Control of molecular dynamics and low-rank approximation of bilinear systems

Carsten Hartmann (FU Berlin)

jointly with B. Schmidt, B. Schäfer-Bung, and Ch. Schütte

ENUMATH 2011, 5th - 9th September 2011

Outline

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Molecular conformations

1.5 ns simulation of butane at room temperature (vizualisation: Amira@ZIB).

The sampling problem

Biased molecular dynamics

Biased molecular potential (e.g., using an optical tweezer).

Biased molecular dynamics (Fokker-Planck picture)

Swimming at low Reynolds numbers: diffusion process

$$
d X_{t}=-\nabla V\left(X_{t}, u_{t}\right) d t+\sqrt{2 \theta} d W_{t}, \quad X_{0}=x_{0}
$$

in a nonlinear energy landscape $V: \mathbb{R}^{d} \times U \rightarrow \mathbb{R}$. (Here $\theta>0$ and W is the standard d-dimensional Wiener process.)

The probability distribution $\rho(x, t) d x=\mathbb{P}\left[X_{t} \in[x, x+d x)\right]$ of X_{t} is governed by the linear Fokker-Planck equation

$$
\frac{\partial \rho}{\partial t}=\theta \Delta \rho+\nabla \cdot(\rho \nabla V), \quad \rho(x, 0)=\rho_{0}(x)
$$

More on the sampling problem...

Metastability

Suppose $u=0$. For V bounded below and satisfying appropriate growth conditions, there is a unique stationary distribution

$$
\mu \propto \exp (-V / \theta), \quad \int_{\mathbb{R}^{n}} d \mu=1
$$

Theorem (Bakry \& Emery, 1985)
The rate of convergence is determined by the spectral gap

$$
\|\rho-\mu\|_{L^{1}}=C \exp \left(-\lambda_{1} t\right)
$$

with $\lambda_{1} \asymp \exp (-\Delta V / \theta)$ and ΔV denoting the largest barrier.

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

From the Fokker-Planck equation to bilinear systems

Now take your favourite spatial discretization scheme (FEM, finite-differences etc.) and discretize the FP equation:

$$
\dot{\rho}=A \rho+(N \rho+B) u, \quad \rho(0)=\rho_{0} .
$$

Here $-A \in \mathbb{R}^{n \times n}$ is an M-matrix with a simple eigenvalue 0 , and $N \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}$ are the input coefficients.

We augment our system by, say, k output equations, e.g., for observing the probability to be in certain state space regions:

$$
\begin{aligned}
& \dot{\rho}=A \rho+(N \rho+B) u, \quad \rho(0)=\rho_{0} \\
& y=C \rho
\end{aligned}
$$

Model reduction problem

If the space dimension n is very large, then solving, e.g., an optimal control problem may be very tough or even infeasible.

Therefore we wish to find $\bar{A}, \bar{N} \in \mathbb{R}^{r \times r}, \bar{B} \in \mathbb{R}^{r}$ and $\bar{C} \in \mathbb{R}^{k \times r}$ with $r \ll n$ such that

$$
\begin{aligned}
\frac{d \zeta}{d t} & =\bar{A} \zeta+(\bar{N} \zeta+\bar{B}) u, \quad \zeta(0)=\zeta_{0} \\
y & =\bar{C} \zeta
\end{aligned}
$$

yields an output y that is (in some sense) close to that of the original system on any compact time interval $[0, T]$.

Model reduction strategy

Our approach is based on the nonnegative controllability and observability Gramians Q, P that are the solutions of

$$
\begin{aligned}
A Q+Q A^{*}+N Q N^{*}+B B^{*} & =0 \\
A^{*} P+P A+N^{*} P N+C^{*} C & =0
\end{aligned}
$$

provided that they exist (e.g., we need that $\lambda(A) \subset \mathbb{C}^{-}$).

Realization theory of bilinear systems

1. States $\rho \in \mathbb{R}^{n}$ for which $Q \rho=0$ are not accessible by any bounded measurable control.
2. States $\rho \in \mathbb{R}^{n}$ for which $P \rho=0$ do not do not produce any output signal (for all bounded measurable controls).

