Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# Rare Event Simulation for Molecular Dynamics

#### Arnaud Guyader

Rennes University & INRIA Rennes

Joint work with :

- F. Cérou, T. Lelièvre and D. Pommier (Algorithm)
- F. Cérou, T. Lelièvre and F. Malrieu (Theory)

ENUMATH Conference 2011 September 8, 2011, Leicester

## Introduction

The aim of Molecular Dynamics computations is to evaluate macroscopic quantities from models at the microscopic scale.

(i) thermodynamics quantities: stress, heat capacity, free energy (average of some observable wrt an equilibrium measure);
(ii) dynamical quantities: diffusion coefficients, viscosity, transition rates (average over trajectories at equilibrium).

 $\Rightarrow$  Many applications in various fields: biology, physics, chemistry, materials science, etc. But Molecular dynamics computations consume today a lot of CPU time.

## Introduction

- A molecular dynamics model  $\Leftrightarrow$  a potential V.
- A configuration  $x = (x_1, ..., x_n) \Rightarrow$  an energy  $V(x_1, ..., x_n)$ .
- Consider the over-damped Langevin (or gradient) dynamics

$$dX_t = -\nabla V(X_t) \, dt + \sqrt{2\beta^{-1}} dW_t,$$

where  $\beta = 1/(k_B T)$ .

• Equilibrium Boltzmann-Gibbs measure

$$d\mu = Z^{-1} \exp(-\beta V(x)) \, dx$$

where  $Z = \int_{\mathbb{R}^n} \exp(-\beta V(x)) dx$  is the partition function.

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ → 圖 → の Q @

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

### Introduction

Difficulty: In practice,  $X_t$  is a metastable process, so that the convergence to equilibrium is very slow.

 $\Rightarrow$  A 2d schematic picture:  $X_t^1$  is a slow variable of the system.





Let A and B denote two metastable (recurrent) regions in  $\mathbb{R}^d$ .



• Reactive trajectory: piece of equilibrium trajectory that leaves A and goes to B without going back to A in the meantime.

• Problem: one may wait a long time before the trajectory eventually reaches *B*.

## Reaction Coordinate

• Reaction coordinate: Smooth one-dimensional function

$$\xi: \mathbb{R}^d \to \mathbb{R}$$

with  $|\nabla \xi| \neq 0$ , and there exist  $\xi_{\min} < \xi_{\max}$  such that

 $A \subset \{x \in \mathbb{R}^d, \xi(x) < \xi_{\min}\} \text{ and } B \subset \{x \in \mathbb{R}^d, \xi(x) > \xi_{\max}\}$ 

ション ふゆ メ キャ キャ マ ちょうく

- Examples:  $\xi(x) = ||x x_A||$  or  $\xi(x) = |x^1 x_A^1|$ .
- Remark: Reaction coordinate in Molecular Dynamics ⇔ Importance function in Rare Events literature.

・ロト ・雪 ・ ミート ・ ヨー うらつ

### Reaction Coordinate



- Example:  $\xi(x) = ||x x_A||$ , where  $x_A$  is a configuration in A.
- The level sets  $\{\xi(x) = c\}$  are then Euclidean hyperspheres.
- Importance Splitting [Kahn and Harris, 1951]: clone the trajectories approaching B (wrt  $\xi$ ), kill the other ones.
- Question: what is the best choice for  $\xi$ ?



For the estimation of transition probabilities, it is well known that the optimal reaction coordinate is the committor function

 $q(x) \triangleq \mathbb{P}(\tau_B(x) < \tau_A(x)) = \mathbb{P}(X_t^x \text{ reaches } B \text{ before } A)$ 

solution of the following PDE

$$\begin{cases} -\nabla V \cdot \nabla q + \beta^{-1} \Delta q = 0 \text{ in } \mathbb{R}^d \setminus (\overline{A} \cup \overline{B}), \\ q = 0 \text{ on } \partial A \text{ and } q = 1 \text{ on } \partial B. \end{cases}$$

ション ふゆ メ キャ キャ マ ちょうく

#### 2D Example [Metzner, Schütte and Vanden-Eijnden (2006)]

$$\begin{aligned} \mathcal{V}(x,y) &= 3\mathrm{e}^{-x^2 - (y - \frac{1}{3})^2} - 3\mathrm{e}^{-x^2 - (y - \frac{5}{3})^2} - 5\mathrm{e}^{-(x - 1)^2 - y^2} \\ &- 5\mathrm{e}^{-(x + 1)^2 - y^2} + 0.2x^4 + 0.2\left(y - \frac{1}{3}\right)^4. \end{aligned}$$



Conclusion

#### 2D Example [Metzner, Schütte and Vanden-Eijnden (2006)]



- Level Sets of the Committor Function q for  $\beta = 1.67$ .
- Difficulty: in general, finding these level sets is too hard...
- $\Rightarrow$  Use another reaction coordinate, e.g.  $\xi(x) = ||x x_A||$ .































<□> <@> < E> < E> E のQ@



Conclusion









Algorithm

## Algorithm





・ロト ・四ト ・ヨト ・ヨト

₹.



- Stopping Rule: iterate until step  $k_{\max}$  when all the paths reach  $\{\xi(x) = \xi_{\max}\}$ , keep only those which reach *B* (proportion *r*).
- Estimation: The probability

$$\hat{p} = r \left( 1 - \frac{1}{N} \right)^{k_{\max}}$$

is the "probability of observing a reactive trajectory".

• Remark: The algorithm can be seen as a kind of adaptive Forward Flux Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning Method [Elber, Faradjian 2004].



