# A spatial version of the Itô-Stratonovich correction 

Jan Maas<br>University of Bonn

Joint work with Martin Hairer and Hendrik Weber

## Introduction

General question
How to deal with spatially rough stochastic PDEs?

## Introduction

## General question

How to deal with spatially rough stochastic PDEs?
We study equations of the form

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

where

- $u=u(x, t) \in \mathbb{R}^{n}, x \in[0,1], t \geq 0$, periodic boundary conditions.
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ smooth
- $\xi$ : space-time white noise: Gaussian process with covariance

$$
\mathbb{E} \xi(x, t) \xi(y, s)=\delta(x-y) \delta(t-s)
$$

## Introduction

## General question

How to deal with spatially rough stochastic PDEs?
We study equations of the form

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

where

- $u=u(x, t) \in \mathbb{R}^{n}, x \in[0,1], t \geq 0$, periodic boundary conditions.
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ smooth
- $\xi$ : space-time white noise: Gaussian process with covariance

$$
\mathbb{E} \xi(x, t) \xi(y, s)=\delta(x-y) \delta(t-s)
$$

## Remark

- We can deal with an reaction term $f(u)$ as well. (Easy)
- We can treat multiplicative noise as well. (Not so easy)


## Introduction

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

## Motivation

- Natural extensions of Burgers equation $(g(u)=-u)$.
- Path-sampling problems for stochastic ODEs
- Spatial regularity is at the borderline where 'classical' techniques break down. Techniques apply to even rougher equations (KPZ).


## Introduction

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

## Motivation

- Natural extensions of Burgers equation $(g(u)=-u)$.
- Path-sampling problems for stochastic ODEs
- Spatial regularity is at the borderline where 'classical' techniques break down. Techniques apply to even rougher equations (KPZ).

Structure of the talk

- Part I: $g=D G$ is a gradient

Existence \& Uniqueness: well-known (Da Prato \& Debussche \& Temam '94; Gyöngy '98) Approximations: (Hairer \& M.)

- Part II: $g$ is not a gradient

Existence \& Uniqueness: (Hairer; Hairer \& Weber)
Approximations: (Hairer \& M. \& Weber )

Part I: $g=D G$

## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:

## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:
Stochastic heat equation

$$
\partial_{t} \psi=\partial_{x}^{2} \psi+\xi
$$

## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:
Stochastic heat equation

$$
\partial_{t} \psi=\partial_{x}^{2} \psi+\xi
$$

- Explicit solution: $\psi(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)$


## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:
Stochastic heat equation

$$
\partial_{t} \psi=\partial_{x}^{2} \psi+\xi
$$

- Explicit solution: $\psi(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)$
- Spatial regularity: for fixed $t, \psi(\cdot, t)$ belongs to $C^{\alpha}$ iff $\alpha<\frac{1}{2}$.


## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:
Stochastic heat equation

$$
\partial_{t} \psi=\partial_{x}^{2} \psi+\xi
$$

- Explicit solution: $\psi(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)$
- Spatial regularity: for fixed $t, \psi(\cdot, t)$ belongs to $C^{\alpha}$ iff $\alpha<\frac{1}{2}$.


## Back to the nonlinear equation

- Intuition: $u \sim \psi$ in terms of regularity.


## Part I: Gradient case: $g=D G$

$$
\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi
$$

How to solve this equation? First look at the linearised equation:
Stochastic heat equation

$$
\partial_{t} \psi=\partial_{x}^{2} \psi+\xi
$$

- Explicit solution: $\psi(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)$
- Spatial regularity: for fixed $t, \psi(\cdot, t)$ belongs to $C^{\alpha}$ iff $\alpha<\frac{1}{2}$.


## Back to the nonlinear equation

- Intuition: $u \sim \psi$ in terms of regularity.
- Problem: how to make sense of the nonlinearity $g(u) \partial_{x} u$ ?

How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

## How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} \partial_{x}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

## How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} \partial_{x} e^{(t-s) \Delta}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

## How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} \partial_{x} e^{(t-s) \Delta}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

This only works if $g=D G$ is a gradient!

## How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} \partial_{x} e^{(t-s) \Delta}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

This only works if $g=D G$ is a gradient!
How to obtain solutions?

