Control of molecular dynamics and low-rank approximation of bilinear systems

Carsten Hartmann (FU Berlin)

jointly with B. Schmidt, B. Schäfer-Bung, and Ch. Schütte

ENUMATH 2011, 5th - 9th September 2011

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Molecular conformations

1.5ns simulation of butane at room temperature (vizualisation: Amira@ZIB).

The sampling problem

Metastable diffusion process at temperature $\theta \ll \Delta V$.

Biased molecular dynamics

Biased molecular dynamics (Fokker-Planck picture)

Swimming at low Reynolds numbers: diffusion process

$$dX_t = -\nabla V(X_t, u_t)dt + \sqrt{2\theta} \, dW_t, \quad X_0 = x_0,$$

in a **nonlinear energy landscape** $V : \mathbb{R}^d \times U \to \mathbb{R}$. (Here $\theta > 0$ and W is the standard *d*-dimensional Wiener process.)

The probability distribution $\rho(x, t)dx = \mathbb{P}[X_t \in [x, x + dx)]$ of X_t is governed by the linear Fokker-Planck equation

$$rac{\partial
ho}{\partial t} = heta \, \Delta
ho +
abla \cdot (
ho
abla V) \ , \quad
ho(x,0) =
ho_0(x) \, .$$

More on the sampling problem...

Metastability

Suppose u = 0. For V bounded below and satisfying appropriate growth conditions, there is a **unique stationary distribution**

$$\mu \propto \exp(-V/ heta)\,, \quad \int_{\mathbb{R}^n} d\mu = 1\,.$$

Theorem (Bakry & Emery, 1985) The rate of convergence is determined by the spectral gap $\|\rho - \mu\|_{L^1} = C \exp(-\lambda_1 t)$ with $\lambda_1 \asymp \exp(-\Delta V/\theta)$ and ΔV denoting the largest barrier.

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Now take your favourite spatial discretization scheme (FEM, finite-differences etc.) and **discretize the FP equation**:

$$\dot{\rho} = A\rho + (N\rho + B)u, \quad \rho(0) = \rho_0.$$

Here $-A \in \mathbb{R}^{n \times n}$ is an *M*-matrix with a simple eigenvalue 0, and $N \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^n$ are the **input coefficients**.

We augment our system by, say, k output equations, e.g., for observing the probability to be in certain state space regions:

$$\begin{split} \dot{\rho} &= A\rho + (N\rho + B) \, u \,, \quad \rho(0) = \rho_0 \\ y &= C\rho \,. \end{split}$$

If the **space dimension** n **is very large**, then solving, e.g., an optimal control problem may be very tough or even infeasible.

Therefore we wish to find $\bar{A}, \bar{N} \in \mathbb{R}^{r \times r}$, $\bar{B} \in \mathbb{R}^r$ and $\bar{C} \in \mathbb{R}^{k \times r}$ with $r \ll n$ such that

$$egin{aligned} rac{d\zeta}{dt} &= ar{A}\zeta + (ar{N}\zeta + ar{B})u\,, \quad \zeta(0) = \zeta_0 \ y &= ar{C}\zeta \end{aligned}$$

yields an **output** y **that is (in some sense) close to that of the original system** on any compact time interval [0, T].

Our approach is based on the **nonnegative controllability and observability Gramians** Q, P that are the solutions of

$$AQ + QA^* + NQN^* + BB^* = 0$$
$$A^*P + PA + N^*PN + C^*C = 0$$

provided that they exist (e.g., we need that $\lambda(A) \subset \mathbb{C}^-$).

Realization theory of bilinear systems

- 1. States $\rho \in \mathbb{R}^n$ for which $Q\rho = 0$ are not accessible by any bounded measurable control.
- 2. States $\rho \in \mathbb{R}^n$ for which $P\rho = 0$ do not do not produce any output signal (for all bounded measurable controls).

Model reduction paradigm: transfer function

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Balancing controllability and observability

What if Q, P > 0? Then there exists a **balancing transformation** $\rho \mapsto T\rho$ by which the Gramians of the transformed system

$$\dot{\rho} = T^{-1}AT\rho + (T^{-1}NT\rho + T^{-1}B) u, \quad \rho(0) = \rho_0$$

y = CT \rho.

become equal and diagonal, i.e.,

$$T^{-1}Q(T^*)^{-1} = T^*PT = \operatorname{diag}(\sigma_1,\ldots,\sigma_n) > 0.$$

Balanced truncation: In the balanced form the least controllable states yield the lowest output, and can be neglected, i.e.,

$$\| Q
ho \| pprox 0 \quad \Leftrightarrow \quad \| P
ho \| pprox 0$$
 .

Moore, IEEE TAC, 1981; Glover, Int. J. Control, 1984

There are various ways to eliminate the least controllable and observable states. Projecting A, N, B, C onto the columns of T corresponding to the **dominant singular values** σ_i is just one.

Yet another way is to see where the **small singular values**, say, $\sigma_{r+1}, \ldots, \sigma_n$ enter the equations and then let

$$(\sigma_{r+1},\ldots,\sigma_n)\to 0$$
.

By being the square roots of the eigenvalues of QP, the σ_i are coordinate invariant and therefore sensible **small parameters**.

An averaging principle...

Suppose that $\sigma_{r+1} \ll \sigma_r$. To see how the $\sigma_{r+1}, \ldots, \sigma_n$ enter the equations we scale them uniformly according to

$$(\sigma_{r+1},\ldots,\sigma_n)\mapsto\epsilon(\sigma_{r+1},\ldots,\sigma_n),\quad\epsilon>0.$$

by which the balancing transformation becomes ϵ -dependent.

