass of water:

$$M = \rho_W V = 200g$$

• with
$$V = 20cI$$
, $\rho_W = 1g/cm^3$

What mass can air at atmospheric pressure sustain on the surface S of the glass ?

$$M_{max} = \frac{P_{air}S}{g} = 20 \ kg$$

• with earth gravity $g = 10 m/s^2$, $P_{air} = 1 atm$, $S = 20 cm^2$

Equivalent of a 10 m water column

But why does not the card fall ?

But why does not the card fall ?

Hydrostatic equilibrium \rightarrow in water $P = P_{air} - \rho_W gz$.

- The force exerted by water on the card is (almost) equal to that exerted by air.
- Surface tension effects stabilize the configuration and compensate for the mass of the card.

Hydrostatic equilibrium without a card

If water and air are in balance, then their interface should not move, even without a card.

Hydrostatic equilibrium without a card

If water and air are in balance, then their interface should not move, even without a card.

- What is the purpose of gauze ?
 - Not a mechanical barrier : no strength, porous

Hydrostatic equilibrium without a card

If water and air are in balance, then their interface should not move, even without a card.

- What is the purpose of gauze ?
 - Not a mechanical barrier : no strength, porous
 - It helps surface tension "smooth" the interface.

Gauze suppresses small ripples at the interface

Rippled interface

- Imagine that:
 - The interface is still
 - $P_{air}(x=0) = P_W(x=0) = P_0$

Then, hydrostatic balance implies that:

• $P_{air}(-\ell/2) = P_0 - \rho_{air} g a/2$ & $P_W(-\ell/2) = P_0 - \rho_W g a/2$

$$[P_{air} - P_W](-\ell/2) = (\rho_W - \rho_{air}) g a/2 > 0$$

• Opposite at $x = +\ell/2$:

$$[P_{air} - P_W](+\ell/2) = -(
ho_W -
ho_{air}) \; g \; a/2 < 0$$

This simple reasoning:

- Shows that a rippled interface cannot be still
- Suggests that air pushes water around and goes up at $x = -\ell/2$ and that water pushes air around and goes down at $x = +\ell/2$.

Rayleigh-Taylor instability (RTI)

cea

Velocity $u_x, u_z \rightarrow \text{vorticity } \omega = \partial_x u_y - \partial_y u_x$ Euler eq. : $\partial_t \frac{\omega}{\rho} = -\frac{\nabla \rho \wedge \nabla P}{\rho^3}$

Rayleigh-Taylor instability (RTI)

cea

Velocity $u_x, u_z \rightarrow \text{vorticity } \omega = \partial_x u_y - \partial_y u_x$ Euler eq. : $\partial_t \frac{\omega}{\rho} = -\frac{\nabla \rho \wedge \nabla P}{\rho^3}$

Normal mode analysis:

$$a(t) = a_0 e^{\sqrt{A_t g_\kappa} t}$$

 $A_{t}=\frac{\rho_{W}-\rho_{olr}}{\rho_{W}+\rho_{olr}}$, κ = wave number of the perturbation

Rayleigh-Taylor instability (RTI)

Velocity $u_x, u_z \rightarrow \text{vorticity } \omega = \partial_x u_y - \partial_y u_x$ Euler eq. : $\partial_t \frac{\omega}{\rho} = -\frac{\nabla \rho \wedge \nabla P}{\rho^3}$

Normal mode analysis:

cea

$$a(t) = a_0 e^{\sqrt{A_t g_\kappa} t}$$

 $A_{t}=\frac{\rho_{W}-\rho_{olr}}{\rho_{W}+\rho_{olr}}$, κ = wave number of the perturbation

RTI is the reason why water falls from the glass.

A simple Rayleigh-Taylor experiment

A simple Rayleigh-Taylor experiment

- Mushroom shaped structures appear
- Eventually, some chaotic, random mixing → turbulence

Non-linear stage of RTI

From Peng et al., Phys. Fluids, Vol. 15, No. 12, 2013

- Shear instability (Kelvin-Helmotz) at the tip of the bubble
- Creates two contra-rotative vortices
- ⇒ mushroom shape

Transition to turbulence

From Peng et al., Phys. Fluids, Vol. 15, No. 12, 2013

Shear instability and RTI keep on producing smaller vortices

Richardson's cascade:

Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls, and so on to viscosity – in the molecular sense.

- Eventually, vortices with a continuous spectrum of scales are created.
 - From $\ell \sim \text{size}$ of the largest mushroom
 - To $\eta \sim$ molecular dissipation scale
 - ℓ/η can reach values up to 10⁶ and more

Kolmogorov-Obukhov (KO,1941) gave a more precise description of the Richardson's cascade in Homogeneous Isotropic Turbulence (HIT).

