On discretization schemes for stochastic differential equations with unbounded drift in the kinetic theory of polymer solutions

Alexei Lozinski

Université Paul Sabatier, Toulouse 3, France

Andrea Bonito

University of Maryland, USA

Thomas Mountford

Ecole Polytechnique Fédérale de Lausanne, Switzerland

Outline

- Modelling polymer molecules by "dumbbells"
- A new force law: "Constrained Hookean" force leading to the Reflecting Stochastic Differential Equations
- Calculating the extra-stress tensor via penalization (theoretical results)
- 3 methods for the discretization in time: penalization, reflection and half-space approximation
- Numerical results for simple flows

Dumbbell models for polymer molecules

$$\mathbf{Q} = \mathbf{r}_2 - \mathbf{r}_1$$
$$\mathbf{r}_c = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)$$

Stress tensor :
$$au(t) = \mathbb{E}(Q_t \otimes F(Q_t))$$

"Constraned" Hookean forcce

 $F^{\varepsilon}(Q) = Q + \frac{1}{\varepsilon}\beta(Q)$ $F(Q) = \partial \Pi$

 $\beta(Q) = Q - \Pi Q$ and Π is the projection on $\overline{B(0,R)}$ where $R = \sqrt{b}$

Reflecting SDE

Define ${\bf F}$ as the subdifferential of the potential

$$\Pi(Q) = \begin{cases} \frac{1}{2}|Q|^2, & \text{if } |Q| < R \\ +\infty, & \text{otherwise} \end{cases}$$

for some fixed R.

Reflecting SDE for Q_t

$$dQ_t = \left(\kappa(t)Q_t - \frac{1}{2\lambda}Q_t\right)dt - nd\eta_t + \sqrt{\frac{1}{\lambda}}dB_t,$$

where η_t is an unknown stochastic process imposing to the process to remain in the ball $\overline{B(0,R)}$.

Stress tensor for the constrained Hookean force

The Kramers expression for the stress (for a nice force law)

 $\tau(t) = \mathbb{E}(Q_t \otimes F(Q_t))$

In the case of the reflected diffusion the force is (something like)

$$F_t dt = Q_t dt + \frac{2\lambda}{R} Q_t d\eta_t$$

The Kramers stress is (something like)

$$\tau(t) \sim \frac{\eta_p}{\lambda} \left(\mathbb{E}(Q_t \otimes Q_t) + \frac{2\lambda}{R} \frac{\mathbb{E}(Q_t \otimes Q_t d\eta_t)}{dt} - I \right) \qquad ???$$

The sensible way to define the stress is rather

$$\tau(t) = \frac{\eta_p}{\lambda} \lim_{\epsilon \to 0} \left(\mathbb{E} \left(Q_t^{\varepsilon} \otimes Q_t^{\varepsilon} + Q_t^{\varepsilon} \otimes \frac{1}{\varepsilon} \beta(Q_t^{\varepsilon}) \right) - I \right)$$

7

Main result, calculation of the stress

Let $q \in B(0, R)$ be an initial condition, $\kappa \in \mathbb{R}^{d \times d}$, $\lambda > 0, \ \eta_p > 0$,

$$dQ_t^{\varepsilon} = \left(\kappa(t)Q_t^{\varepsilon} - \frac{1}{2\lambda}Q_t^{\varepsilon} - \frac{1}{2\lambda\varepsilon}\beta(Q_t^{\varepsilon})\right)dt + \sqrt{\frac{1}{\lambda}}dB_t, \ Q_0^{\varepsilon} = q$$
$$\tau_{\varepsilon}(t) = \frac{\eta_p}{\lambda}\left(\mathbb{E}\left(Q_t^{\varepsilon} \otimes Q_t^{\varepsilon} + Q_t^{\varepsilon} \otimes \frac{1}{\varepsilon}\beta(Q_t^{\varepsilon})\right) - I\right).$$

Then

$$\tau(t) = \lim_{\varepsilon \to 0} \tau_{\varepsilon}(t) \in \mathcal{C}^{0}([0,T]; \mathbb{R}^{d \times d})$$

and the limit above exists for all $t \in [0, T]$. Moreover,

 $\tau(t) = -\eta_p \frac{d}{dt} (Q_t \otimes Q_t) t + \eta_p \mathbb{E} ((Q_t \otimes Q_t) \kappa(t)^T + \kappa(t) (Q_t \otimes Q_t))$ a.e. in [0, T].

