Rare Event Simulation for Molecular Dynamics

Arnaud Guyader
Rennes University \& INRIA Rennes

Joint work with :

- F. Cérou, T. Lelièvre and D. Pommier (Algorithm)
- F. Cérou, T. Lelièvre and F. Malrieu (Theory)

ENUMATH Conference 2011
September 8, 2011, Leicester

Introduction

The aim of Molecular Dynamics computations is to evaluate macroscopic quantities from models at the microscopic scale.
(i) thermodynamics quantities: stress, heat capacity, free energy (average of some observable wrt an equilibrium measure);
(ii) dynamical quantities: diffusion coefficients, viscosity, transition rates (average over trajectories at equilibrium).
\Rightarrow Many applications in various fields: biology, physics, chemistry, materials science, etc. But Molecular dynamics computations consume today a lot of CPU time.

Introduction

- A molecular dynamics model \Leftrightarrow a potential V.
- A configuration $x=\left(x_{1}, \ldots, x_{n}\right) \Rightarrow$ an energy $V\left(x_{1}, \ldots, x_{n}\right)$.
- Consider the over-damped Langevin (or gradient) dynamics

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \beta^{-1}} d W_{t}
$$

where $\beta=1 /\left(k_{B} T\right)$.

- Equilibrium Boltzmann-Gibbs measure

$$
d \mu=Z^{-1} \exp (-\beta V(x)) d x
$$

where $Z=\int_{\mathbb{R}^{n}} \exp (-\beta V(x)) d x$ is the partition function.

Introduction

Difficulty: In practice, X_{t} is a metastable process, so that the convergence to equilibrium is very slow.
$\Rightarrow \mathrm{A} 2 \mathrm{~d}$ schematic picture: X_{t}^{1} is a slow variable of the system.

Reactive Trajectories

Let A and B denote two metastable (recurrent) regions in \mathbb{R}^{d}.

- Reactive trajectory: piece of equilibrium trajectory that leaves A and goes to B without going back to A in the meantime.
- Problem: one may wait a long time before the trajectory eventually reaches B.

Reaction Coordinate

- Reaction coordinate: Smooth one-dimensional function

$$
\xi: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

with $|\nabla \xi| \neq 0$, and there exist $\xi_{\text {min }}<\xi_{\text {max }}$ such that

$$
A \subset\left\{x \in \mathbb{R}^{d}, \xi(x)<\xi_{\min }\right\} \text { and } B \subset\left\{x \in \mathbb{R}^{d}, \xi(x)>\xi_{\max }\right\}
$$

- Examples: $\xi(x)=\left\|x-x_{A}\right\|$ or $\xi(x)=\left|x^{1}-x_{A}^{1}\right|$.
- Remark: Reaction coordinate in Molecular Dynamics \Leftrightarrow Importance function in Rare Events literature.

Reaction Coordinate

- Example: $\xi(x)=\left\|x-x_{A}\right\|$, where x_{A} is a configuration in A.
- The level sets $\{\xi(x)=c\}$ are then Euclidean hyperspheres.
- Importance Splitting [Kahn and Haris, 1951]: clone the trajectories approaching B (wrt ξ), kill the other ones.
- Question: what is the best choice for ξ ?

Committor Function

For the estimation of transition probabilities, it is well known that the optimal reaction coordinate is the committor function

$$
q(x) \triangleq \mathbb{P}\left(\tau_{B}(x)<\tau_{A}(x)\right)=\mathbb{P}\left(X_{t}^{x} \text { reaches } B \text { before } A\right)
$$

solution of the following PDE

$$
\left\{\begin{array}{l}
-\nabla V \cdot \nabla q+\beta^{-1} \Delta q=0 \text { in } \mathbb{R}^{d} \backslash(\bar{A} \cup \bar{B}), \\
q=0 \text { on } \partial A \text { and } q=1 \text { on } \partial B .
\end{array}\right.
$$