Model reduction paradigm: transfer function

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Balancing controllability and observability

What if $Q, P>0$? Then there exists a balancing transformation $\rho \mapsto T \rho$ by which the Gramians of the transformed system

$$
\begin{aligned}
& \dot{\rho}=T^{-1} A T \rho+\left(T^{-1} N T \rho+T^{-1} B\right) u, \quad \rho(0)=\rho_{0} \\
& y=C T \rho
\end{aligned}
$$

become equal and diagonal, i.e.,

$$
T^{-1} Q\left(T^{*}\right)^{-1}=T^{*} P T=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)>0
$$

Balanced truncation: In the balanced form the least controllable states yield the lowest output, and can be neglected, i.e.,

$$
\|Q \rho\| \approx 0 \quad \Leftrightarrow \quad\|P \rho\| \approx 0
$$

Model reduction strategy, cont'd

There are various ways to eliminate the least controllable and observable states. Projecting A, N, B, C onto the columns of T corresponding to the dominant singular values σ_{i} is just one.

Yet another way is to see where the small singular values, say, $\sigma_{r+1}, \ldots, \sigma_{n}$ enter the equations and then let

$$
\left(\sigma_{r+1}, \ldots, \sigma_{n}\right) \rightarrow 0
$$

By being the square roots of the eigenvalues of $Q P$, the σ_{i} are coordinate invariant and therefore sensible small parameters.

An averaging principle...

Elimination of irrelevant states

Suppose that $\sigma_{r+1} \ll \sigma_{r}$. To see how the $\sigma_{r+1}, \ldots, \sigma_{n}$ enter the equations we scale them uniformly according to

$$
\left(\sigma_{r+1}, \ldots, \sigma_{n}\right) \mapsto \epsilon\left(\sigma_{r+1}, \ldots, \sigma_{n}\right), \quad \epsilon>0
$$

by which the balancing transformation becomes ϵ-dependent.
Balancing according to $A \mapsto T(\epsilon)^{-1} A T(\epsilon)$ etc. yields

$$
\begin{aligned}
\frac{d \rho_{1}}{d t} & =\left(A_{11}+u N_{11}\right) \rho_{1}+\frac{1}{\sqrt{\epsilon}}\left(A_{12}+u N_{12}\right) \rho_{2}+B_{1} u \\
\sqrt{\epsilon} \frac{d \rho_{2}}{d t} & =\left(A_{21}+u N_{21}\right) \rho_{1}+\frac{1}{\sqrt{\epsilon}}\left(A_{22}+u N_{22}\right) \rho_{2}+B_{2} u \\
y & =C_{1} \rho_{1}+\frac{1}{\sqrt{\epsilon}} C_{2} \rho_{2}
\end{aligned}
$$

Elimination of irrelevant states

Suppose that $\sigma_{r+1} \ll \sigma_{r}$. To see how the $\sigma_{r+1}, \ldots, \sigma_{n}$ enter the equations we scale them uniformly according to

$$
\left(\sigma_{r+1}, \ldots, \sigma_{n}\right) \mapsto \epsilon\left(\sigma_{r+1}, \ldots, \sigma_{n}\right), \quad \epsilon>0
$$

by which the balancing transformation becomes ϵ-dependent.
Balancing according to $A \mapsto T(\epsilon)^{-1} A T(\epsilon)$ etc. yields

$$
\begin{aligned}
\frac{d \rho_{1}}{d t} & =\left(A_{11}+u N_{11}\right) \rho_{1}+\frac{1}{\sqrt{\epsilon}}\left(A_{12}+u N_{12}\right) \rho_{2}+B_{1} u \\
\sqrt{\epsilon} \frac{d \rho_{2}}{d t} & =\left(A_{21}+u N_{21}\right) \rho_{1}+\frac{1}{\sqrt{\epsilon}}\left(A_{22}+u N_{22}\right) \rho_{2}+B_{2} u \\
y & =C_{1} \rho_{1}+\frac{1}{\sqrt{\epsilon}} C_{2} \rho_{2}
\end{aligned}
$$

