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Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms

Valid as a good approximation to quantum dynamics as long as there is
no bond breaking/ bond formation, due to small mass ratio me`

mnuc
∼ 10−4

Ambrosio-F.-Giannoulis, Comm. PDE 35, 1490-1515, 2010; Ambrosio-Figalli-F.-Giannoulis-Paul, arXiv, 2011

Often, also add small amount of damping+noise (emulate
environment e.g. solvent), of which more later

Typical phenomenon in simulations

I Irregular small oscillations around metastable states
(“conformations”) at short timescales
10−14 sec

I Transitions to different metastable states at much larger
timescales
10−12 sec for small peptides; 10−6 to 102 sec for proteins
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Example: Molecular dynamics simulation of butane

Butane (cis and trans conformation)

Dynamics of C-C bondlengths, C-C-C bond angles, and
C-C-C-C torsion angle (Friesecke/Junge/Koltai)
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Hamiltonian of n-Butane
CH3 — CH2 — CH2 — CH2 · · · CH2 — CH3

xi ∈ R3 position of i th CH2 group, pi ∈ R3 momenta

H =
∑

i

|pi |2

2m
+ V (x1, .., xn)

V =
∑
i ,j

Vbond (rij ) +
∑
i ,j ,k

Vang (θijk) +
∑

i ,j ,k,`

Vtor (φijk`)

1st-neighbour bond potential depending on rij = |xi − xj |
2nd-neighbour angular potential dep. on θijk = arccos

xi−xj

rij
· xk−xj

rkj

3rd-neighbour torsion potential dep. on torsion angle φijk`

Vbond = 1
2

kbond (rij − r0)2, Vang = kang (cos θijk − cos θ0)2, Vtor =

.

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 9



Hamiltonian of n-Butane
CH3 — CH2 — CH2 — CH2 · · · CH2 — CH3

xi ∈ R3 position of i th CH2 group, pi ∈ R3 momenta

H =
∑

i

|pi |2

2m
+ V (x1, .., xn)

V =
∑
i ,j

Vbond (rij ) +
∑
i ,j ,k

Vang (θijk) +
∑

i ,j ,k,`

Vtor (φijk`)

1st-neighbour bond potential depending on rij = |xi − xj |
2nd-neighbour angular potential dep. on θijk = arccos

xi−xj

rij
· xk−xj

rkj

3rd-neighbour torsion potential dep. on torsion angle φijk`

Vbond = 1
2

kbond (rij − r0)2, Vang = kang (cos θijk − cos θ0)2, Vtor =

.

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 10



Hamiltonian of n-Butane
CH3 — CH2 — CH2 — CH2 · · · CH2 — CH3

xi ∈ R3 position of i th CH2 group, pi ∈ R3 momenta

H =
∑

i

|pi |2

2m
+ V (x1, .., xn)

V =
∑
i ,j

Vbond (rij ) +
∑
i ,j ,k

Vang (θijk ) +
∑

i ,j ,k,`

Vtor (φijk`)

1st-neighbour bond potential depending on rij = |xi − xj |
2nd-neighbour angular potential dep. on θijk = arccos

xi−xj

rij
· xk−xj

rkj

3rd-neighbour torsion potential dep. on torsion angle φijk`

Vbond = 1
2

kbond (rij − r0)2, Vang = kang (cos θijk − cos θ0)2, Vtor =

.

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 11



Hamiltonian of n-Butane
CH3 — CH2 — CH2 — CH2 · · · CH2 — CH3

xi ∈ R3 position of i th CH2 group, pi ∈ R3 momenta

H =
∑

i

|pi |2

2m
+ V (x1, .., xn)

V =
∑
i ,j

Vbond (rij ) +
∑
i ,j ,k

Vang (θijk ) +
∑

i ,j ,k,`

Vtor (φijk`)

1st-neighbour bond potential depending on rij = |xi − xj |
2nd-neighbour angular potential dep. on θijk = arccos

xi−xj

rij
· xk−xj

rkj

3rd-neighbour torsion potential dep. on torsion angle φijk`

Vbond = 1
2

kbond (rij − r0)2, Vang = kang (cos θijk − cos θ0)2, Vtor =

.

