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ENUMATH 2011, 5th – 9th September 2011



Outline

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples



Molecular conformations

1.5ns simulation of butane at room temperature (vizualisation: Amira@ZIB).



The sampling problem
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Biased molecular dynamics
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Biased molecular dynamics (Fokker-Planck picture)

Swimming at low Reynolds numbers: diffusion process

dXt = −∇V (Xt , ut)dt +
√

2θ dWt , X0 = x0 ,

in a nonlinear energy landscape V : Rd × U → R. (Here θ > 0
and W is the standard d-dimensional Wiener process.)

diffusion process 

The probability distribution ρ(x , t)dx = P [Xt ∈ [x , x + dx)] of
Xt is governed by the linear Fokker-Planck equation

∂ρ

∂t
= θ∆ρ+∇ · (ρ∇V ) , ρ(x , 0) = ρ0(x) .



More on the sampling problem. . .



Metastability

Suppose u = 0. For V bounded below and satisfying appropriate
growth conditions, there is a unique stationary distribution

µ ∝ exp(−V /θ) ,

∫
Rn

dµ = 1 .

Theorem (Bakry & Emery, 1985)

The rate of convergence is determined by the spectral gap

‖ρ− µ‖L1 = C exp(−λ1t)

with λ1 � exp(−∆V /θ) and ∆V denoting the largest barrier.

Bakry & Emery, LNM 1123, 1985
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From the Fokker-Planck equation to bilinear systems

Now take your favourite spatial discretization scheme (FEM,
finite-differences etc.) and discretize the FP equation:

ρ̇ = Aρ+ (Nρ+ B)u , ρ(0) = ρ0 .

Here −A ∈ Rn×n is an M-matrix with a simple eigenvalue 0, and
N ∈ Rn×n, B ∈ Rn are the input coefficients.

We augment our system by, say, k output equations, e.g., for
observing the probability to be in certain state space regions:

ρ̇ = Aρ+ (Nρ+ B) u , ρ(0) = ρ0

y = Cρ .



Model reduction problem

If the space dimension n is very large, then solving, e.g., an
optimal control problem may be very tough or even infeasible.

Therefore we wish to find Ā, N̄ ∈ Rr×r , B̄ ∈ Rr and C̄ ∈ Rk×r

with r � n such that

dζ

dt
= Āζ + (N̄ζ + B̄)u , ζ(0) = ζ0

y = C̄ζ

yields an output y that is (in some sense) close to that of the
original system on any compact time interval [0,T ].



Model reduction strategy

Our approach is based on the nonnegative controllability and
observability Gramians Q,P that are the solutions of

AQ + QA∗ + NQN∗ + BB∗ = 0

A∗P + PA + N∗PN + C ∗C = 0

provided that they exist (e.g., we need that λ(A) ⊂ C−).

Realization theory of bilinear systems

1. States ρ ∈ Rn for which Qρ = 0 are not accessible by any
bounded measurable control.

2. States ρ ∈ Rn for which Pρ = 0 do not do not produce any
output signal (for all bounded measurable controls).

Isidori, IEEE TAC, 1973; Al-Baiyat & Bettayeb, IEEE CDC, 1993; Benner & Damm, SICON, 2011



Model reduction paradigm: transfer function
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Balancing controllability and observability

What if Q,P > 0? Then there exists a balancing transformation
ρ 7→ Tρ by which the Gramians of the transformed system

ρ̇ = T−1ATρ+
(
T−1NTρ+ T−1B

)
u , ρ(0) = ρ0

y = CTρ .

become equal and diagonal, i.e.,

T−1Q(T ∗)−1 = T ∗PT = diag(σ1, . . . , σn) > 0 .

Balanced truncation: In the balanced form the least controllable
states yield the lowest output, and can be neglected, i.e.,

‖Qρ‖ ≈ 0 ⇔ ‖Pρ‖ ≈ 0 .

Moore, IEEE TAC, 1981; Glover, Int. J. Control, 1984



Model reduction strategy, cont’d

There are various ways to eliminate the least controllable and
observable states. Projecting A,N,B,C onto the columns of T
corresponding to the dominant singular values σi is just one.

Yet another way is to see where the small singular values, say,
σr+1, . . . , σn enter the equations and then let

(σr+1, . . . , σn)→ 0 .

By being the square roots of the eigenvalues of QP, the σi are
coordinate invariant and therefore sensible small parameters.



An averaging principle. . .



Elimination of irrelevant states

Suppose that σr+1 � σr . To see how the σr+1, . . . , σn enter the
equations we scale them uniformly according to

(σr+1, . . . , σn) 7→ ε(σr+1, . . . , σn) , ε > 0 .

by which the balancing transformation becomes ε-dependent.

