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Molecular simulation

Some quantities of interest in molecular dynamics:

thermodynamical averages wrt Gibbs measure:

〈Φ〉 =

∫

Rn

Φ(X) dµ, dµ = Z−1 exp(−βV (X)) dX, X ∈ R
n

or dynamical quantities:

diffusion coefficients

rate constants

residence times in metastable basins
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Molecular simulation

Some quantities of interest in molecular dynamics:

thermodynamical averages wrt Gibbs measure:

〈Φ〉 =

∫

Rn

Φ(X) dµ, dµ = Z−1 exp(−βV (X)) dX, X ∈ R
n

or dynamical quantities:

diffusion coefficients

rate constants

residence times in metastable basins

In practice, quantities of interest often depend on a few variables.

Reduced description of the system, that still includes some dynamical
information?
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Example of a biological system

Courtesy of Chris Chipot, CNRS Nancy
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Reference dynamics

We are interested in dynamical properties. Two possible choices for the
reference dynamics of the system:

overdamped Langevin equation:

dXt = −∇V (Xt) dt+
√

2β−1 dWt, Xt ∈ R
n

Langevin equation (with masses set to 1):

dXt = Pt dt, Xt ∈ R
n,

dPt = −∇V (Xt) dt− γPt dt+
√

2γβ−1 dWt, Pt ∈ R
n.

For both dynamics,

1

T

∫ T

0

Φ(Xt) dt −→

∫

Rn

Φ(X) dµ, dµ = Z−1 exp(−βV (X)) dX.

We will mostly argue with overdamped Langevin, and next turn to Langevin.
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Metastability and reaction coordinate

dXt = −∇V (Xt) dt+
√

2β−1 dWt, Xt ≡ position of all atoms

in practice, the dynamics is metastable: the system stays a long time in a
well of V before jumping to another well:

25002000150010005000

1

0

-1

we assume that wells are fully described through a well-chosen reaction
coordinate

ξ : R
n 7→ R

ξ(x) may e.g. be a particular angle in the molecule.

Quantity of interest: path t 7→ ξ(Xt).
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Our aim

dXt = −∇V (Xt) dt+
√

2β−1 dWt in R
n

Given a reaction coordinate ξ : R
n 7→ R,

propose a dynamics zt that approximates ξ(Xt).

preservation of equilibrium properties:
when X ∼ dµ, then ξ(X) is distributed according to exp(−βA(z)) dz,
where A is the free energy.

The dynamics zt should be ergodic wrt exp(−βA(z)) dz.

recover in zt some dynamical information included in ξ(Xt).

Related approaches: Mori-Zwanzig formalism, asymptotic expansion of the
generator (Papanicolaou, . . . ), averaging principle for SDE (Pavliotis and
Stuart, Hartmann, . . . ), effective dynamics using Markov state models
(Schuette and Sarich, Lu), . . .
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A super-simple case: ξ(x, y) = x

Consider the dynamics in two dimensions: X = (x, y) ∈ R
2,

dxt = −∂xV (xt, yt) dt+
√

2β−1 dW x
t ,

dyt = −∂yV (xt, yt) dt+
√

2β−1 dW y
t ,

and assume that ξ(x, y) = x.
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A super-simple case: ξ(x, y) = x

Consider the dynamics in two dimensions: X = (x, y) ∈ R
2,

dxt = −∂xV (xt, yt) dt+
√

2β−1 dW x
t ,

dyt = −∂yV (xt, yt) dt+
√

2β−1 dW y
t ,

and assume that ξ(x, y) = x. Let ψ(t,X) be the density of X at time t:

for any B ⊂ R
2, P(Xt ∈ B) =

∫

B

ψ(t,X)dX

Introduce the mean of the drift over all configurations satisfying ξ(X) = z:

b̃(t, z) := −

∫

R

∂xV (z, y) ψ(t, z, y) dy
∫

R

ψ(t, z, y) dy

= − E [∂xV (X) | ξ(Xt) = z]

and consider dzt = b̃(t, zt) dt+
√

2β−1 dBt

Then, for any t, the law of zt is equal to the law of xt (Gyongy 1986)
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Making the approach practical

b̃(t, z) = − −

∫

R

∂xV (z, y) ψ(t, z, y) dy = − E [∂xV (X) | ξ(Xt) = z]

b̃(t, z) is extremely difficult to compute . . . Need for approximation:
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Making the approach practical

b̃(t, z) = − −

∫

R

∂xV (z, y) ψ(t, z, y) dy = − E [∂xV (X) | ξ(Xt) = z]

b̃(t, z) is extremely difficult to compute . . . Need for approximation:

b(z) := − −

∫

R

∂xV (z, y) ψ∞(z, y) dy = − Eµ [∂xV (X) | ξ(X) = z]

with ψ∞(x, y) = Z−1 exp(−βV (x, y)).