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 12



Hamiltonian of n-Butane
CH3 — CH2 — CH2 — CH2 · · · CH2 — CH3

xi ∈ R3 position of i th CH2 group, pi ∈ R3 momenta

H =
∑

i

|pi |2

2m
+ V (x1, .., xn)

V =
∑
i ,j

Vbond (rij ) +
∑
i ,j ,k

Vang (θijk ) +
∑

i ,j ,k,`

Vtor (φijk`)

1st-neighbour bond potential depending on rij = |xi − xj |
2nd-neighbour angular potential dep. on θijk = arccos

xi−xj

rij
· xk−xj

rkj

3rd-neighbour torsion potential dep. on torsion angle φijk`

Vbond = 1
2

kbond (rij − r0)2, Vang = kang (cos θijk − cos θ0)2, Vtor =

. Gero Friesecke (TU Munich) Transfer operators and time scale bridging 13



Connection of n-Butane Hamiltonian to other models

I θ0 = 180o (preferred bond angle is straight)
=⇒ get Fermi-Pasta-Ulam as an invariant submanifold

all xi and pi collinear, i.e. purely longitudinal motion

I n = 4 (standard Butane), Vang = Vtor = 0, kbond →∞
=⇒ get Thurston triple linkage

Thurston/Weeks, Sci.Amer., 1984; Hunt/MacKay, Nonlinearity, 2003
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Key questions from an applications point of view
−→ biophysics, molecular biology, drug design, protein folding pb., ...

I Mathematical definition of ‘conformation’.
Heuristically, neighbourhood of a local energy min. But which nbhd should you take?

I Computational methods which track conformation changes for
large systems.
Occur at long timescales, way beyond reliable trajectory simulation.

Biological examples (more complex than butane): retinal cis-trans transition; DNA α-β transition; hemoglobin T-R transition
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Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999.
Instead of individual trajectories, consider evolution of densities on
phase space (‘ensembles’ of initial conditions).

I transfer operator = map from density|t=0 to density|t=T

I invariant measure = eigenfunction with e-value 1
I conformations = joint nodal domains of first k eigenfctns
I lifetimes can be estimated via distance of eigenvalues from 1

Huisinga/Schmidt, 2005
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Instead of individual trajectories, consider evolution of densities on
phase space (‘ensembles’ of initial conditions).

I transfer operator = map from density|t=0 to density|t=T

I invariant measure = eigenfunction with e-value 1
I conformations = joint nodal domains of first k eigenfctns
I lifetimes can be estimated via distance of eigenvalues from 1

Huisinga/Schmidt, 2005

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 22



Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999.
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Key advantage for small systems

Suffices to compute transfer operator for short time

Catch for large systems

No. of computational DOF’s exponential in no. of atoms

Eigenfunctions are functions on phase space
For M atoms: functions on R6M

R → 10 gridpts implies R6M → 10M gridpts

Our proposal:

Keep transfer operators, but make mean field approximation
(w.r.to small subsystems)

no. of computational DOF’s ∼ linear in no. of subsystems
Partially inspired by Hartree-Fock approximation to many-electron Schroedinger eq.
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Exact transfer operator for Hamiltonian MD

P = push-forward of measure under Hamiltonian flow

Pµ(Ω) = µ(Φ−1(Ω))

where Φ = time-T map of Hamiltonian flow, i.e.
Φ(q0, p0) = (q(t), p(t)) with

q̇ = M−1p, ṗ = −∇V (q)

(p, q) = (p1, q1, . . . , pN , qN) ∈ R6N

For Langevin MD: P = stochastic transition function

Pµ(Ω) =

∫
p(x,Ω) dµ(x)

p(x,Ω) = stochasic transition fctn = prob. that a trajectory initially at x ends up in set A after time T

q̇ = M−1p, ṗ = −∇V (q)− γM−1p +
√

2γβ−1 Ẇ

Unique invariant measure, alias eigenstate with e-val. 1 i.e. Pµ = µ: const e−βH Gibbs-Boltzmann
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Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)

Step 2 Mean field approximation of Liouville eq. (w.r. to a
partitioning into subsystems)

Step 3 Approximate variational principle for eigenstates of exact
transfer operator by ‘Hartree-Fock’ like nonlinear variational
principle

Step 4 Solve nonlinear problem by Roothaan type algorithm + sparse
Ulam method, yielding approximate eigenstates
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1. PDE formulation of transfer operator
MD: Evolution of trajectories

ż = f (z), z =

(
q
p

)
, f =

(
∂H
∂p

−∂H
∂q

)
Hamiltonian: H(q, p) = 1

2
p · M(q)−1p + V (q)

Mass matrix M depends on q when inner coordinates (bondlengths, bond angles, torsion angles) are used

Liouville eq.: Evolution of densities on phase space

∂u

∂t
+ divz (f u) = 0, u = u(z , t)

Special case: ‘sharp’ trajectories u(z, t) = δ(z − z(t))

Preserves positivity of u and total mass
∫

u(z, t) dz −→ evol. on prob.densities

Preserves (expected value of) energy, E(t) =
∫

H(z) u(z, t) dz

Langevin case: Fokker-Planck equation

Transfer operator via Liouville eq.