How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} \partial_{x} e^{(t-s) \Delta}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

This only works if $g=D G$ is a gradient!
How to obtain solutions?
Standard trick: Decompose $u=\psi+v$, so that

$$
\begin{array}{ll}
\psi(\cdot, t)=e^{t \Delta} u_{0}+ \\
v(\cdot, t)= & \quad \int_{0}^{t} \partial_{x} e^{(t-s) \Delta} \mathrm{d} W(s)
\end{array}
$$

How to make sense of solutions? $\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi$

## Definition

$u$ is a mild solution if it satisfies the 'variation of constants formula':

$$
u(\cdot, t)=e^{t \Delta} u_{0}+\int_{0}^{t} \partial_{x} e^{(t-s) \Delta}[G(u(\cdot, s))] \quad \mathrm{d} s+\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
$$

This only works if $g=D G$ is a gradient!
How to obtain solutions?
Standard trick: Decompose $u=\psi+v$, so that

$$
\begin{array}{ll}
\psi(\cdot, t)=e^{t \Delta} u_{0}+ \\
v(\cdot, t)= & +\int_{0}^{t} e^{(t-s) \Delta} \mathrm{d} W(s)
\end{array}
$$

- Moral: After fixing $\psi$, the equation for $v$ becomes deterministic;
- $\rightsquigarrow$ can be solved pathwise by a standard fixed-point argument in $C^{1}$.


## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit.

## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

where $D_{\varepsilon} u(x):=\frac{u(x+\varepsilon)-u(x)}{\varepsilon}$.

## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

where $D_{\varepsilon} u(x):=\frac{u(x+\varepsilon)-u(x)}{\varepsilon}$.

## Numerics 1 (Hairer \& Voss)

If $\Delta_{\varepsilon}=$ "finite difference appr.", then $u^{\varepsilon} \rightarrow \bar{u}$ with $C=\frac{1}{4}$.

## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

where $D_{\varepsilon} u(x):=\frac{u(x+\varepsilon)-u(x)}{\varepsilon}$.

## Numerics 1 (Hairer \& Voss)

If $\Delta_{\varepsilon}=$ "finite difference appr.", then $u^{\varepsilon} \rightarrow \bar{u}$ with $C=\frac{1}{4}$.

## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

where $D_{\varepsilon} u(x):=\frac{u(x+\varepsilon)-u(x)}{\varepsilon}$.

## Numerics 1 (Hairer \& Voss)

If $\Delta_{\varepsilon}=$ "finite difference appr.", then $u^{\varepsilon} \rightarrow \bar{u}$ with $C=\frac{1}{4}$.

$$
\text { where } \partial_{t} \bar{u}=\partial_{x}^{2} \bar{u}+g(\bar{u}) \partial_{x} \bar{u}-C(\nabla \cdot g)(\bar{u})+\xi \text {. }
$$

- Left-sided discretisations? $\rightsquigarrow$ correction with opposite sign.


## Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable approximating equations converge to the "right" limit. However:

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi
$$

where $D_{\varepsilon} u(x):=\frac{u(x+\varepsilon)-u(x)}{\varepsilon}$.

## Numerics 1 (Hairer \& Voss)

If $\Delta_{\varepsilon}=$ "finite difference appr.", then $u^{\varepsilon} \rightarrow \bar{u}$ with $C=\frac{1}{4}$.

## Numerics 2 (Hairer \& Voss)

If $\Delta_{\varepsilon}=$ "spectral Galerkin appr.", then $u^{\varepsilon} \rightarrow \bar{u}$ with $\quad C \approx 0.19$.

$$
\text { where } \partial_{t} \bar{u}=\partial_{x}^{2} \bar{u}+g(\bar{u}) \partial_{x} \bar{u}-C(\nabla \cdot g)(\bar{u})+\xi \text {. }
$$

- Left-sided discretisations? $\rightsquigarrow$ correction with opposite sign.


## Approximations: theoretical results

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi_{\varepsilon},
$$

with arbitrary translation invariant approximations (i.e. Fourier multipliers)

## Approximations: theoretical results

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi_{\varepsilon}
$$

with arbitrary translation invariant approximations (i.e. Fourier multipliers)

- $\widehat{\Delta_{\varepsilon} u}(k)=-f(\varepsilon k) k^{2} \widehat{u}(k)$,

$$
\widehat{\xi}_{\varepsilon}(k)=h(\varepsilon k) \widehat{\xi}(k) .
$$

- $D_{\varepsilon} u(x):=\frac{1}{\varepsilon} \int_{\mathbb{R}} u(x+\varepsilon y) \mu(d y)$,