Balancing according to $A \mapsto T(\epsilon)^{-1}AT(\epsilon)$ etc. yields

$$\frac{d\rho_1}{dt} = (A_{11} + uN_{11})\rho_1 + \frac{1}{\sqrt{\epsilon}}(A_{12} + uN_{12})\rho_2 + B_1 u$$
$$\sqrt{\epsilon}\frac{d\rho_2}{dt} = (A_{21} + uN_{21})\rho_1 + \frac{1}{\sqrt{\epsilon}}(A_{22} + uN_{22})\rho_2 + B_2 u$$
$$y = C_1\rho_1 + \frac{1}{\sqrt{\epsilon}}C_2\rho_2$$

H. et al., Multiscale Model. Simul., 2010; H., Math. Comput. Model. Dyn. Syst., 2011

Suppose that $\sigma_{r+1} \ll \sigma_r$. To see how the $\sigma_{r+1}, \ldots, \sigma_n$ enter the equations we scale them uniformly according to

$$(\sigma_{r+1},\ldots,\sigma_n)\mapsto\epsilon(\sigma_{r+1},\ldots,\sigma_n),\quad\epsilon>0.$$

by which the balancing transformation becomes ϵ -dependent.

Balancing according to $A \mapsto T(\epsilon)^{-1}AT(\epsilon)$ etc. yields

$$\frac{d\rho_1}{dt} = (A_{11} + uN_{11})\rho_1 + \frac{1}{\sqrt{\epsilon}}(A_{12} + uN_{12})\rho_2 + B_1 u$$
$$\sqrt{\epsilon}\frac{d\rho_2}{dt} = (A_{21} + uN_{21})\rho_1 + \frac{1}{\sqrt{\epsilon}}(A_{22} + uN_{22})\rho_2 + B_2 u$$
$$y = C_1\rho_1 + \frac{1}{\sqrt{\epsilon}}C_2\rho_2$$

H. et al., Multiscale Model. Simul., 2010; H., Math. Comput. Model. Dyn. Syst., 2011

An averaging principle

Theorem (H, 2010)

Technical details aside, denote by y_{ϵ} the output of the full bilinear system, and let y be the output of the reduced system

$$\dot{\rho}_1 = (\bar{A} + u\bar{N}) \rho_1 + B_1 u, \quad \rho_1(0) = \rho_{0,1}$$

 $y = \bar{C}\rho_1$

where the coefficients $\bar{A}, \bar{N} \in \mathbb{R}^{r \times r}$ and $\bar{C} \in \mathbb{R}^{k \times r}$ are given by

$$\begin{split} \bar{A} &= A_{11} - A_{12} A_{22}^{-1} A_{21} \\ \bar{N} &= N_{11} - N_{12} A_{22}^{-1} A_{21} \\ \bar{C} &= C_1 - C_2 A_{22}^{-1} A_{21} \,. \end{split}$$

Then $|y_{\epsilon}(t) - y(t)| \rightarrow 0$ uniformly on [0, T] as $\epsilon \rightarrow 0$.

Hartmann et al., submitted to SICON, 2010; cf. Watbled, J. Math. Anal. Appl., 2005

A few remarks...

As the small Hankel SVs go to zero, the dynamics collapse to the **invariant subspace of controllable and observable states**.

Recall that $\epsilon \sim \sigma_{r+1}/\sigma_r$ is our smallness parameter. If u belongs to the class of relatively slow controls, i.e., $u \in L^2(0,\infty)$ with $u = u(t/\epsilon^{\gamma})$ and $0 < \gamma < 1$, then an error bound of the form

$$\sup_{t\in[0,T]}|y_{\epsilon}(t)-y(t)|\leq C\left(\epsilon^{\gamma}+\epsilon\|\rho_{2}(0)-m(\rho_{1}(0))\|^{2}\right)$$

can be proved where C grows exponentially with T.

The transition from the full to the averaged system resembles the **Schur complement method** for PDEs.

Hartmann et al., submitted to SICON, 2010; cf. Gaitsgory, SICON, 1992

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Biased molecular dynamics

Dragged Brownian particle in a tilted double-well potential

$$dX_t = (u_t -
abla V(X_t)) \, dt + \sqrt{2 heta} \, dW_t \,, \quad X_0 \sim \mathcal{U}(ext{ ``left well''}) \,.$$

Biased molecular dynamics

- ▶ Finite-difference approximation on I = [-2, 2] with n = 400 gridpoints, control $u_t = \tanh(t \pi) 1$, and $y = (\pi_L, \pi_R)$.
- The dominant eigenvalues of the FP operator are well approximated (not true for projected system).

Dissipative Liouville-von-Neumann equation for density matrices

$$rac{d\hat{
ho}}{dt} = [H + \mu u, \hat{
ho}] + D\hat{
ho}, \quad \hat{
ho} \in \mathbb{C}^{21 imes 21}$$

Control of open quantum systems, cont'd

- The examples show the response of an open quantum system in equilibrium to a long-wave laser pulse (black curve).
- The low-θ approximation (right panel, r = 15, 20, 25) requires more states than the high-θ case (left panel r = 5, 8, 11).

Conclusions and open problems

- Balanced truncation can be powerful method for the optimal control of molecular systems.
- It is fairly expensive, but it requires only an offline computation. The Gramians can be sampled by Monte-Carlo.
- The small Hankel singular values are perfect parameters for the perturbation analysis. But what if there is no gap?
- The dominant eigenvalues of the Fokker-Planck operator are approximated extremely well. Why is this?
- Quantum systems: structure-preservation (density matrices) and control of the numerical effort are highly challenging.
- Backward stability for the optimal control is an open issue.

Thank you for your attention.

further information on biocomputing.mi.fu-berlin.de