2D Example [Metzner, Schütte and Vanden-Eijnden (2006)]

$$
\begin{aligned}
V(x, y)= & 3 \mathrm{e}^{-x^{2}-\left(y-\frac{1}{3}\right)^{2}}-3 \mathrm{e}^{-x^{2}-\left(y-\frac{5}{3}\right)^{2}}-5 \mathrm{e}^{-(x-1)^{2}-y^{2}} \\
& -5 \mathrm{e}^{-(x+1)^{2}-y^{2}}+0.2 x^{4}+0.2\left(y-\frac{1}{3}\right)^{4} .
\end{aligned}
$$

2D Example [Metzner, Schïte and Vanden-Eijnden (2006)]

- Level Sets of the Committor Function q for $\beta=1.67$.
- Difficulty: in general, finding these level sets is too hard...
\Rightarrow Use another reaction coordinate, e.g. $\xi(x)=\left\|x-x_{A}\right\|$.

Algorithm

Algorithm

- Stopping Rule: iterate until step $k_{\text {max }}$ when all the paths reach $\left\{\xi(x)=\xi_{\max }\right\}$, keep only those which reach B (proportion r).
- Estimation: The probability

$$
\hat{p}=r\left(1-\frac{1}{N}\right)^{k_{\max }}
$$

is the "probability of observing a reactive trajectory".

- Remark: The algorithm can be seen as a kind of adaptive Forward Flux Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning Method [Elber, Faradjian 2004].

2D Example

- 2 Deep Minima: $H_{ \pm}=(\pm 1,0) \Rightarrow A \& B=\mathcal{B}\left(H_{ \pm}, 0.05\right)$.
- 1 Shallow Minimum: $M=(0,1.5)$.
- 3 Saddle Points: $U_{ \pm}=(\pm 0.6,1.1)$ and $L=(0,-0.4)$.
- 2 Channels $\Rightarrow 2$ scenarii, depending on the temperature.

A Few Reactive Trajectories

- Subsamplings of the generated trajectories.
- Reaction coordinate: $\xi(x)=\left\|x-x_{A}\right\|$.
- $\beta=1.67$ (high temperature): shallow is shallow.
- $\beta=6.67$ (low temperature): shallow becomes deep...

Flux of Reactive Trajectories

- The color indicates the norm of the flux.
- Reaction coordinate: $\xi(x)=\left\|x-x_{A}\right\|$.
- $\beta=1.67$: the lower channel is preferred (entropic effect).
- $\beta=6.67$: the upper channel is preferred (lower energy barrier).

Density of Reactive Paths: : $\xi(x)=\left\|x-x_{A}\right\|$

Density for beta $=1.67$

Density for beta $=6.67$

Density of Reactive Paths: : $\xi(x)=\left|x^{1}-x_{A}^{1}\right|$

Density for beta $=1.67$

Density for beta $=6.67$

1D Example: $V(x)=x^{4}-2 x^{2}$.

- Metastable States: $A=(-1.1 ;-0.9)$ and $B=(0.9 ; 1.1)$.
- Reaction Coordinate: $\xi(x)=x$.
- Application: distribution of the duration of the reactive paths.

1D Example

Framework

- Recall:

$$
d X_{t}=-V^{\prime}\left(X_{t}\right) d t+\sqrt{2 k_{B} T} d W_{t}
$$

- Assumption: V is an even double well potential, $V^{\prime \prime}(0)=-1$.
- Metastable States: A and B.
- Question: knowing $T_{a}<T_{-a}$, what is the law of $T_{-a \rightarrow a}$?

