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Calculation of classical trajectories

The mathematical problem
Given the conservative dynamical system

d2q(t)

dt2
= −∇V (q), (1)

where V is a smooth potential on Q ⊂ Rn, study the existence and
consistent approximation of the boundary value problem:

q(0) = qa and q(T ) = qb (2)

with qa, qb ∈ Q and T > 0. Here, T is to be determined. Here V is the
potential energy, E the total energy and Q :=

{
q
∣∣ V (q) < E

}
.

Motivation
Given a potential energy surface and two points (e.g., minima) in this
landscape, find the Hamiltonian trajectory that connects the two — or, in
practice, find a good approximation to the dynamical path.
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Background

Motivation

I Complex systems in physics, chemistry or biology often have a
potential energy landscape with many wells, separated by barriers

I Example: thermally activated reactions. Reactants will spend most
of the time jostling around in one well before a rare spontaneous
fluctuation occurs that lifts the atoms of the reactant over the
barrier into the next (product) valley

I Such rare events easily exceed modern computing power (for
example, configurational changes in DNA: dimension n ≈ 200).

Relevant literature

I The system with periodic boundary conditions is well studied (e.g.,
Seifert, Math. Z., 51 (1948), 197–216; Rabinowitz, Comm. Pure
Appl. Math., 31 (1978), 157–184).

I Boundary value problem much less studied (Gordon, J. Differential
Geometry, 9 (1974), 443–450; related Benci, Fortunato, Giannoni,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 255–289)
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Motivation

Molecular Dynamics (MD) simulation
Computation of molecular trajectories, e.g., with the Verlet algorithm.
Open:

I is the computed trajectory near a real one (shadowing);

I if so, is it near a generic trajectory.

Shadowing: mathematical results relying on hyperbolicity not applicable
(Gillilan and Wilson, J. Chem. Phys., 97 (1992), 1757–1772).

Hence, our trust in Molecular Dynamics simulation as a tool to
study the time evolution of many-body systems is based largely
on belief. To conclude this discussion, let us say that there is
clearly still a corpse in the closet. We believe this corpse will
not haunt us, and we quickly close the closet.

Frenkel & Smit, “Understanding Molecular Simulation”, CUP

=⇒ develop convergent method, albeit not necessarily efficient.
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Continuous setting

Hamilton’s principle
Every dynamic trajectory with q(0) = qa and q(T ) = qb is stationary
point (saddle point; minimum only for nearby qa, qb) of the action

S [γ] :=

∫ T

0

L (γ(t), γ̇(t)) dt with L (q, q̇, τ) =
〈q̇, q̇〉

2
− V (q) . (3)

Passerone and Parrinello, Phys. Rev. Lett., 87 (2001), 108302
Passerone, Ceccarelli and Parrinello, J. Chem. Phys., 118 (2003),
2025–2032: Augmentation of Hamilton’s principle via the addition of
constraints to transform it into a minimum principle.

Equivalent variational principle: Maupertuis / Jacobi
For q = q(s) with q(0) = qa and q(τ) = qb, the Maupertuis action is

L[γ] :=

∫ τ

0

√
2(E − V (q))

√
〈q̇, q̇〉ds =

∫ τ

0

√
g(q) (q′, q′)ds . (4)

Classic result: Hamiltonian trajectory is stationary point of SM . We call
this the Jacobi’s method or principle of stationary action.
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Birkhoff’s algorithm

Summary so far
Hamiltonian boundary value problem is reformulated as variational
problem (elliptic since Jacobi metric g(q) := 2(E − V (q))δij is Riemann
metric on Q). Solutions are geodesics, time can be recovered via formula

t =
∫ τ

0

√
〈q′,q′〉

2(E−V ) ds.

Computation of geodesics in the continuous case

I Approximation converges to geodesic
(possibly slowly)

I No refinement: number of chosen points
remains constant.