Effective dynamics:

dzt = b(zt) dt+
√

2β−1 dBt

Idea: b̃(t, x) ≈ b(x) if the equilibrium in each manifold

Σx = {(x, y), y ∈ R}

is quickly reached: xt is much slower than yt.
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The general case: X ∈ R
n and arbitrary ξ

dXt = −∇V (Xt) dt+
√

2β−1 dWt, ξ : R
n → R

From the dynamics on Xt, we obtain (chain rule)

d [ξ(Xt)] =
(
−∇V · ∇ξ + β−1∆ξ

)
(Xt) dt+

√
2β−1 |∇ξ|(Xt) dBt

where Bt is a 1D brownian motion.
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The general case: X ∈ R
n and arbitrary ξ

dXt = −∇V (Xt) dt+
√

2β−1 dWt, ξ : R
n → R

From the dynamics on Xt, we obtain (chain rule)

d [ξ(Xt)] =
(
−∇V · ∇ξ + β−1∆ξ

)
(Xt) dt+

√
2β−1 |∇ξ|(Xt) dBt

where Bt is a 1D brownian motion.

Introduce the average of the drift and diffusion terms:

b(z) := −

∫ (
−∇V · ∇ξ + β−1∆ξ

)
(X) ψ∞(X) δξ(X)−z dX

σ2(z) := −

∫
|∇ξ(X)|

2
ψ∞(X) δξ(X)−z dX

Eff. dyn.: dzt = b(zt) dt+
√

2β−1 σ(zt) dBt

The approximation makes sense if, in the manifold

Σz = {X ∈ R
n, ξ(X) = z} ,

Xt quickly reaches equilibrium. ξ(Xt) much slower than evolution of Xt in Σz.
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Some remarks

Effective dynamics:

dzt = b(zt) dt+
√

2β−1 σ(zt) dBt

OK from the statistical viewpoint: the dynamics is ergodic wrt
exp(−βA(z))dz.

Using different arguments, this dynamics has been obtained by [E and

Vanden-Eijnden 2004], and [Maragliano, Fischer, Vanden-Eijnden and Ciccotti,

2006].

In the following, we will

numerically assess its accuracy

derive error bounds

In practice, we pre-compute b(z) and σ(z) for values on a grid (remember z is
scalar), and next linearly interpolate between these values.
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Dimer in solution: comparison of residence times
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solvent-solvent, solvent-monomer: truncated LJ on r = ‖xi − xj‖:

VWCA(r) = 4ε

(
σ12

r12
− 2

σ6

r6

)
if r ≤ σ, 0 otherwise (repulsive potential)

monomer-monomer: double well on r = ‖x1 − x2‖

Reaction coordinate: the distance between the two monomers
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Dimer in solution: comparison of residence times
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solvent-solvent, solvent-monomer: truncated LJ on r = ‖xi − xj‖:

VWCA(r) = 4ε

(
σ12

r12
− 2

σ6

r6

)
if r ≤ σ, 0 otherwise (repulsive potential)

monomer-monomer: double well on r = ‖x1 − x2‖

Reaction coordinate: the distance between the two monomers

β Reference dyn. Effective dyn.

0.5 262 ± 6 245 ± 5

0.25 1.81 ± 0.04 1.68 ± 0.04
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Accuracy assessment: some background materials
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Accuracy assessment: some background materials

dXt = −∇V (Xt) dt+
√

2β−1 dWt

Let ψ(t,X) be the probability distribution function of Xt:

P (Xt ∈ B) =

∫

B

ψ(t,X) dX

Under mild assumptions, ψ(t,X) converges to ψ∞(X) = Z−1 exp(−βV (X))

exponentially fast:

H (ψ(t, ·)|ψ∞) :=

∫
ψ(t, ·) ln

ψ(t, ·)

ψ∞

≤ C exp(−2ρt)

Relative entropy is interesting because ‖ψ(t, ·) − ψ∞‖2
L1 ≤ 2H (ψ(t, ·)|ψ∞) .

The larger ρ is, the faster the convergence to equilibrium.

Remark: ρ is the Logarithmic Sobolev inequality constant of ψ∞.
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A convergence result

dXt = −∇V (Xt) dt+
√

2β−1dWt, consider ξ(Xt)

Let ψexact(t, z) be the probability distribution function of ξ(Xt):

P (ξ(Xt) ∈ I) =

∫

I

ψexact(t, z) dz

On the other hand, we have introduced the effective dynamics

dzt = b(zt) dt+
√

2β−1 σ(zt) dBt

Let φeff(t, z) be the probability distribution function of zt.