Balancing according to A 7→ T (ε)−1AT (ε) etc. yields

dρ1

dt
= (A11 + uN11) ρ1 +

1√
ε

(A12 + uN12) ρ2 + B1u

√
ε
dρ2

dt
= (A21 + uN21) ρ1 +

1√
ε

(A22 + uN22) ρ2 + B2u

y = C1ρ1 +
1√
ε
C2ρ2

H. et al., Multiscale Model. Simul., 2010; H., Math. Comput. Model. Dyn. Syst., 2011



Elimination of irrelevant states

Suppose that σr+1 � σr . To see how the σr+1, . . . , σn enter the
equations we scale them uniformly according to

(σr+1, . . . , σn) 7→ ε(σr+1, . . . , σn) , ε > 0 .

by which the balancing transformation becomes ε-dependent.

Balancing according to A 7→ T (ε)−1AT (ε) etc. yields

dρ1

dt
= (A11 + uN11) ρ1 +

1√
ε

(A12 + uN12) ρ2 + B1u

√
ε
dρ2

dt
= (A21 + uN21) ρ1 +

1√
ε

(A22 + uN22) ρ2 + B2u

y = C1ρ1 +
1√
ε
C2ρ2

H. et al., Multiscale Model. Simul., 2010; H., Math. Comput. Model. Dyn. Syst., 2011



An averaging principle

Theorem (H, 2010)

Technical details aside, denote by yε the output of the full bilinear
system, and let y be the output of the reduced system

ρ̇1 =
(
Ā + uN̄

)
ρ1 + B1u , ρ1(0) = ρ0,1

y = C̄ρ1

where the coefficients Ā, N̄ ∈ Rr×r and C̄ ∈ Rk×r are given by

Ā = A11 − A12A
−1
22 A21

N̄ = N11 − N12A
−1
22 A21

C̄ = C1 − C2A
−1
22 A21 .

Then |yε(t)− y(t)| → 0 uniformly on [0,T ] as ε→ 0.

Hartmann et al., submitted to SICON, 2010; cf. Watbled, J. Math. Anal. Appl., 2005



A few remarks. . .



Properties of the averaged equations

As the small Hankel SVs go to zero, the dynamics collapse to the
invariant subspace of controllable and observable states.

Recall that ε ∼ σr+1/σr is our smallness parameter. If u belongs
to the class of relatively slow controls, i.e., u ∈ L2(0,∞) with
u = u(t/εγ) and 0 < γ < 1, then an error bound of the form

sup
t∈[0,T ]

|yε(t)− y(t)| ≤ C
(
εγ + ε‖ρ2(0)−m(ρ1(0))‖2

)
can be proved where C grows exponentially with T .

The transition from the full to the averaged system resembles the
Schur complement method for PDEs.

Hartmann et al., submitted to SICON, 2010; cf. Gaitsgory, SICON, 1992
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Biased molecular dynamics

Dragged Brownian particle in a tilted double-well potential

dXt = (ut −∇V (Xt)) dt +
√

2θ dWt , X0 ∼ U(“left well”) .
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Biased molecular dynamics
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I Finite-difference approximation on I = [−2, 2] with n = 400
gridpoints, control ut = tanh(t − π)− 1, and y = (πL, πR).

I The dominant eigenvalues of the FP operator are well
approximated (not true for projected system).

Hartmann et al., submitted to SICON, 2010



Control of open quantum systems

Dissipative Liouville-von-Neumann equation for density matrices

d ρ̂

dt
= [H + µu, ρ̂] + Dρ̂ , ρ̂ ∈ C21×21
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Control of open quantum systems, cont’d
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I The examples show the response of an open quantum system
in equilibrium to a long-wave laser pulse (black curve).

I The low-θ approximation (right panel, r = 15, 20, 25) requires
more states than the high-θ case (left panel r = 5, 8, 11).

Schäfer-Bung et al., J. Chem. Phys., 2011



Conclusions and open problems

I Balanced truncation can be powerful method for the
optimal control of molecular systems.

I It is fairly expensive, but it requires only an offline
computation. The Gramians can be sampled by Monte-Carlo.

I The small Hankel singular values are perfect parameters for
the perturbation analysis. But what if there is no gap?

I The dominant eigenvalues of the Fokker-Planck operator
are approximated extremely well. Why is this?

I Quantum systems: structure-preservation (density matrices)
and control of the numerical effort are highly challenging.

I Backward stability for the optimal control is an open issue.



Thank you for your attention.

further information on biocomputing.mi.fu-berlin.de
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