I Problem: local geodesics nontrivial to
compute in any metric other than the
Euclidean metric (e.g., in Jacobi’s metric!)

qa

qb

Figure: Birkhoff’s
algorithm (Euclidean
metric in R2)
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Computation of trajectories based on Jacobi’s principle

Two different strategies

1. Flow model: Use that Hamiltonian equations can be equivalently
reformulated as elliptic equation, and use parabolic flow ideas.

+ Efficient computation
– At least hard to obtain convergence results

2. Birkhoff approach: use that trajectories are geodesics, use curve
shortening.

+ Convergence can be proved
– Algorithm more expensive than flow model

Other string methods
Gillilan and Wilson, J. Chem. Phys., 97 (1992), 1757–1772 (Verlet
action); Olender and Elber, J. Chem. Phys., 105 (1996), 9299–9315
(Onsager-Machlup); Passerone, Ceccarelli and Parrinello, J. Chem. Phys.,
118 (2003), 2025–2032 (Hybrid Hamilton-Maupertuis iteration scheme);
Banerjee and Adams, J. Chem. Phys., 92 (1990), 7330–7339 (essentially
Jacobi principle; linear combination of basis functions)
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Outline of our approach
Elements of the argument

1. Use equivalent reformulation of the Hamiltonian system via Jacobi’s
principle (as Seifert, Weinstein, Gordon, . . . ).

I Advantage: Hamiltonian system (normally unbounded from above
and below) becomes elliptic (and thus bounded from below).

2. Then trajectories become geodesics. Use parabolic estimates to
obtain invariant region for an associated flow with geodesic as limit.

3. Use discretisation of Jacobi metric and Birkhoff’s method to develop
constructive approach.

Step 1 is the same as in the case of periodic boundary conditions, Step 2
and 3 are new. Aim: bounds in terms of E and V rather than proper
g -convexity (Gordon, J. Differential Geometry, 9 (1974), 443–450)

Caveat
No attempt is made to make the algorithm efficient; the aim is to give
useful a priori bounds and prove existence. Algorithms inspired by this
approach can be much faster (e.g., flow models).
Other method used: multiple shooting (for DNA in ≈ R200).
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Discrete Birkhoff method: fixed grid

Setting
Configuration: Given Birkhoff triplet
(q−, q,q+) of the polygon,

q = (X ,Y ), q± = (X±,Y±) with

X± = X±ε,∈ R Y± = Y +∆± ∈ Rn−1,

we want to move q0 in normal
direction ν by length δ. Note: two
scales ε and δ!

q+ = (X+, Y+)

δ

�

q− = (X−, Y−)

Define piecewise constant (=Euclidean) metric on grid of size ε, defining
length L̄.
Introduce piecewise constant approximation ḡ of Jacobi metric g ; this
defines discrete length L̄. Then consider centred differences

∆L̄(ε, δ) :=
(
L̄(q−, q + (0, δ)) + L̄(q + (0, δ), q+)

)
−
(
L̄(q−, q) + L̄(q, q+)

)
.

This is the core quantity for the Jacobi algorithm.
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Discrete Birkhoff method: fixed grid

Proposition
There exists N > 0 and ε0 = ε0(N) > 0 s.th. for all ε ∈ (0, ε0) and all triplets

q = (X ,Y ), q± = (X±,Y±) with X± = X ± ε, Y± = Y + ∆±

which satisfy
∣∣∣∆±
±ε

∣∣∣ ≤ 1 and
∆++∆−

ε2 = −N̂ ν̂, with N̂ ∈ (N, 3N) and ν̂ ∈ Sn−1
∞ ,

see figure, there holds{
∆L̄(ε, δ) > 0 for every δ with |δ| ≤ εα+2 and δ

|δ| · ν = 1,

∆L̄(ε, δ) < 0 for every δ with |δ| ≤ εα+2 and δ
|δ| · ν = −1.