Pu(·, 0) = u(·,T )
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Mean field approx. of Liouville eq.
Partition phase space coord’s z = (q, p) into subsystem coord’s

z = (z1, .., zN ) ∈ R2d , zi = (qi , pi ) ∈ R2di ,
∑N

i=1di = d

Subsystem densities

ui (zi , t) :=

∫
R2(d−di )

u(z , t) dẑi

Exact evolution of subsystem densities

∂tui + divzi (ui f exact
i ) = 0, f exact

i =

∫
u(z , t) fi (z) dẑi∫

u(z , t) dẑi
(∗)

Not a closed system, f exact
i depends on full density u and not just the uj

Mean field approximation: Replace u(z , t) in (*) by
∏

j uj (zj , t)

f mf
i (zi , t) =

∫
R2(d−di )

∏
j 6=iuj (zj , t) fi (z) dẑi

Closed system, f mf
i = f mf

i [u1, .., uN ](zi , t)

Coupled system of N nonlinear partial integrodifferential eqns on subsystem phase spaces R2di

Physically: Each subsystem experiences force of ensemble of other subsystems at ‘typical’ states at time t
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Mean field approx. of Liouville eq.
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Coupled system of N nonlinear partial integrodifferential eqns on subsystem phase spaces R2di

Physically: Each subsystem experiences force of ensemble of other subsystems at ‘typical’ states at time t

Key point: high-D, linear equation → low-D, nonlinear system
Gero Friesecke (TU Munich) Transfer operators and time scale bridging 45



Summary: Mean field approx. of Liouville eq.
Recall u(z1, .., zN) = u1(z1) · ... · uN(zN), zi = (qi , pi ) ∈ R2di

Mean field eq.

∂ui

∂t
+ div(f eff

i ui ) = 0,

f eff
i (zi , t) =

∫
R2(d−di )

f (z1, .., zN)
∏
j 6=i

uj (zj , t) dẑi

N coupled nonlinear partial integrodifferential equations on R2di

(Original Liouville equation is a linear PDE on R2d , d =
∑

i di )

Mean field transfer operator

Pmf (u1|t=0 ⊗ · · · ⊗ uN |t=0) = u1|t=T ⊗ · · · ⊗ uN |t=T

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 46



Summary: Mean field approx. of Liouville eq.
Recall u(z1, .., zN) = u1(z1) · ... · uN(zN), zi = (qi , pi ) ∈ R2di

Mean field eq.

∂ui

∂t
+ div(f eff

i ui ) = 0,

f eff
i (zi , t) =

∫
R2(d−di )

f (z1, .., zN)
∏
j 6=i

uj (zj , t) dẑi
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Mean field approximation of transfer operator eigenstates

Recall: transfer operator = time T map of Liouville eq.,
Pu(·, 0) = u(·,T )

Variational principle for eigenstates of Pexact :

max
v
〈v ,Pexactv〉 subject to 〈v , v〉 = 1, 〈f , g〉 =

∫
f g dµ

‘Hartree-Fock’ like variational principle for eigenstates of Pmf :

max
v1,..,vN

〈v1 ⊗ · · · ⊗ vN ,P
mf v1 ⊗ · · · ⊗ vN〉
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Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

I Total densities
∫

R2di ui (zi , t) dzi conserved
I Total energy E =

∫
H(z)

∏
i ui (zi , t) dz conserved

I Model is exact for a non-interacting system, i.e. if
H =

∑
i Hi (zi ) then u1(z1) · ... · uN(zN) solves the original

Liouville eq.
I For fixed uj , j 6= i , the eq. for ui is the Liouville eq. for an

underlying time-dependent Hamiltonian ODE,

q̇i =
∂Heff

i

∂pi
, ṗi = −

∂Heff
i

∂qi
,

where

Heff
i (zi , t) =

∫
R2(d−di )

H(z1, .., zN)
∏
j 6=i

uj (zj , t) dẑi

Importantly, Heff
i does not depend on ui , only on the other uj . This

facilitates iterative updating methods via sample trajectories.
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Importantly, Heff
i does not depend on ui , only on the other uj . This

facilitates iterative updating methods via sample trajectories.

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 55



Validation of mean field model, I: Theoretical properties
Theorem (F./Junge/Koltai)

I Total densities
∫

R2di ui (zi , t) dzi conserved
I Total energy E =

∫
H(z)

∏
i ui (zi , t) dz conserved

I Model is exact for a non-interacting system, i.e. if
H =

∑
i Hi (zi ) then u1(z1) · ... · uN(zN) solves the original

Liouville eq.
I For fixed uj , j 6= i , the eq. for ui is the Liouville eq. for an

underlying time-dependent Hamiltonian ODE,

q̇i =
∂Heff

i

∂pi
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A surprising property of the mean field model

Theorem (F., Junge, Koltai)

Consider a Hamiltonian with weakly interacting subsystems,

H(z) = H0(z) + εHint(z), H0(z) =
∑

i

Hi (zi ).

