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Molecular conformations

1.5ns simulation of butane at room temperature (vizualisation: Amira@ZIB).



The sampling problem
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Metastable diffusion process at temperature 6 < AV.



Biased molecular dynamics
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Biased molecular potential (e.g., using an optical tweezer).



Biased molecular dynamics (Fokker-Planck picture)

Swimming at low Reynolds numbers: diffusion process
dXe = =V V(X¢, ue)dt + V20 dW,, Xo = xo,

in a nonlinear energy landscape V: RY x U — R. (Here § >0
and W is the standard d-dimensional Wiener process.)

- diffusion process ‘ l

The probability distribution p(x, t)dx = P [X; € [x, x + dx)] of
X is governed by the linear Fokker-Planck equation
dp

9 = 0Bp V- (pVV), p(x,0) = po(x).




More on the sampling problem. ..



Metastability

Suppose u = 0. For V bounded below and satisfying appropriate
growth conditions, there is a unique stationary distribution

pox exp(—V/0), / du=1.
Rn

Theorem (Bakry & Emery, 1985)

The rate of convergence is determined by the spectral gap

lp — pllr = Cexp(—A1t)

with \; < exp(—AV/0) and AV denoting the largest barrier.

Bakry & Emery, LNM 1123, 1985



Bilinear control systems



From the Fokker-Planck equation to bilinear systems

Now take your favourite spatial discretization scheme (FEM,
finite-differences etc.) and discretize the FP equation:

p=Ap+(Np+B)u, p(0)=po.
Here —A € R"™" is an M-matrix with a simple eigenvalue 0, and

N € R™" B e R" are the input coefficients.

We augment our system by, say, k output equations, e.g., for
observing the probability to be in certain state space regions:

p=Ap+(Np+B)u, p(0)=po
y=Cp.



Model reduction problem

If the space dimension n is very large, then solving, e.g., an
optimal control problem may be very tough or even infeasible.

Therefore we wish to find A, N € R"™*", B € R" and C € Rk*"
with r < n such that
da¢ - - =
o = ACH NG+ B)u,  ((0) = Go
y=CC

yields an output y that is (in some sense) close to that of the
original system on any compact time interval [0, T].



Model reduction strategy

Our approach is based on the nonnegative controllability and
observability Gramians @, P that are the solutions of

AQ + QA* + NQN* + BB* =0
AP+ PA+NPN+C*C=0

provided that they exist (e.g., we need that A\(A) C C7).

Realization theory of bilinear systems

1. States p € R" for which Qp = 0 are not accessible by any
bounded measurable control.

2. States p € R"” for which Pp = 0 do not do not produce any
output signal (for all bounded measurable controls).

Isidori, IEEE TAC, 1973; Al-Baiyat & Bettayeb, IEEE CDC, 1993; Benner & Damm, SICON, 2011



Model reduction paradigm: transfer function




Balanced model reduction



Balancing controllability and observability

What if @, P > 07 Then there exists a balancing transformation
p — Tp by which the Gramians of the transformed system

p=T *ATp+ (T INTp+ T 'B)u, p(0)=po
y=CTp.

become equal and diagonal, i.e.,

T1Q(T") ! = T*PT =diag(oy,...,0,) > 0.

Balanced truncation: In the balanced form the least controllable
states yield the lowest output, and can be neglected, i.e.,

IQpll~0 < |[|Ppll~0.

Moore, IEEE TAC, 1981; Glover, Int. J. Control, 1984



Model reduction strategy, cont'd

There are various ways to eliminate the least controllable and
observable states. Projecting A, N, B, C onto the columns of T
corresponding to the dominant singular values o; is just one.

Yet another way is to see where the small singular values, say,
Or41,--.,0n enter the equations and then let

(0r41y---,0n) — 0.

By being the square roots of the eigenvalues of QP, the o} are
coordinate invariant and therefore sensible small parameters.



An averaging principle. ..



Elimination of irrelevant states

Suppose that 0,41 < 0,. To see how the o,41,...,0, enter the
equations we scale them uniformly according to

(0r41y---y0n) = €(0rs1,...,00), €>0.
by which the balancing transformation becomes e-dependent.

Balancing according to A+ T(¢) AT (e) etc. yields

dpl 1

— =(A N — (A N B
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H. et al., Multiscale Model. Simul., 2010; H., Math. Comput. Model. Dyn. Syst., 2011
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An averaging principle

Theorem (H, 2010)

Technical details aside, denote by y. the output of the full bilinear
system, and let y be the output of the reduced system

p1=(A+uN)pr+ Biu, p1(0) = po1
y=Cm

where the coefficients A, N € R™" and C € R¥*" are given by

= A1 — AAyy Ax
Ni1 — NioAys Aoy
C = G — C2A2_21A21 .

Then |y.(t) — y(t)| — 0 uniformly on [0, T] as ¢ — 0.

Hartmann et al., submitted to SICON, 2010; cf. Watbled, J. Math. Anal. Appl., 2005



A few remarks. ..



Properties of the averaged equations

As the small Hankel SVs go to zero, the dynamics collapse to the
invariant subspace of controllable and observable states.

Recall that € ~ o,41/0, is our smallness parameter. If u belongs
to the class of relatively slow controls, i.e., u € L2(0,00) with
u=u(t/e’) and 0 < y < 1, then an error bound of the form

sup |ye(t) — y(t)] < C (€7 + €]l p2(0) — m(p1(0))|?)
tel0,T]

can be proved where C grows exponentially with T.

The transition from the full to the averaged system resembles the
Schur complement method for PDEs.

Hartmann et al., submitted to SICON, 2010; cf. Gaitsgory, SICON, 1992



Numerical examples



Biased molecular dynamics

Dragged Brownian particle in a tilted double-well potential

dX: = (ur — VV(X:)) dt + V20 dW,; ,

Xo ~ U("left well") .

Texit = eXp(AV/a)




Biased molecular dynamics
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» Finite-difference approximation on / = [—2,2] with n = 400
gridpoints, control u; = tanh(t —7) — 1, and y = (7, 7R).

» The dominant eigenvalues of the FP operator are well
approximated (not true for projected system).

Hartmann et al., submitted to SICON, 2010



Control of open quantum systems

Dissipative Liouville-von-Neumann equation for density matrices

p
Z =[H+pupl+Dp, peC?
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Control of open quantum systems, co
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» The examples show the response of an open quantum system
in equilibrium to a long-wave laser pulse (black curve).

» The low-6 approximation (right panel, r = 15,20, 25) requires
more states than the high-6 case (left panel r =5,8,11).

Schifer-Bung et al., J. Chem. Phys., 2011



Conclusions and open problems

» Balanced truncation can be powerful method for the
optimal control of molecular systems.

» It is fairly expensive, but it requires only an offline
computation. The Gramians can be sampled by Monte-Carlo.

» The small Hankel singular values are perfect parameters for
the perturbation analysis. But what if there is no gap?

» The dominant eigenvalues of the Fokker-Planck operator
are approximated extremely well. Why is this?

» Quantum systems: structure-preservation (density matrices)
and control of the numerical effort are highly challenging.

» Backward stability for the optimal control is an open issue.



Thank you for your attention.

further information on biocomputing.mi.fu-berlin.de
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