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Hydrodynamics in clay nanopores

Multiscale materials:

nano porosity

sheet

solvent

10 nm

100 nm

macro porosity
solvent

Figure: multiscale structure of clays (courtesy of B. Rotenberg)

• Stack of sheets forming particles of nanometric size;

• Solvent (water) et ions;

A need of numerical simulation to understand the transport properties
of the material at the nanoscale
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The Newton law for shear viscosity

• Shear viscosity of a Newtonian fluid u = (ux , uy ) velocity field.

η = −
σxy

τxy
, τxy =

∂ux

∂y
.

• Incompressible Navier-Stokes equation in a periodic channel

ρ∂t ux = η
∂2

∂y2 ux (y) + ρF (y)+ PBC

Goal: Obtain the shear viscosity from a microscopic description of the
fluid.
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Classical systems

• N particles system

(q, p) = (q1, . . . ,qN , p1, . . . ,pN) ∈ DN × R
2N

D = R/LxZ × R/LyZ for positions and R
2N for momenta.

• The Hamiltonian

H(q, p) =

N
∑

i=1

p2
i

2mi
+ V (q1, . . . ,qN).

all the physics is contained in V .
Hypothesis: V smooth and given as the sum of pairs interactions.
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Thermodynamical averages

• Macroscopic averages in a thermodynamic ensemble

〈f 〉µ =

∫

DN×R2N
f (q, p)µ(dp, dq),

f observable, µ probability measure (µ ≥ 0, µ(DN × R
2N) = 1).

• Example of the canonical measure (NVT)
macroscopic constraints :
N (number of particles), V (accsessible volume), T (temperature).

µNVT (dq, dp) = Z−1
NVTe−βH(q,p)dqdp = ψ0dqdp,
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Sampling an invariant measure

Difficulty : Integrals in high dimension d = 2N ≫ 2: we have to use
stochastic methods.
Idea : Replace the computation of 〈f 〉µ by an ergodic average:

〈f 〉µ = lim
τ→+∞

1
τ

∫ τ

0
f (q(t), p(t))dt.

→ find a dynamics that samples µ.
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Transport coefficients computations
• Transports coefficients (shear viscosity, thermal conductivity,

diffusion) describe dynamics properties of fluids;
• Calculation are possible via Green-Kubo type formula, for the

shear viscosity:

η := β |D|

〈
∫ +∞

0
σxy (0)σxy (t)dt

〉

eq

.

σxy being an off-diagonal term of the microscopic Cauchy stress
tensor;

• They can be “measured” in a system where thermodynamics
fluxes are excited via nonequilibrium dynamics;

Lx

Ly

F
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Nonequilibrium Langevin Dynamics I

Hamiltonian + Ornstein-Uhlenbeck + linear nongradient perturbation:







































dqt =
pt

m
dt,

dpx,t = −∇qx V (qt ) dt + ξF (qy ,t ) dt − γx
px,t

m
dt +

√

2γx

β
dW x

t ,

dpy ,t = −∇qy V (qt ) dt − γy
py ,t

m
dt +

√

2γy

β
dW y

t ,

(1)

ξ ∈ R, γx , γy > 0 (frictions coefficients), (W x
t ,W

y
t )t≥0 standard

brownian motions on R
2N .
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Nonequilibrium Langevin Dynamics II

Motivations:

• Artificial dissipation mechanism that allows steady states;

• Rigorous mathematical arguments (ergodicity, linear response);

Theoretical questions:

• Existence and uniqueness of an invariant measure
(Rey-Bellet [4], Pavliotis-Stuart [3] (’04));

• Analysis of the Shear Viscosity : Irving Kirkwood identification
process (’54) [1];

• Asymptotics for large frictions.
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Infinitesimals generators

• Generators for the Nonequilibrium dynamics:

Aξ = A0 + ξB;

A0 = Aham + Athm;

B =

N
∑

i=1

F (qyi )∂pxi ;

• Adjoints defined on L2(ψ0) : Lξ = A∗
ξ ;

• Fokker-Planck equation for the law of the process (qt , pt )t≥0:

∂tψ = Lξψ,
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Structure of the invariant measure

Theorem The dynamics (1) has a unique invariant measure with
density ψξ ∈ C∞(DN × R

2N) et

ψξ = fξψ0, fξ = 1 +
∑

k≥1

ξk fk , (2)

and fk ∈ L2(ψ0).
Average w.r.t the nonequilibrium invariant measure ψξ:

〈h〉ξ =

∫

DN×R2N
h(q, p)ψξ(q, p) dq dp = 〈h, fξ〉L2(ψ0).

Linear response:

lim
ξ→0

〈A0h〉ξ
ξ

= −
β

m

〈

h,
N
∑

i=1

pxiF (qyi)

〉

L2(ψ0)

. (3)
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Localization

Longitudinal momenta

Uε
x (Y , q, p) =

Ly

Nm

N
∑

i=1

pxiχε (qyi − Y ) ,

Off-diagonal stress tensor term:

Σεxy (Y , q, p) =
1
Lx

N
∑

i=1

pxipyi

m
χε (qyi − Y ) (4)

−
1
Lx

∑

1≤i<j≤N

V ′(|qi − qj |)

(

qxi − qxj

|qi − qj |

)
∫ qyj

qyi

χε(s − Y ) ds.