Known properties of reflected diffusions

Menaldi (82)

For each $1 \leq p < \infty$, there exists a constant C independent of ε such that

$$\left(\sup_{t\in[0,T]}|Q_t^{\varepsilon}|^p\right) \le C \tag{1}$$

and for each $1 \leq p < \infty$, $0 < T < \infty$ we have

$$\lim_{\varepsilon \to 0} \left(\sup_{0 \le t \le T} |Q_t - Q_t^{\varepsilon}|^p \right) = 0.$$
 (2)

Proof of our main result in a weak form

Apply Itô's rule to $Q_t^{arepsilon}\otimes (Q_t^{arepsilon})$ and take the expectation :

$$\frac{1}{\lambda} \mathbb{E} \int_0^t \left(Q_s^{\varepsilon} \otimes Q_s^{\varepsilon} + \frac{1}{\varepsilon} Q_s^{\varepsilon} \otimes \beta(Q_s^{\varepsilon}) \right) ds = -\mathbb{E} \left(Q_t^{\varepsilon} \otimes Q_t^{\varepsilon} \right) + q \otimes q \\ + \int_0^t \mathbb{E} (Q_s^{\varepsilon} \otimes Q_s^{\varepsilon}) \kappa(s)^T + \kappa(s) (Q_s^{\varepsilon} \otimes Q_s^{\varepsilon})) ds + \frac{1}{\lambda} tI.$$

By known results, the limits of all the terms in the RHS as $\varepsilon \to 0$ exist, hence

$$\frac{1}{\lambda} \lim_{\varepsilon \to 0} \mathbb{E} \int_0^t \left(Q_s^{\varepsilon} \otimes Q_s^{\varepsilon} + \frac{1}{\varepsilon} Q_s^{\varepsilon} \otimes \beta(Q_s^{\varepsilon}) \right) ds = -\mathbb{E} \left(Q_t \otimes Q_t \right) + q \otimes q + \int_0^t \mathbb{E} (Q_s \otimes Q_s) \kappa(s)^T + \kappa(s) (Q_s \otimes Q_s)) ds_{ij} + \frac{1}{\lambda} tI.$$

Proof of our main result pointwise in time

We need

- Boundedness uniform in ε : $\mathbb{E}(Q_t^{\varepsilon} \cdot \frac{1}{\varepsilon}\beta(Q_t^{\varepsilon})) \leq C$,
- Continuity in t uniformly in ε :

$$\lim_{h\to 0} \sup_{\varepsilon} \left| \mathbb{E}(Q_{t+h}^{\varepsilon} \cdot \frac{1}{\varepsilon} \beta(Q_{t+h}^{\varepsilon})) - \mathbb{E}(Q_t^{\varepsilon} \cdot \frac{1}{\varepsilon} \beta(Q_t^{\varepsilon})) \right| = 0.$$

The desired result is then obtained by the lemma: Let $f_{\varepsilon}(x)$ ($\varepsilon \in \mathbb{R}$) be a family of functions $[0,T] \to \mathbb{R}$ such that

$$\lim_{h\to 0} \sup_{\varepsilon} |f_{\varepsilon}(t+h) - f_{\varepsilon}(t)| = 0, \forall t \in [0,T]$$

and the limit $\lim_{\varepsilon \to 0} \int_0^t f_{\varepsilon}(s) ds$ exists for all $t \in [0,T]$. Then the limit $f(t) = \lim_{\varepsilon \to \infty} f_{\varepsilon}(t)$ exists for all $t \in [0,T]$, f(t) is continuous and

$$\lim_{\varepsilon \to 0} \int_0^t f_{\varepsilon}(s) ds = \int_0^t f(s) ds.$$

11

The Fokker-Planck equation

 $\psi(t, \mathbf{Q}), \ \mathbf{Q} \in B \ (B = (0, \sqrt{b})) - \text{the probability density to find a dumbbell with end-to-end vector <math>\mathbf{Q}$ at time t

$$\frac{\partial \psi}{\partial t} + \operatorname{div}_{\mathbf{Q}} \left(\left(\kappa \mathbf{Q} - \frac{1}{2\lambda} \mathbf{Q} \right) \psi \right) = \frac{1}{2\lambda} \Delta_{\mathbf{Q}} \psi.$$

Boundary conditions at ∂B (vanishing of the probability flux):

$$\left(-\kappa \mathbf{Q}\psi + \frac{1}{2\lambda}\mathbf{Q}\psi + \frac{1}{2\lambda}\nabla_{\mathbf{Q}}\psi\right) \cdot n = 0$$