## Approximations: theoretical results

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi_{\varepsilon}
$$

with arbitrary translation invariant approximations (i.e. Fourier multipliers)

- $\widehat{\Delta_{\varepsilon} u}(k)=-f(\varepsilon k) k^{2} \widehat{u}(k)$,

$$
\widehat{\xi}_{\varepsilon}(k)=h(\varepsilon k) \widehat{\xi}(k) .
$$

- $D_{\varepsilon} u(x):=\frac{1}{\varepsilon} \int_{\mathbb{R}} u(x+\varepsilon y) \mu(d y)$,
- Consider the corrected equation:

$$
\partial_{t} \bar{u}=\partial_{x}^{2} \bar{u}+g(\bar{u}) \partial_{x} \bar{u}+\xi-C(\nabla \cdot g)(\bar{u}),
$$

## Approximations: theoretical results

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi_{\varepsilon}
$$

with arbitrary translation invariant approximations (i.e. Fourier multipliers)

- $\widehat{\Delta_{\varepsilon} u}(k)=-f(\varepsilon k) k^{2} \widehat{u}(k)$,

$$
\widehat{\xi}_{\varepsilon}(k)=h(\varepsilon k) \widehat{\xi}(k) .
$$

- $D_{\varepsilon} u(x):=\frac{1}{\varepsilon} \int_{\mathbb{R}} u(x+\varepsilon y) \mu(d y)$,
- Consider the corrected equation:

$$
\partial_{t} \bar{u}=\partial_{x}^{2} \bar{u}+g(\bar{u}) \partial_{x} \bar{u}+\xi-C(\nabla \cdot g)(\bar{u}),
$$

where

$$
C:=\frac{1}{2 \pi} \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \frac{h^{2}(t)}{f(t)} \frac{(1-\cos (y t))}{t^{2}} \mu(d y) d t
$$

## Approximations: theoretical results

- Consider the approximating equation:

$$
\partial_{t} u^{\varepsilon}=\Delta_{\varepsilon} u^{\varepsilon}+g\left(u^{\varepsilon}\right) D_{\varepsilon} u^{\varepsilon}+\xi_{\varepsilon}
$$

with arbitrary translation invariant approximations (i.e. Fourier multipliers)

- $\widehat{\Delta_{\varepsilon} u}(k)=-f(\varepsilon k) k^{2} \widehat{u}(k)$,

$$
\widehat{\hat{\xi}_{\varepsilon}}(k)=h(\varepsilon k) \widehat{\xi}(k) .
$$

- $D_{\varepsilon} u(x):=\frac{1}{\varepsilon} \int_{\mathbb{R}} u(x+\varepsilon y) \mu(d y)$,
- Consider the corrected equation:

$$
\partial_{t} \bar{u}=\partial_{x}^{2} \bar{u}+g(\bar{u}) \partial_{x} \bar{u}+\xi-C(\nabla \cdot g)(\bar{u}),
$$

$$
\text { where } \quad C:=\frac{1}{2 \pi} \int_{\mathbb{R}_{+}} \int_{\mathbb{R}} \frac{h^{2}(t)}{f(t)} \frac{(1-\cos (y t))}{t^{2}} \mu(d y) d t
$$

Theorem (Hairer - M. '10)

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{P}\left(\sup _{t \leq \tau_{\varepsilon}}\left\|u^{\varepsilon}(t)-\bar{u}(t)\right\|_{L^{\infty}}>\varepsilon^{\frac{1}{6}-\kappa}\right)=0 \quad \forall \kappa>0
$$

Remarks

## Remarks

- No correction term appears if space-time white noise is replaced by more regular noise.


## Remarks

- No correction term appears if space-time white noise is replaced by more regular noise.
- Correction term arises due to the lack of spatial regularity.


## Remarks

- No correction term appears if space-time white noise is replaced by more regular noise.
- Correction term arises due to the lack of spatial regularity.
- It is exactly the local cross-variation in space: $d[g(u), u]$ (kind of Itô-Stratonovich correction).

Part II: $g$ is not a gradient

## Part II: Non-gradient case

How to make sense of solutions?

## Part II: Non-gradient case

How to make sense of solutions?
Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

## Part II: Non-gradient case

How to make sense of solutions?
Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

Main Problem

## Part II: Non-gradient case

How to make sense of solutions?
Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

## Main Problem

Need to make sense of $\int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} \psi(y, s)\right] d y$, where $p_{t}(x)$ denotes the heat kernel.