(5)

Regularization with mollifiers: χε with limε→0 χε(· − y) = δy
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Conservation equation

Proposition (G. Stoltz, RJ ’11): Conservation of the
longitudinal momenta [2]
The following limits hold true

ux (Y ) = lim
ε→0

lim
ξ→0

〈Uε
x (Y , ·)〉ξ
ξ

and

σxy (Y ) = lim
ε→0

lim
ξ→0

〈

Σεxy (Y , ·)
〉

ξ

ξ

and
dσxy (Y )

dY
+
ρ

m
γx ux(Y ) =

ρ

m
F (Y ). (6)

in the classical sense.
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Discretization of the SDE
Splitting between the Hamiltonian and fluctuation/dissipation part:

• Verlet scheme for the Hamiltonian equations;

• Exact integration of the drifted Ornstein-Uhlenbeck process:



































































pn+1/4 = pn −
∆t
2
∇V (qn),

qn+1 = qn + ∆t pn+1/4,

pn+1/2 = pn+1/4 −
∆t
2
∇V (qn+1),

pn+1
x = αx pn+1/2

x +

√

1
β

(1 − α2
x ) Gn

x + (1 − αx )
ξ

γx
F
(

qn+1
y

)

,

pn+1
y = αy pn+1/2

y +

√

1
β

(1 − α2
y )Gn

y ,

(7)
where αx,y = exp(−γx,y∆t), and Gn

x ,G
n
y are i.i.d standard

Gaussian random variables.
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Closure relation and practical computations

• Closure relation (postulate)

σxy (Y ) = −η
dux(Y )

dY
.

• Fourier representation of the solution of (6) thanks to PBC:

Uk =
2
Ly

∫ Ly

0
ux (y) exp

(

2ikπy
Ly

)

dy .

The coefficients Uk can be approximated numerically using
trajectory averages as

UNiter
k =

2
NiterξN

Niter
∑

n=1

N
∑

i=1

pn
xi

m
exp

(

2ikπqm
yj

Ly

)

.

• Practical computations of the shear viscosity by using the closure
relation:

η = ρ

(

Fk

Uk
− γx

)(

Ly

2kπ

)2

.

with Fk the fourier coefficients of the nongradient force.
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Lennard-Jones system
Lennard-Jones potential:

VLJ(r) = 4ε

(

(

d
r

)12

−

(

d
r

)6
)

.

Thermodynamic state: (ρ,T ) = (0.7, 2.5).
Truncated interaction at rcut = 3d .
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Validation of the Newton law
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Figure: Velocity profile / pressure term σxy evaluated with binning methods,
sinusoidal perturbation.
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Validation of the Newton law
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Figure: Velocity profile / stress tensor term σxy evaluated with binning
methods, piecewise linear perturbation.
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Validation of the Newton law
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Figure: Velocity profile / pressure term σxy evaluated with binning methods,
piecewise constant constant perturbation (discontinuous).



Context and introduction Introduction to Statistical Mechanics Nonequilibrium method for the Shear Viscosity Numerical illustrations I Asymptotics for large fr

Linear response
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Figure: |U1| as a function of ξ; 3 shape of forces. Left: γx = 0 and γy = 1.
Right:γx = 1 and γy = 1
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Asymptotics for large frictions I

Theorem (G. Stoltz, RJ ’11): Infinite transverse friction [2]
Let fγy the unique solution of the Poisson equation:

−A0fγy =

N
∑

i=1

pxiG(qyi),

there is f 0, f 1 and C > 0 such that for all γy ≥ γx > 0

∥

∥fγy − f 0 − γ−1
y f 1

∥

∥

H1(ψ0)
≤

C
γy
.

−→ asymptotic velocity profile uγy
x ∼ u∞

x



Context and introduction Introduction to Statistical Mechanics Nonequilibrium method for the Shear Viscosity Numerical illustrations I Asymptotics for large fr

Asymptotics for large frictions II

Theorem (G. Stoltz, RJ ’11): Infinite longitudinale friction
[2]
Let fγx the unique solution of the Poisson equation:

−A0fγx =

N
∑

i=1

pxiG(qyi),

there is f 1, f 2 and C > 0 such that for all γy ≥ γx > 0

∥

∥fγx − γ−1
x f 1 − γ−2

x f 2
∥

∥

H1(ψ0)
≤

C
γ2

x
.

−→ asymptotic velocity profile uγx
x ∼

F
γx
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Parametric exploration: γx → ∞
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Figure: Fourier coefficient U1 as function of γx , γy = 1 (sinusoidal
perturbation).



Context and introduction Introduction to Statistical Mechanics Nonequilibrium method for the Shear Viscosity Numerical illustrations I Asymptotics for large fr

Parametric exploration: γy → ∞
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Figure: Shear viscosity η as function of γy , γx = 1 (sinusoidal perturbation).
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Conclusions and perspective

What has been done:

• Mathematical understanding of the Method;

• Choice of the friction parameters;

• Robust method and simple to implement in a MD code → test in
LAMMPS are running!;

What is left to do:

• Variance reduction method in the case of positive frictions;

• Comparison with other thermostat (Nose-Hoover, DPD) →
ongoing work;

• Application to real system (clay, ionic liquids).
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Thank you for your attention!
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