Then
||uexact − umf ||L1 = O(ε2),

uniformly for 0 ≤ t ≤ T .

Naively, would expect the error to be of the order of the coupling
constant, O(ε). Result says that the mean field model resolves
coupling between subsystems correctly to leading order!
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How to partition into subsystems?

The previous theorem (leading order correctness for weakly coupled
subsystems) helps to choose a good partitioning.

In standard coordinates, the Hamiltonian H is strongly coupled in
the particle positions, V = V (q1, .., qN).

But in inner coordinates (bondlengths, bond angles, torsion
angles), the potential energy decouples completely (in chain
molecules with first, second and third neighbour interactions, i.e.
bond, angular and torsion potentials)! The only remaining
complying is in the kinetic energy.
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Validation of mean field model, II:
Numerical comparisons to exact model
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Example: Two-oscillator toy system

H =
p2

1

2m1
+

p2
2

2m2
+ V (q1, q2)

V = ( 3
2q4

1 + 1
4q3

1 − 3q2
1 − 3

4q1 + 3)(2q4
2 − 4q2

2 + 3) = V1(q1)V2(q2)

Mean field approximation to Liouville eq. reads explicitly:

∂tui (zi , t) =

 −m−1
i pi

∇qi Vi (qi )

∫
Vj (qj ) uj (zj , t) dzj

·∇zi ui (zi , t), i = 1, 2, j 6= i .

Mean field transfer operator = time T map of above nonl.system

Want to find leading eigenstates of this operator (≈ conformations)
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Example: Two-oscillator toy system
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Example: Butane

V3(φ) = Kφ
(
1.116− 1.462 cosφ− 1.578 cos2 φ+ 0.368 cos3 φ

+3.156 cos4 φ+ 3.788 cos5 φ
)
, Kφ = 8.314

kJ

mol
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Example: Butane

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
 

φ

 

θ 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
 

φ

 

θ 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Dominant eigenvectors of full transfer operator
λ2 = 0.985 (left), λ3 = 0.982 (right), slice at q1 = θ1 = π2, 32×32×32 grid, T = 0.5 · 10−13s

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
 

φ

 

θ 2

−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
 

φ

 

θ 2

−1.5

−1

−0.5

0

0.5

1

1.5

Mean field approximation to these eigenvectors
10 Roothaan iterations

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 66



Computational method for finding eigenstates

Need to solve:

max
u1,..,uN

〈
u1 ⊗ · · · ⊗ uN , Pmf (u1 ⊗ · · · ⊗ uN)

〉
Algorithm

Set u(0) := u
(0)
1 ⊗ ...⊗ u

(0)
d

Solve Pmf ,i (û
(N)
i )u

(N+1)
i = λiu

(N+1)
i , cycling through i

Set u(N+1) := u
(N+1)
1 ⊗ ...⊗ u

(N+1)
d

Inspired by Roothaan algorithm for solving the Hartree-Fock
equations in quantum chemistry. Inner step: sparse Ulam method

Nice math. structure (operator PT self-adjoint, cf.
time-reversibility, and linear in ui for fixed uj , j 6= i)

In original QChem context, algorithm proven to converge, cf.
Roothaan 1952, Cances/Le Bris 2000
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Hamilton versus Langevin

Test system: butane

United atom model
Inner coordinates: r1, r2, r3, θ1, θ2, φ
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Hamilton versus Langevin, I: orbits look similar

Bond angle and torsion angle evolution, MD Bond angle and torsion angle evolution, Langevin
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Hamilton versus Langevin, II: orbits look similar

Bond angle and torsion angle evolution, MD Bond angle and torsion angle evolution, Langevin
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Hamilton versus Langevin, III:
position-momentum correlations are completely different

Distribution of torsion angle momentum φ̇, conditioned on |φ− φ1| < 0.03. Blue=MD, Red=Langevin

Distribution of torsion angle momentum φ̇, conditioned on |φ− φ0| < 0.03. Blue=MD, Red=Langevin
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Summary and future

I Have derived a mean field approximation to transfer operators
which offers hope towards systematic application to large
molecules.
Key point: linear PDE on R6N −→ system of nonl. PDE’S in
low dim’s

I Theoretical properties of mean field system and performance
tests on small systems very promising

I Currently under way: larger scale examples

I Future: mathematical framework which includes coupling with
electronic structure and photons (Example: Retinal)

THANKS FOR ATTENTION
http://www-m7.ma.tum.de
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