## Part II: Non-gradient case

## How to make sense of solutions?

Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

## Main Problem

Need to make sense of $\int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} \psi(y, s)\right] \mathrm{d} y$, where $p_{t}(x)$ denotes the heat kernel.

- Observation: looks a bit like a stochastic integral


## Part II: Non-gradient case

## How to make sense of solutions?

Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

## Main Problem

Need to make sense of $\int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} \psi(y, s)\right] \mathrm{d} y$, where $p_{t}(x)$ denotes the heat kernel.

- Observation: looks a bit like a stochastic integral
- But: Stochastic calculus does not apply (no arrow of time)


## Part II: Non-gradient case

## How to make sense of solutions?

Recall the decomposition $u=\psi+v$ :

$$
\begin{aligned}
\psi(\cdot, t) & =e^{t \Delta} u_{0} \\
v(\cdot, t) & =\quad \int_{0}^{t} e^{(t-s) \Delta}\left[g(u(\cdot, s)) \partial_{x} u(\cdot, s)\right] \mathrm{d} s
\end{aligned}
$$

## Main Problem

Need to make sense of $\int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} \psi(y, s)\right] \mathrm{d} y$, where $p_{t}(x)$ denotes the heat kernel.

- Observation: looks a bit like a stochastic integral
- But: Stochastic calculus does not apply (no arrow of time)
- Solution (following Hairer, Weber): use Lyons' Rough Paths Theory.


## 1-Slide Crash course in Rough Paths Theory

## 1-Slide Crash course in Rough Paths Theory

## Goal

Making sense of $\int_{y}^{z} Y(x) \mathrm{d} X(x)$ for suitable $X, Y \in C^{\alpha}$ with $\alpha<\frac{1}{2}$.
Problem: different Riemann sum approximations $\rightarrow$ different limits.

## 1-Slide Crash course in Rough Paths Theory

## Goal

Making sense of $\int_{y}^{z} Y(x) \mathrm{d} X(x)$ for suitable $X, Y \in C^{\alpha}$ with $\alpha<\frac{1}{2}$.
Problem: different Riemann sum approximations $\rightarrow$ different limits.
Rough Path Theory (Lyons, Gubinelli)

- Postulate the value of 'area process'

$$
\int_{y}^{z} X(x)-X(y) \mathrm{d} X(x):=\mathbf{X}(y, z)
$$

- If $Y$ is 'controlled' by $X$, i.e.,

$$
Y(y)-Y(x)=Y^{\prime}(x)(X(y)-X(x))+\{\text { smooth }\}
$$

one can define $\int_{y}^{z} Y(x) \mathrm{d} X(x)$
by 'second order Riemann sum approximation' involving $\mathbf{X}$.

- Note: the value of $\int_{y}^{z} Y(x) \mathrm{d} X(x)$ depends on the choice of $\mathbf{X}$ !


## Back to the SPDE... (following Hairer '11)

Agenda:
(1) Construct an area process $\Psi$ for the linearised solution $\psi$.
(2) Make sense of mild solutions using rough integrals.
(3) Construct solutions using a fixed point argument.
(4) Prove convergence of approximations.

## Back to the SPDE... (following Hairer '11)

Agenda:
(1) Construct an area process $\Psi$ for the linearised solution $\psi$.
(2) Make sense of mild solutions using rough integrals.
(3) Construct solutions using a fixed point argument.
(9) Prove convergence of approximations.

Theorem (Friz \& Victoir '05; Hairer '10)
Let $\psi$ be the solution to the stochastic heat equation. For fixed $t$ there is a "canonical" area process $\Psi$ such that $(\psi(t, \cdot), \Psi(t, \cdot, \cdot))$ is a rough path.

## Back to the SPDE... (following Hairer '11)

Agenda:
(1) Construct an area process $\psi$ for the linearised solution $\psi$.
(2) Make sense of mild solutions using rough integrals.
(3) Construct solutions using a fixed point argument.
(9) Prove convergence of approximations.

## Theorem (Friz \& Victoir '05; Hairer '10)

Let $\psi$ be the solution to the stochastic heat equation. For fixed $t$ there is a "canonical" area process $\Psi$ such that $(\psi(t, \cdot), \Psi(t, \cdot, \cdot))$ is a rough path.

Note however: $\tilde{\Psi}(t, x, y):=\Psi(t, x, y)+c(y-x)$ would be admissible as well (for any $c \in \mathbb{R}$ )!

## Making sense of weak solutions

Let $\psi$ be the solution to the stochastic heat equation.