An Asymptotic Expansion

Theorem
On the set $\left\{T_{a}<T_{-a}\right\}$, one has

$$
T_{-a \rightarrow a} \underset{T \rightarrow 0}{\sim}-\log \left(k_{B} T\right)+2 \log a-2 H_{a}(0)+G
$$

where G is a standard Gumbel random variable and

$$
H_{a}(s)=\int_{s}^{a} \frac{t+V^{\prime}(t)}{t V^{\prime}(t)} d t
$$

Sketch of the Proof (1)

Denote $\varepsilon=k_{B} T$, and decompose the reactive path in 3 parts

$$
T_{-a \rightarrow a}=T_{-a \rightarrow-\sqrt{\varepsilon}}+T_{-\sqrt{\varepsilon} \rightarrow+\sqrt{\varepsilon}}+T_{\sqrt{\varepsilon} \rightarrow a}
$$

on the event $\left\{T_{a}<T_{-a}\right\}$.

Proof (2): Going Down Is Easy

Thanks to Gronwall's Lemma

$$
T_{\sqrt{\varepsilon} \rightarrow a}-t_{\sqrt{\varepsilon} \rightarrow a} \xrightarrow[\varepsilon \rightarrow 0]{\text { a.s. }} 0
$$

with $t_{\sqrt{\varepsilon} \rightarrow a}$ the time for the unnoised process to reach a from $\sqrt{\bar{\varepsilon}}$:

$$
t_{\sqrt{\varepsilon} \rightarrow a}=-\int_{\sqrt{\varepsilon}}^{a} \frac{1}{V^{\prime}(s)} d s \underset{\varepsilon \rightarrow 0}{\sim} \log \sqrt{\varepsilon}-\log a+H_{a}(0)
$$

Proof (3): The Climbing Part

Freidlin-Wentzell's theory ensures that

$$
T_{-a \rightarrow-\sqrt{\varepsilon}}-t_{-\sqrt{\varepsilon} \rightarrow-a} \xrightarrow[\varepsilon \rightarrow 0]{\text { a.s. }} 0
$$

and since V is even

$$
t_{-\sqrt{\varepsilon} \rightarrow-a}=-\int_{-\sqrt{\varepsilon}}^{-a} \frac{1}{V^{\prime}(s)} d s=t_{\sqrt{\varepsilon} \rightarrow a}
$$

A reactive path doesn't need more time to go up than to go down!

Proof (4): The Middle Earth

Things happen "almost" like for a repulsive Ornstein-Uhlenbeck

$$
d X_{t}=X_{t} d t+\sqrt{2 \varepsilon} d W_{t}
$$

On the set $\left\{T_{\sqrt{\varepsilon}}<T_{-\sqrt{\varepsilon}}\right\}$, one can prove that

$$
T_{-\sqrt{\varepsilon} \rightarrow \sqrt{\varepsilon}} \underset{\varepsilon \rightarrow 0}{\sim}-\log (\varepsilon)+G+o_{\varepsilon}(1) .
$$

where G is a standard Gumbel random variable.

Recall: The Gumbel Distribution

- PDF: $\forall x \in \mathbb{R}, f(x)=e^{-x-e^{-x}}$.
- Extreme Value Theory: if X_{1}, \ldots, X_{n} are i.i.d. $\mathcal{E}(1)$, then

$$
\max \left(X_{1}, \ldots, X_{n}\right)-\log n \underset{n \rightarrow \infty}{\mathcal{L}} G
$$

Conclusion

A new adaptive multilevel splitting type algorithm with a random number of levels. Other possible applications:

- Estimation of the transition times between metastable states.
- Exploration of the energy landscape without any a priori.

References:

1. A. Guyader, N.W. Hengartner and E. Matzner-Løber, Simulation and Estimation of Extreme Quantiles and Extreme Probabilities, Applied Mathematics \& Optimization, 2011.
2. F. Cérou, A. Guyader, T. Lelièvre and D. Pommier, A Multiple Replica Approach to Simulate Reactive Trajectories, Journal of Chemical Physics, 2011.
3. F. Cérou, A. Guyader, T. Lelièvre and F. Malrieu, On the Length of a Reactive Path, preprint, 2011.