Expression for the stress tensor:

$$\tau = -\eta_p \frac{\partial}{\partial t} \int_B \mathbf{Q} \otimes \mathbf{Q} \psi d\mathbf{Q} + \eta_p \int_B \left(\kappa \mathbf{Q} \otimes \mathbf{Q} + \mathbf{Q} \otimes \mathbf{Q} \kappa^T \right) \psi d\mathbf{Q}$$

$$= \frac{\eta_p}{\lambda} \int_B \mathbf{Q} \otimes \mathbf{Q} \psi d\mathbf{Q} + \frac{\eta_p}{\lambda R} \int_{\partial B} \mathbf{Q} \otimes \mathbf{Q} \psi ds - \frac{\eta_p}{\lambda} I$$

Numerical algorithm with penalization

Algorithm by penalization

$$Q_0^{\varepsilon,h} = q$$

$$Q_{t_{n+1}}^{\varepsilon,h} + \frac{1}{2\lambda\varepsilon}\beta(Q_{t_{n+1}}^{\varepsilon,h})h = Q_{t_n}^{\varepsilon,h} + \left(\kappa Q_{t_n}^{\varepsilon,h} - \frac{1}{2\lambda}Q_{t_n}^{\varepsilon,h}\right)h + \sqrt{\frac{1}{\lambda}}(B_{t_{n+1}} - B_{t_n}).$$

$$\tau^h(t_n) = \frac{\eta_p}{\lambda} \mathbb{E}\left(Q_{t_n}^{\varepsilon,h} \otimes Q_{t_n}^{\varepsilon,h} + \frac{1}{\varepsilon}Q_{t_n}^{\varepsilon,h} \otimes \beta(Q_{t_n}^{\varepsilon,h})\right) - \frac{\eta_p}{\lambda}I.$$

Weak convergence of $Q_t^{\varepsilon,h}$ to Q_t with order \sqrt{h} is known for the choice $\varepsilon = h$ (*Pettersson*, 1997).

Convergence of τ^h ?

Auxiliary lemma: A comparison principle

Let

$$\gamma = \sup_{Q \in \mathbb{R}^d, \ |Q|=1} Q \cdot \left(\kappa - \frac{1}{2\lambda}\right) Q.$$

Let $|q| \leq |y|$ and consider

$$Y_{t_{n+1}}^{\varepsilon,h} + \frac{1}{2\lambda\varepsilon}\beta(Y_{t_{n+1}}^{\varepsilon,h})h = Y_{t_n}^{\varepsilon,h} + h\gamma Y_{t_n}^{\varepsilon,h} + \sqrt{\frac{1}{\lambda}}(B_{t_{n+1}} - B_{t_n}), \qquad Y_0^{\varepsilon} = y,$$

Then, for any nondecreasing function $g:[0,\infty[\to\mathbb{R}$

$$\mathbb{E}^{q}(g(|Q_{t_{n}}^{\varepsilon,h}|)) \leq \mathbb{E}^{y}(g(|Y_{t_{n}}^{\varepsilon,h}|)), \ \forall n \in \mathbb{N}.$$

I: Uniform boundedness

The process $Q_{t_n}^{\varepsilon,h}$ with any initial condition $q \in B(0,1)$ and any $t \in [0,T]$ satisfies

$$\mathbb{E}^{q}(Q_{t_{n}}^{\varepsilon,h} \cdot \frac{1}{\varepsilon}\beta(Q_{t_{n}}^{\varepsilon,h})) \leq C$$

Proof. Let $\pi_{\varepsilon,h}$ be the stationary distribution of $Q_{t_n}^{\varepsilon,h}$ and $I_+ = \{z \in \mathbb{R}^d : |z| > |x|\}$. The comparison principle with with $h(Q) = Q \cdot \frac{1}{\varepsilon}\beta(Q)$ entails

$$\begin{split} \mathbf{E}^{q}(Q_{t_{n}}^{\varepsilon,h} \cdot \frac{1}{\varepsilon} \beta(Q_{t_{n}}^{\varepsilon,h})) &\leq \mathbf{E}^{\pi_{\varepsilon,h} \cap I} + (Y_{t_{n}}^{\varepsilon,h} \cdot \frac{1}{\varepsilon} \beta(Y_{t_{n}}^{\varepsilon,h})) \\ &\leq \frac{\mathbf{E}^{\pi_{\varepsilon,h}}(Y_{t_{n}}^{\varepsilon,h} \cdot \frac{1}{\varepsilon} \beta(Y_{t_{n}}^{\varepsilon,h}))}{\pi_{\varepsilon,h}(I_{+})} \leq \frac{\mathbf{E}^{\pi_{\varepsilon,h}}|Y_{t_{n}}^{\varepsilon,h}|^{2}}{\pi_{\varepsilon,h}(I_{+})} \end{split}$$