N

Sn−1
∞

ν̂

−N̂ ν̂
3N

This statement shows that length-reducing
procedures for triplets will not increase the discrete
curvature indefinitely.
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Discrete Birkhoff: fixed grid

Consequences from curvature bound

Proposition
Discrete Birkhoff algorithm leaves bounds on first and second difference
quotients (curvature) invariant; it also preserves a graph structure.

Corollary
There exists an invariant neighbourhood (defined via N from the
Proposition) of qa and qb such that suitable initial polygons cannot leave
the neighbourhood under iteration.
The Birkhoff iteration for a fixed grid stops after finitely many steps,
giving the approximation γ1.
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Refinement

Core arguments
Define

εk+1 := 2kε0 and δk :=

(
2

3

)k

ε2
k

Output of Birkhoff procedure at level k will be denoted γk .

Theorem
The sequence γk converges in Cβ([0, 1]; S) for any β ∈ (0, 1) to a limit
γ, and the limit curve γ solves the geodesic equation and hence is after
time-reparametrisation a trajectory for the Hamiltonian boundary value
problem.

Element of the proof:

I Argument so far relies crucially on discrete curvature bound.

I Potential problem: refinement k → k + 1 doubles discrete curvature.

I However, one application of Birkhoff at level k + 1 reduces discrete
curvature to the bound at step k (this follows from arguments giving
existence of invariant region).
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Summary: Convergence result
Scalings

I first scale: ε, second scale: δ = ε2+α with α > 0;

I the discretisation of the length functional necessarily has to be finer
that the scaling δ in normal direction (e.g., ε3).

Summary of results so far

1. Given qa, qb, by choosing E large enough we can show the existence
of a trajectory connecting qa and qb and give a convergent
numerical approximations.

2. Given E and qa the same applies for suitable choices of qb.

Remarks

I There are situations in which these three scales cannot be avoided
(though they are of course not always required).

I In the Maupertuis formulation, one can also use Finite Elements to
solve the nonlinear elliptic equation. This may be more efficient but
uses higher derivatives (Christoffel symbols) of potential V .
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Example: computational effort

Toy model
Consider V (q) := exp(−ηm · q) with η > 0, m, q ∈ Rn. Then (code in C,
double precision, not parallel):

−0.6 −0.4 −0.2 0 0.2 0.4

9 7447 0
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Approximation error

−log2(!)

lo
g 2(e

rro
r)

" error # !0.66192

0 2 4 6 8 10
0
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10

12

14
Computational effort

−log2(!)

lo
g 2(e

ffo
rt)

" effort # 1/!1.9471

Figure: Exponential metric, n = 2, left: approximations (blue) and analytic
solution (green). Right: Error approxmately

√
ε, expenses approximately ε−2

Advantage of approach: Parallelisation straightforward.
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Example: computational effort

Toy model
The requirement that δ is small is not an artefact: gridlock occurs with δ
too large.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
9 10 0

Figure: Gridlock for large stepsize δ

Natural approach: use more efficient method (e.g., flow method) first
and then method described above.
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A flow model algorithm for Jacobi’s method

Sketch of algorithm
Schwetlick and Z., J. Chem. Phys., 130 (2009), 124106: Use Jacobi
formulation, but now implement a discrete flow inspired by Birkhoff.

Difficulty: metric is not Euclidean. Thus: approximate curve and metric,
the latter by a piecewise constant one.

1. Input: a polygonal curve γ joining given
configurations qa and qb inside the
configuration manifold, γ ⊂ Q. We
represent γ by its nodes q(l), l = 1, . . . , L,
with qa = q(0), . . . , q(L) = qb.