Velocity increment between two points

 $\delta \boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{r}) - \boldsymbol{u}(\boldsymbol{x}) \sim \text{velocity of vortex of size } \boldsymbol{r}$

In HIT, energy decays: $\partial_t \left\langle \frac{1}{2} |u|^2 \right\rangle = -\langle \varepsilon \rangle = -\nu \left\langle |\nabla u|^2 \right\rangle$

- + $\langle \varepsilon \rangle$ is the mean kinetic energy dissipation
- $\langle \varepsilon \rangle$ remains finite when $\nu \to 0$
- Kolmogorov-Obukhov (but also Heisenberg, Onsager, von Weizsäcker) conjectured that, for small scales $\ell \gg r \gg \eta$:

$$\delta u \propto \left(\left< \epsilon \right> r
ight)^{1/3}$$

• In particular:
$$\langle \delta u^2 \rangle = C_r \langle \epsilon \rangle^{2/3} r^{2/3}$$

or in spectral space $E_{\kappa} = C_0 \langle \epsilon \rangle^{2/3} \kappa^{-5/3}$

About RTI small scales (2/2)

Kolmogorov (1941) gave one of the few (if not the sole) exact laws of turbulence:

$$\left\langle \delta u_{\parallel}^{3} \right\rangle = -\frac{4}{5} \left\langle \epsilon \right\rangle r$$

Interpretation:

· · - + - ·

• Energy flux $\Pi_{\mathcal{R}}$ flowing from scales larger than \mathcal{R} to scales smaller than \mathcal{R}

$$\Pi_{R} = -\frac{1}{4V_{R}} \oint_{Sphere(R)} \overline{\delta \boldsymbol{u} |\delta \boldsymbol{u}|^{2}} \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|} dS$$

•
$$4/5'''$$
 law $\Pi_R = \langle \varepsilon \rangle$

• Energy flows from large to small scales at a constant rate $\langle \varepsilon \rangle \approx$ Richardson's cascade

In RTI, this phenomenology is almost unchanged:

• buoyancy only creates a small inverse cascade and adds anisotropy

About RTI large scales (1/2)

Large scales reach a self-similar state

Dimensional analysis: (NB: $A_t = (\rho_H - \rho_L)/(\rho_H + \rho_L)$)

 $L = 2\alpha_{(A_t)}gt^2$

 α is the mixing width constant

- Most theoretical/numerical/experimental works about RTI in the turbulent stage are devoted to finding the value of α .
- Most engineering models are calibrated to reproduce a "correct" value of α .

About RTI large scales (2/2)

I The mixing constant α is not universal.

- α depends on the initial perturbation at very large scales, i.e. at scales larger than L, the mixing zone width.
- Very large scales have a slow evolution that can affect the flow at large times.

Some examples of RTI

- Geology:
 - Significant deformation can occur in plate interiors
 - Interaction between the lithosphere and underlying mantle
 - Rayleigh-Taylor is suspected to be one of these interactions

From P. Molnar, univ. colorado

- Density contrast due to the contraction of lithosphere, or compositional density variations.
- Timescale: 1-10 millions of years, Lengthscale: 100 km

Some examples of RTI

Inertial Confinement Fusion (ICF): (Images from LLNL, LANL)

Timescale: 10^{-12} s, Lengthscale: $< 10^{-6}$ m

Some examples of RTI

Type la supernovae: (Images from LLNL, LANL)

- Nuclear combustion regime: from thin to thick flames
- Transition from deflagration to detonation ?
 - Abundancy of some heavy elements
 - Light curve: estimating distances

Timescale: 1 s, Lengthscale: 10⁶ m

Interlude: impulsive acceleration

- In RTI, acceleration is continuous in time and space
- What happens when g is impulsive ?

Interlude: impulsive acceleration

- In RTI, acceleration is continuous in time and space
- What happens when g is impulsive ?

Richtmyer-Meshkov instability

- Linear stage: $a(t) = a_0 A_t \Delta U \kappa t$
- Turbulent stage: $a(t) \propto t^{\theta}$

Interlude: impulsive acceleration

- In RTI, acceleration is continuous in time and space
- What happens when g is impulsive ?
- Richtmyer-Meshkov instability

- Linear stage: $a(t) = a_0 A_t \Delta U \kappa t$
- Turbulent stage: $a(t) \propto t^{\theta}$

"Balloon" instability (Dalziel & Lund, 2011)

How can we predict RTI turbulence ?

- Direct numerical simulations (DNS) of the Navier-Stokes equations
- Largest DNS of RTI by Cook & Cabot (2006):
 - $3072^3 = 29 \cdot 10^9$ numerical cells, ≈ 12 days on 131000 CPUs (IBM Blue Gene).
 - ℓ/η on the order of 50 100 \rightarrow still a small separation of scale

PDF approach

DNS too costly for engineering applications turbulent models

Huge variety of turbulent models

will only discuss so called "PDF models" (PDF is for probability density function)

Principle:

- The flow is decomposed into "tiny" cells of fluid
- Model predicts the trajectory and interactions between these fluid particles

Simulation of a turbulent flame with a PDF method

Project TURBULENT at CEMRACS

Typical modelled PDF equation \approx Fokker-Planck equation

For instance, for a one componential velocity field:

$$\partial_{t}f + u\partial_{x}f = -\partial_{u}\left(\partial_{x}\left\langle u^{2}\right\rangle f - \frac{C_{1}}{2}\omega uf\right) + \frac{C_{0}\omega\left\langle u^{2}\right\rangle}{2}\partial_{u^{2}}^{2}f$$

Objective of project TURBULENT :

- Solve a PDF model like the one above in a simplified RT configuration
- Work done by Nadezda Petrova, Viviana Letizia, Casimir Emako, Remi Sainct, Vincent Perrier