II: Equi-continuity

Let $\phi : \mathbb{R}^d \to \mathbb{R}$ such that $\phi(z) = 0$ for all $z \in B(0, 1)$ and suppose that for all $n \in \mathbb{N}$ it holds

$$\mathsf{E}^{q}\left|rac{1}{arepsilon}\phi(Q_{t_{n}}^{arepsilon,h})
ight|\leq C(|q|).$$

Then we have for any $\pm > 0$

$$\sup_{\varepsilon>0} \left| \mathbb{E}^{q} \left(\frac{1}{\varepsilon} (\phi(Q_{t_{n+1}}^{\varepsilon,h}) - \phi(Q_{t_{n}}^{\varepsilon,h})) \right) \right| \le Ch^{1/2-\pm}.$$
(1)

Proof. Fix any r such that |q| < r < 1 and $\alpha \in (0, 1)$

$$\mathbf{E}^{q}\left(\frac{1}{\epsilon}\phi(Q_{t_{n}}^{\varepsilon,h})\right) = \int_{B(0,r)} p_{h^{\alpha}}^{Q^{\varepsilon,h}}(z) \mathbf{E}^{z}\left(\frac{1}{\epsilon}\phi(Q_{t-h^{\alpha}}^{\varepsilon,h})\right) dz + \int_{\mathbb{R}^{d}\setminus B(0,r)} p_{h^{\alpha}}^{Q^{\varepsilon,h}}(z) \mathbf{E}^{q}\left(\frac{1}{\epsilon}\phi(Q_{t-h^{\alpha}}^{\varepsilon,h})\right) dz \quad (2)$$

16

Consider also the unconstrained process $Q_{t_n}^h$

$$Q_{t_{n+1}}^{h} = Q_{t_{n}}^{h} + \left(\kappa Q_{t_{n}}^{h} - \frac{1}{2\lambda}Q_{t_{n}}^{h}\right)h + \sqrt{\frac{1}{\lambda}}(B_{t_{n+1}} - B_{t_{n}}).$$

and the stopping time $\sigma = \inf\{s : |Q_s^{\varepsilon,h}| = r\} = \inf\{s : |Q_s^h| = r\}.$

The second integral above is estimated as

$$\mathbb{E}^{q}\left(\frac{1}{\epsilon}\phi(Q_{t_{n}}^{\varepsilon,h})\mathbf{1}_{|Q_{h^{\alpha}}|\geq r}\right) \leq \mathbb{E}^{q}\left(\frac{1}{\epsilon}\phi(Q_{t_{n}}^{\varepsilon,h})\mathbf{1}_{\sigma< h^{\alpha}}\right) = \\ = \mathbb{E}\left(\mathbb{E}^{Q_{\sigma}^{\varepsilon,h}}\left(\frac{1}{\epsilon}\phi(Q_{t-\sigma}^{\varepsilon})\right)\mathbf{1}_{\sigma< h^{\alpha}}\right) \leq C(r)\mathcal{P}(\sigma< h^{\alpha}).$$

Hence

$$\mathbb{E}^{q}\left(\frac{1}{\epsilon}\phi(Q_{t_{n}}^{\varepsilon,h})\right) = \int_{B(0,r)} p_{h^{\alpha}}^{Q^{\varepsilon,h}}(z) \mathbb{E}^{z}\left(\frac{1}{\varepsilon}\phi(Q_{t-h^{\alpha}}^{\varepsilon,h})\right) dz + O(h^{1/2-\pm}).$$

End of the proof

By similar calculations

$$\int_{B_r^+} p_{h^{\alpha}}^{Q^{\varepsilon,h}}(z) \mathbb{E}^z \left(\frac{1}{\varepsilon} \phi(Q_{t-h^{\alpha}}^{\varepsilon,h}) \right) dz = \int_{B_r^+} p_{h^{\alpha}}^{Q^h}(z) \mathbb{E}^z \left(\frac{1}{\varepsilon} \phi(Q_{t-h^{\alpha}}^{\varepsilon,h}) \right) dz + O(h^{1/2-\pm})$$

We can now compare the result at times t_n and $t_{n+1} = t_n + h$ $\left| \mathbb{E}^q \left(\frac{1}{\epsilon} \phi(Q_{t_n+h}^{\varepsilon,h}) \right) - \mathbb{E}^q \left(\frac{1}{\epsilon} \phi(Q_{t_n}^{\varepsilon,h}) \right) \right|$ $= \left| \int_{B(0,r)} (p_{h^{\alpha}+h}^{Q^h}(z) - p_{h^{\alpha}}^{Q^h}(z)) \mathbb{E}^z \left(\frac{1}{\epsilon} \phi(Q_{t-h^{\alpha}}^{\varepsilon,h}) \right) dz \right| + O(h^{1/2-\pm})$ $\leq C \int_{B(0,r)} |p_{h^{\alpha}+h}^{Q^h}(z) - p_{h^{\alpha}}^{Q^h}(z)| dz + O(h^{1/2-\pm})$