An averaging principle

Theorem (H, 2010)

Technical details aside, denote by y_{ϵ} the output of the full bilinear system, and let y be the output of the reduced system

$$
\begin{aligned}
\dot{\rho}_{1} & =(\bar{A}+u \bar{N}) \rho_{1}+B_{1} u, \quad \rho_{1}(0)=\rho_{0,1} \\
y & =\bar{C} \rho_{1}
\end{aligned}
$$

where the coefficients $\bar{A}, \bar{N} \in \mathbb{R}^{r \times r}$ and $\bar{C} \in \mathbb{R}^{k \times r}$ are given by

$$
\begin{aligned}
& \bar{A}=A_{11}-A_{12} A_{22}^{-1} A_{21} \\
& \bar{N}=N_{11}-N_{12} A_{22}^{-1} A_{21} \\
& \bar{C}=C_{1}-C_{2} A_{22}^{-1} A_{21} .
\end{aligned}
$$

Then $\left|y_{\epsilon}(t)-y(t)\right| \rightarrow 0$ uniformly on $[0, T]$ as $\epsilon \rightarrow 0$.

A few remarks...

Properties of the averaged equations

As the small Hankel SVs go to zero, the dynamics collapse to the invariant subspace of controllable and observable states.

Recall that $\epsilon \sim \sigma_{r+1} / \sigma_{r}$ is our smallness parameter. If u belongs to the class of relatively slow controls, i.e., $u \in L^{2}(0, \infty)$ with $u=u\left(t / \epsilon^{\gamma}\right)$ and $0<\gamma<1$, then an error bound of the form

$$
\sup _{t \in[0, T]}\left|y_{\epsilon}(t)-y(t)\right| \leq C\left(\epsilon^{\gamma}+\epsilon\left\|\rho_{2}(0)-m\left(\rho_{1}(0)\right)\right\|^{2}\right)
$$

can be proved where C grows exponentially with T.
The transition from the full to the averaged system resembles the Schur complement method for PDEs.

Motivation: biased molecular dynamics

Bilinear control systems

Balanced model reduction

Numerical examples

Biased molecular dynamics

Dragged Brownian particle in a tilted double-well potential

$$
d X_{t}=\left(u_{t}-\nabla V\left(X_{t}\right)\right) d t+\sqrt{2 \theta} d W_{t}, \quad X_{0} \sim \mathcal{U} \text { ("left well"). }
$$

Biased molecular dynamics

- Finite-difference approximation on $I=[-2,2]$ with $n=400$ gridpoints, control $u_{t}=\tanh (t-\pi)-1$, and $y=\left(\pi_{L}, \pi_{R}\right)$.
- The dominant eigenvalues of the FP operator are well approximated (not true for projected system).

Control of open quantum systems

Dissipative Liouville-von-Neumann equation for density matrices

$$
\frac{d \hat{\rho}}{d t}=[H+\mu u, \hat{\rho}]+D \hat{\rho}, \quad \hat{\rho} \in \mathbb{C}^{21 \times 21}
$$

First 100 Hankel singular values (log plot).

Control of open quantum systems, cont'd

- The examples show the response of an open quantum system in equilibrium to a long-wave laser pulse (black curve).
- The low- θ approximation (right panel, $r=15,20,25$) requires more states than the high- θ case (left panel $r=5,8,11$).

Conclusions and open problems

- Balanced truncation can be powerful method for the optimal control of molecular systems.
- It is fairly expensive, but it requires only an offline computation. The Gramians can be sampled by Monte-Carlo.
- The small Hankel singular values are perfect parameters for the perturbation analysis. But what if there is no gap?
- The dominant eigenvalues of the Fokker-Planck operator are approximated extremely well. Why is this?
- Quantum systems: structure-preservation (density matrices) and control of the numerical effort are highly challenging.
- Backward stability for the optimal control is an open issue.

Thank you for your attention.

further information on biocomputing.mi.fu-berlin.de