Introduce the error

E(t) :=

∫

R

ψexact(t, ·) ln
ψexact(t, ·)

φeff(t, ·)

We would like ψexact ≈ φeff , e.g. E small . . .
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Decoupling assumptions

Σz = {X ∈ R
n, ξ(X) = z} , dµz ∝ exp(−βV (X)) δξ(X)−z

assume that the Gibbs measure restricted to Σz satisfy a Logarithmic
Sobolev inequality with a large constant ρ, uniform in z (no metastability in
Σz).
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Decoupling assumptions

Σz = {X ∈ R
n, ξ(X) = z} , dµz ∝ exp(−βV (X)) δξ(X)−z

assume that the Gibbs measure restricted to Σz satisfy a Logarithmic
Sobolev inequality with a large constant ρ, uniform in z (no metastability in
Σz).

assume that the coupling between the dynamics of ξ(Xt) and the
dynamics in Σz is weak:
If ξ(x, y) = x, we request ∂xyV to be small.
In the general case, recall that the free energy derivative reads

A′(z) =

∫

Σz

F (X)dµz

We assume that max |∇Σz
F | ≤ κ.
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Decoupling assumptions

Σz = {X ∈ R
n, ξ(X) = z} , dµz ∝ exp(−βV (X)) δξ(X)−z

assume that the Gibbs measure restricted to Σz satisfy a Logarithmic
Sobolev inequality with a large constant ρ, uniform in z (no metastability in
Σz).

assume that the coupling between the dynamics of ξ(Xt) and the
dynamics in Σz is weak:
If ξ(x, y) = x, we request ∂xyV to be small.
In the general case, recall that the free energy derivative reads

A′(z) =

∫

Σz

F (X)dµz

We assume that max |∇Σz
F | ≤ κ.

assume that |∇ξ| is close to a constant on each Σz, e.g.

λ = max
X

∣∣∣∣
|∇ξ|2(X) − σ2(ξ(X))

σ2(ξ(X))

∣∣∣∣ is small
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Error estimate

E(t) = error =

∫

R

ψexact(t, ·) ln
ψexact(t, ·)

φeff(t, ·)

Under the above assumptions, for all t ≥ 0,

E(t) ≤ C(ξ, Initial Cond.)
(
λ+

β2κ2

ρ2

)

Hence, if the coarse variable ξ is such that

ρ is large (fast ergodicity in Σz),

κ is small (small coupling between dynamics in Σz and on zt),

λ is small (|∇ξ| is close to a constant on each Σz),

then the effective dynamics is accurate:

at any time, law of ξ(Xt) ≈ law of zt.

Remark: this is not an asymptotic result, and this holds for any ξ.

This bound may be helpful, in some cases, to discriminate between various
reaction coordinates.
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Rough estimation in a particular case

Standard expression in MD: Vε(X) = V0(X) +
1

ε
q2(X) : ∇q ≡ fast direction

E(t) = error =

∫

R

ψexact(t, ·) ln
ψexact(t, ·)

φeff(t, ·)

If ∇ξ · ∇q = 0, then the direction ∇ξ is decoupled from the fast direction
∇q, hence ξ is indeed a slow variable, and it turns out that

E(t) = O(ε).

If ∇ξ · ∇q 6= 0, then the variable ξ does not contain all the slow motion,
and bad scale separation:

E(t) = O(1),

hence the laws of ξ(Xt) and of zt are not close one to each other.

The condition ∇ξ · ∇q = 0 seems important to obtain good accuracy.
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Tri-atomic molecule

B

C
A

B

C

A

V (X) =
1

2
k2 (rAB − ℓeq)

2
+

1

2
k2 (rBC − ℓeq)

2
+ k3 WDW(θABC), k2 ≫ k3,

where WDW is a double well potential.

Reaction coordinate Orthogonality Reference Residence time

condition residence time using Eff. Dyn.

ξ1(X) = θABC yes 0.700 ± 0.011 0.704 ± 0.011

ξ2(X) = r2AC no 0.709 ± 0.015 0.219 ± 0.004
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Extension to the Langevin equation

We have considered until now the overdamped Langevin equation:

dXt = −∇V (Xt) dt+
√

2β−1 dWt

Consider now the Langevin equation:

dXt = Pt dt

dPt = −∇V (Xt) dt− γPt dt+
√

2γβ−1 dWt

Can we extend the numerical strategy?

Joint work with F. Galante and T. Lelièvre.
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Building the effective dynamics - 1

dXt = Pt dt, dPt = −∇V (Xt) dt− γPt dt+
√

2γβ−1 dWt

We compute

d [ξ(Xt)] = ∇ξ(Xt) · Pt dt

We introduce the coarse-grained velocity

v(X,P ) = ∇ξ(X) · P ∈ R

and have (chain rule)

d [v(Xt, Pt)] =
[
P T

t ∇2ξ(Xt)Pt −∇ξ(Xt)
T∇V (Xt)

]
dt

− γv(Xt, Pt) dt+
√

2γβ−1
∣∣∇ξ(Xt)

∣∣ dBt

where Bt is a 1D Brownian motion.