2. Approximate the metric g in a suitable
neighbourhood of the curve by a piecewise
Euclidean metric, such that the metric in
the vicinity of a discretisation point q (l) is
given by the metric of that point,
g(q(l)) = E − V (q(l)).

q(l)

q(l − 1)

q(l + 1)

Figure: Sketch of the
algorithm’s Steps 1
and 2. In each region,
the metric is Euclidean
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A flow model algorithm for Jacobi’s method

Sketch of algorithm

3. Iteratively single out three neighbouring
discretisation points and move the middle
one to decrease length.

4. Under iteration, neighbouring points can
come close to each other faster than
neighbouring points further away from the
boundary V (q) = E . This normally leads
to an increasingly uneven distribution of
points during the iteration. We thus
reparametrise the curve by arc-length to
avoid a clustering of discretisation points.

q(l)

q(l + 1)

p+

p−

q(l − 1)

p−

Figure: Sketch of the
algorithm’s Steps 3
and 4. The points p±
are indicated; the
vector ν i defines the
line joining p+ and p−.
The curves joining
q(l − 1), p± and
q(l + 1) are shown as
dashed-dotted lines.
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Step 3 (Flow model)

Consider the flow of q(l) in the direction of the normal ν i . In continuous
setting:

∂

∂s
q(l) = −∇J (q(l)) ν i . (5)

Mimic in discrete setting:

I Discretised tangent vectors: τ− := q(l)− q(l − 1) and
τ+ := q(l + 1)− q(l). The mean τ := 1

2 (τ− + τ+) is then an
averaged discrete tangent vector at q(l).

I Let ν i be a normalised unit vector orthogonal to τ .

I Approximate the gradient of the length functional as follows. For
δ > 0, we consider the points p± := q(l)± δν i .

I Let J+ be the energy of the segment consisting of two lines joining
q(l − 1) and q(l + 1) via p+ (with respect to the piecewise
Euclidean metric). Define J− analogously.

I Then discrete gradient flow

q(l)new := q(l)−∆ξ · (J+ − J−) ν i . (6)
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Example: Collinear reaction

Example: Collinear reaction H + H2 = H2 + H
Simplest chemical reactions, common testing ground for computational
studies of chemical reaction kinetics. Completely captured by two
coordinates R1 (= R12) and R2 (= R23).
Potential energy: ab initio potential surface for linear H3 (Liu, J. Chem.
Phys., 58 (1973), 1925–1937).

V (R1,R2) = V0 +
2∑

j=1

VH2 (Rj) + exp (−γ (R1 + R2))

×
n∑

k=0

[k/2]∑
j=0

Ck−j,j

(
Rk−j

1 R j
2 + R j

1Rk−j
2

)
, (7)

with the potential energy VH2 (Rj) = −1 + exp
(
−αRj

∑m
l=0 ajR

l
j

)
. Here

n = 14, m = 8, V0 = 0.5, α = 1.9140625, and γ = 1.5390625.
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Example: Collinear reaction

Simulations

Finite energy E = −1.5au
(saddle-point energy is E = −1.658au).
Reactant configuration and product
near the entrance channel:

I Reactant configuration
R1 = 3bohr, R2 = 1.4bohr

I Product configuration
R1 = 1.4bohr, R2 = 3bohr

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure: Initial curve (dashed)
and its corresponding local
minimum of the length
functional (solid)
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Example: Collinear reaction

Simulations

Same E as above, but different initial
curves (lower dasher and upper
dashed-dotted curves). Both converge
to the inscribed curve (solid).

The 2D case is special: comparison
principle holds, all curves initially
inscribed by the two outer curves will
converge to the same minimum.

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure: Two initial curves
(lower dasher and upper
dashed-dotted curves) and their
corresponding local minimum
(solid curve). The solid curve
describes a trajectory joining
the initial and final state
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Example: Collinear reaction; saddle point approximation

Simulations

Again E = −1.5au. The thin region
between the two middle curves
approximates the position of a saddle
curve.

(Bisection procedure employed to find

saddle connections: initial curves are

deformed until they enter the regions

already identified as domains of attraction

of the local minima. Thus curves in the

stable manifold of the saddle are

approximated. An iteration of the

procedure then approaches the saddle

curve. Numerically not cheap.)

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure: Separation of two
domains of attraction: the
upper dashed curve converges
to one local minimum (solid
curve), the nearby dash-dotted
curve converges to different
local minimum along the
boundary (outer dash-dotted
curve).
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