#### 2D Example



- 2 Deep Minima:  $H_{\pm} = (\pm 1, 0) \Rightarrow A\&B = \mathcal{B}(H_{\pm}, 0.05).$
- 1 Shallow Minimum: M = (0, 1.5).
- 3 Saddle Points:  $U_{\pm} = (\pm 0.6, 1.1)$  and L = (0, -0.4).
- 2 Channels  $\Rightarrow$  2 scenarii, depending on the temperature.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### A Few Reactive Trajectories



- Subsamplings of the generated trajectories.
- Reaction coordinate:  $\xi(x) = ||x x_A||$ .
- $\beta = 1.67$  (high temperature): shallow is shallow.
- $\beta = 6.67$  (low temperature): shallow becomes deep...

#### Flux of Reactive Trajectories



- The color indicates the norm of the flux.
- Reaction coordinate:  $\xi(x) = ||x x_A||$ .
- $\beta = 1.67$ : the lower channel is preferred (entropic effect).
- $\beta = 6.67$ : the upper channel is preferred (lower energy barrier).

Conclusion

€ 9Q@

#### Density of Reactive Paths: : $\xi(x) = ||x - x_A||$



・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ……

€ 9Q@

## Density of Reactive Paths: : $\xi(x) = |x^1 - x_A^1|$



Framework Algor

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

## 1D Example : $V(x) = x^4 - 2x^2$ .



- Metastable States: A = (-1.1; -0.9) and B = (0.9; 1.1).
- Reaction Coordinate:  $\xi(x) = x$ .
- Application: distribution of the duration of the reactive paths.

#### 1D Example





• Recall:

$$dX_t = -V'(X_t) \, dt + \sqrt{2k_B T} \, dW_t$$

- Assumption: V is an even double well potential, V''(0) = -1.
- Metastable States: A and B.
- Question: knowing  $T_a < T_{-a}$ , what is the law of  $T_{-a \rightarrow a}$ ?





#### Theorem

On the set  $\{T_a < T_{-a}\}$ , one has

$$T_{-a 
ightarrow a} \underset{T 
ightarrow 0}{\sim} - \log(k_B T) + 2\log a - 2H_a(0) + G$$

where G is a standard Gumbel random variable and

$$H_a(s) = \int_s^a \frac{t + V'(t)}{tV'(t)} dt.$$

Conclusion

э



Denote  $\varepsilon = k_B T$ , and decompose the reactive path in 3 parts

$$T_{-a \to a} = T_{-a \to -\sqrt{\varepsilon}} + T_{-\sqrt{\varepsilon} \to +\sqrt{\varepsilon}} + T_{\sqrt{\varepsilon} \to a}$$

・ロト ・ 理 ト ・ ヨ ト ・ 日 ト ・ 日

on the event  $\{T_a < T_{-a}\}$ .



Thanks to Gronwall's Lemma

$$T_{\sqrt{\varepsilon} 
ightarrow a} - t_{\sqrt{\varepsilon} 
ightarrow a} \xrightarrow[\varepsilon 
ightarrow 0]{a.s.}{\varepsilon 
ightarrow 0}$$

with  $t_{\sqrt{\varepsilon} \to a}$  the time for the unnoised process to reach a from  $\sqrt{\varepsilon}$ :

$$t_{\sqrt{arepsilon} o a} = - \int_{\sqrt{arepsilon}}^{a} rac{1}{V'(s)} \, ds \mathop{\sim}\limits_{arepsilon o 0} \log \sqrt{arepsilon} - \log a + H_a(0)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



Freidlin-Wentzell's theory ensures that

$$T_{-a \to -\sqrt{\varepsilon}} - t_{-\sqrt{\varepsilon} \to -a} \xrightarrow[\varepsilon \to 0]{a.s.} 0$$

and since V is even

$$t_{-\sqrt{\varepsilon} 
ightarrow -a} = - \int_{-\sqrt{\varepsilon}}^{-a} \frac{1}{V'(s)} \, ds = t_{\sqrt{\varepsilon} 
ightarrow a}$$

A reactive path doesn't need more time to go up than to go down!



Things happen "almost" like for a repulsive Ornstein-Uhlenbeck

$$dX_t = X_t \, dt + \sqrt{2\varepsilon} dW_t$$

On the set  $\{{\cal T}_{\sqrt{\varepsilon}} < {\cal T}_{-\sqrt{\varepsilon}}\},$  one can prove that

$$T_{-\sqrt{\varepsilon} \to \sqrt{\varepsilon}} \underset{\varepsilon \to 0}{\sim} -\log(\varepsilon) + G + o_{\varepsilon}(1).$$

3

### Recall: The Gumbel Distribution



- PDF:  $\forall x \in \mathbb{R}$ ,  $f(x) = e^{-x-e^{-x}}$ .
- Extreme Value Theory: if  $X_1, \ldots, X_n$  are i.i.d.  $\mathcal{E}(1)$ , then

$$\max(X_1,\ldots,X_n) - \log n \xrightarrow[n \to \infty]{\mathcal{L}} G$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

## Conclusion

A new adaptive multilevel splitting type algorithm with a random number of levels. Other possible applications:

- Estimation of the transition times between metastable states.
- Exploration of the energy landscape without any *a priori*.

References:

- A. Guyader, N.W. Hengartner and E. Matzner-Løber, Simulation and Estimation of Extreme Quantiles and Extreme Probabilities, Applied Mathematics & Optimization, 2011.
- 2. F. Cérou, A. Guyader, T. Lelièvre and D. Pommier, *A Multiple Replica Approach to Simulate Reactive Trajectories*, Journal of Chemical Physics, 2011.
- 3. F. Cérou, A. Guyader, T. Lelièvre and F. Malrieu, *On the Length of a Reactive Path*, preprint, 2011.