We wish to write a closed equation on ξt = ξ(Xt) and vt = v(Xt, Pt).

Introduce D(X,P ) = P T∇2ξ(X)P −∇ξ(X)T∇V (X).
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Building the effective dynamics - 2

Without any approximation, we have obtained

dξt = vt dt,

dvt = D(Xt, Pt) dt− γvt dt+
√

2γβ−1 |∇ξ(Xt)| dBt

To close the system, we introduce the conditional expectations with respect to
the equilibrium measure µ(X,P ) = Z−1 exp[−β

(
V (X) + P TP/2

)
]:

Deff(ξ0, v0) = Eµ

(
D(X,P ) | ξ(X) = ξ0, v(X,P ) = v0

)

σ2(ξ0, v0) = Eµ

(
|∇ξ|2(X) | ξ(X) = ξ0, v(X,P ) = v0

)

Effective dynamics:

dξt = vt dt, dvt = Deff(ξt, vt) dt− γvt dt+
√

2γβ−1 σ(ξt, vt) dBt

Again, this dynamics is consistent with the equilibrium properties: it preserves
the equilibrium measure exp [−βA(ξ0, v0)] dξ0 dv0.
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Numerical results: the tri-atomic molecule

B

C
A

B

C

A

V (X) =
1

2
k2 (rAB − ℓeq)

2
+

1

2
k2 (rBC − ℓeq)

2
+ k3 WDW(θABC), k2 ≫ k3,

where WDW is a double well potential.

Reaction coordinate: ξ(X) = θABC .

Inverse temp. Reference Eff. dyn.

β = 1 9.808 ± 0.166 9.905 ± 0.164

β = 2 77.37 ± 1.23 79.1 ± 1.25

Excellent agreement on the residence times in the well.
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Pathwise accuracy (ongoing work with T. Lelièvre and S. Olla)

Going back to the overdamped case, with ξ(x, y) = x, can we get pathwise
accuracy, e.g.

E

[
sup

0≤t≤T

|xt − zt|
2

]
≤
C(T )

ρ
?
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Pathwise accuracy (ongoing work with T. Lelièvre and S. Olla)

Going back to the overdamped case, with ξ(x, y) = x, can we get pathwise
accuracy, e.g.

E

[
sup

0≤t≤T

|xt − zt|
2

]
≤
C(T )

ρ
?

zt is the effective dynamics trajectory:

dzt = −b(zt) dt+
√

2β−1dBt

(xt, yt) is the exact trajectory:

dxt = −∂xV (xt, yt) dt+
√

2β−1dBt

= −b(xt) dt+ e(xt, yt) dt+
√

2β−1dBt

By construction, b(x) = Eµ [∂xV (X)|ξ(X) = x], hence

∀x, Eµ [e(X)|ξ(X) = x] = 0.
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Poisson equation

Let Lx be the Fokker-Planck operator corresponding to a simple diffusion in y,
at fixed x:

Lxφ = divy(φ∇yV ) + β−1∆yφ

For any x,

Eµ [e(X)|ξ(X) = x] = 0 =⇒ ∃u(x, ·) s.t. (Lx)⋆u(x, ·) = e(x, ·)

Assume that Lx satisfies a (large) spectral gap ρ≫ 1. Then, ‖u‖ ≤ C/ρ≪ 1.

We have not been able to show a bound on E

[
sup0≤t≤T |xt − zt|

2
]
, but we

have shown that

P

(
sup

0≤t≤T

|xt − zt| ≥ cρ−α

)
≤

C

ln(ρ)

for any 0 ≤ α < 1/2. This somewhat explains the good results we observe on
the residence times.
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Numerical illustration: the tri-atomic molecule

B

C
A

V (X) =
1

2
k2 (rAB − ℓeq)

2+
1

2
k2 (rBC − ℓeq)

2

+ k3 W (θABC), k2 ≫ k3

zt

θABC(Xt)

t

20151050

1.5

1.4

1.3

1.2

1.1

1

0.9
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Conclusions

We have proposed a “natural” way to obtain a closed equation on ξ(Xt).

Encouraging numerical results and rigorous error bounds (marginals at
time t and in probability on the paths).

Once a reaction coordinate ξ has been chosen, computing the drift and
diffusion functions b(z) and σ(z) is as easy/difficult as computing the free
energy derivative A′(z).

The approach can be extended to the Langevin equation.

FL, T. Lelièvre, Nonlinearity 23, 2010.
FL, T. Lelièvre, Springer LN Comput. Sci. Eng., vol. 82, 2011, arXiv 1008.3792
FL, T. Lelièvre, S. Olla, in preparation
F. Galante, FL, T. Lelièvre, in preparation
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