## Definition

A continuous stochastic process $u$ is a solution to (SPDE) if $v:=u-\psi$ belongs to $C^{1}$ (in space) and satisfies

$$
\begin{aligned}
v(\cdot, t)= & \int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} v(\cdot, s)\right] \mathrm{d} y \mathrm{~d} s \\
& +\int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)[g(u(y, s))] \mathrm{d} y \psi(y, s) \mathrm{d} s
\end{aligned}
$$

First integral: no problem, $v$ is differentiable. Second integral: interpretation in the sense of rough paths.

## Making sense of weak solutions

Let $\psi$ be the solution to the stochastic heat equation.

## Definition

A continuous stochastic process $u$ is a solution to (SPDE) if $v:=u-\psi$ belongs to $C^{1}$ (in space) and satisfies

$$
\begin{aligned}
v(\cdot, t)= & \int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} v(\cdot, s)\right] \mathrm{d} y \mathrm{~d} s \\
& +\int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)[g(u(y, s))] \mathrm{d} y \psi(y, s) \mathrm{d} s
\end{aligned}
$$

First integral: no problem, $v$ is differentiable. Second integral: interpretation in the sense of rough paths.

## Remarks

- Notion of solution depends on the choice of the area process $\Psi$ !


## Making sense of weak solutions

Let $\psi$ be the solution to the stochastic heat equation.

## Definition

A continuous stochastic process $u$ is a solution to (SPDE) if $v:=u-\psi$ belongs to $C^{1}$ (in space) and satisfies

$$
\begin{aligned}
v(\cdot, t)= & \int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)\left[g(u(y, s)) \partial_{x} v(\cdot, s)\right] \mathrm{d} y \mathrm{~d} s \\
& +\int_{0}^{t} \int_{0}^{1} p_{t-s}(x-y)[g(u(y, s))] \mathrm{d} y \psi(y, s) \mathrm{d} s
\end{aligned}
$$

First integral: no problem, $v$ is differentiable. Second integral: interpretation in the sense of rough paths.

## Remarks

- Notion of solution depends on the choice of the area process $\Psi$ !
- Once $\Psi$ has been fixed, everything is deterministic!


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.


## Further results (Hairer \& M. \& Weber)

## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.

Further results (Hairer \& M. \& Weber)

- Extension of the approximation results to the non-gradient case.


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.


## Further results (Hairer \& M. \& Weber)

- Extension of the approximation results to the non-gradient case.
- Solutions to the corrected equation
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+c(\nabla \cdot g)(u)+\xi$ with canonical area process $\psi$ coincide with solutions to
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi \quad$ with area process $\Psi(x, y)+c(y-x)$


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.


## Further results (Hairer \& M. \& Weber)

- Extension of the approximation results to the non-gradient case.
- Solutions to the corrected equation
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+c(\nabla \cdot g)(u)+\xi$ with canonical area process $\psi$ coincide with solutions to
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi \quad$ with area process $\Psi(x, y)+c(y-x)$
- Old interpretation: Approximations converge to SPDEs with the "wrong" nonlinearity.


## Results

## Existence and uniqueness (Hairer; Hairer \& Weber)

- Existence \& uniqueness of solutions.
- Extension to multiplicative noise (nontrivial!)
- If $g=D G$, then solutions coincide with "classical solutions", provided $\Psi$ is the canonical area process.


## Further results (Hairer \& M. \& Weber)

- Extension of the approximation results to the non-gradient case.
- Solutions to the corrected equation
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+c(\nabla \cdot g)(u)+\xi$ with canonical area process $\psi$ coincide with solutions to
$\partial_{t} u=\partial_{x}^{2} u+g(u) \partial_{x} u+\xi \quad$ with area process $\Psi(x, y)+c(y-x)$
- New interpretation: Approximations converge to SPDEs with the right nonlinearity, but with a different area process.


## References

M. Hairer

Rough stochastic PDEs
Comm. Pure Appl. Math., to appear.
M. Hairer, J. Maas

A spatial version of the Itô-Stratonovich correction
Ann. Probab., to appear.
M. Hairer, J. Maas, H. Weber

Approximating rough stochastic PDEs
in preparation.
M. Hairer, J. Voss

## Thank

you!
Approximations to the stochastic Burgers equation
J. Nonlinear Sci., to appear.
M. Hairer, H. Weber

Rough Burgers-like equations with multiplicative noise
Probab. Theory Relat. Fields, to appear.