Convergence of the stochastic simulations by penalization

$$\lambda = \eta_p = 1$$

$$b = 20$$

$$\kappa(t) = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix}$$

$$M = 25000$$

Red $-\Delta t = 0.1$ Green $-\Delta t = 0.01$ Blue $-\Delta t = 0.001$ Black - FP

Good convergence

Convergence of the stochastic simulations by penalization

$$\lambda = \eta_p = 1$$
$$b = 20$$
$$\kappa(t) = \begin{pmatrix} 0 & 10\\ 0 & 0 \end{pmatrix}$$
$$M = 25000$$

Red $-\Delta t = 0.1$ Green $-\Delta t = 0.01$ Blue $-\Delta t = 0.001$ Cyan $-\Delta t = 0.0001$ Black FP

Noise gets bigger when refining in time 20

Algorithm by symmetric reflection

M. Bossy et al, 2004,

Weak convergence of order Δt

 Update the stochastic process without taking into account the re^o ecting force

$$Y_{n+1}^{\Delta t} - Q_n^{\Delta t} = \left(\kappa(t_n)Q_n^{\Delta t} - \frac{1}{2\lambda}Q_n^{\Delta t}\right)\Delta t + \sqrt{\frac{1}{\lambda}}(B_{t_{n+1}} - B_{t_n})$$

• If a re° ection occurs $(|Y_{n+1}^{\Delta t}| > R)$, set

$$Q_{n+1}^{\Delta t} = \frac{2R - |Y_{n+1}^{\Delta t}|}{|Y_{n+1}^{\Delta t}|} Y_{n+1}^{\Delta t}$$

Approximations for the stress tensor

$$\tau = \frac{\eta_p}{\lambda} \int_B \mathbf{Q} \otimes \mathbf{Q} \psi d\mathbf{Q} + \frac{\eta_p}{\lambda R} \int_{\partial B} \mathbf{Q} \otimes \mathbf{Q} \psi ds - \frac{\eta_p}{\lambda} I$$

We can use

$$\psi(R,\theta) = \frac{1}{aR} \int_{R-a}^{R} r\psi(r)dr + O(a)$$

to write

$$\int_{\partial D} Q \otimes Q \psi ds = \frac{1}{aR} \int_{R-a < |Q| < R} \frac{R^2}{|Q|^2} Q \otimes Q \psi(Q) dQ + O(a)$$

The first idea for the stochastic approximation (a = h)

$$\tau^{h}(t_{n}) = \frac{\eta_{p}}{\lambda} \mathbb{E} \left(\mathbf{Q}_{t_{n}}^{h} \otimes \mathbf{Q}_{t_{n}}^{h} \left(1 + \mathbf{1}_{|Q_{t_{n}}^{h}| > R-h} \frac{R}{h|Q_{t_{n}}^{h}|^{2}} \right) - I \right)$$

22

A better approximation for the stress

If we know that $\frac{\partial \psi}{\partial r}(R,\theta) = b(\theta)\psi(R,\theta)$ then we can write (for example)

$$\int_{\partial D} Q \otimes Q \psi ds = \int_{R-a < |Q| < R} \frac{R^2}{|Q|^2} Q \otimes Q \frac{2(R - |Q|)}{a^2(R - a/2 - b(\theta)aR/2)} \psi(Q) dQ + O(a^2)$$

Take $a = \sqrt{h}$ and approximate the stress by

$$\tau^{h}(t_{n}) = \frac{p}{\lambda} \mathbb{E} \left(\mathbf{Q}_{t_{n}}^{h} \otimes \mathbf{Q}_{t_{n}}^{h} \right)$$
$$\left(1 + \mathbf{1}_{|Q_{t_{n}}^{h}| > R - \sqrt{h}} \frac{2(R - |Q_{t_{n}}^{h}|)}{h(R - \sqrt{h}/2 - b(Q_{t_{n}}^{h})\sqrt{h}R/2)} \frac{R^{2}}{|Q_{t_{n}}^{h}|^{2}} \right) - I \right)$$

Results of simulations

$$\lambda = p = 1, \ b = 20, \ \kappa(t) = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix}, \Delta t = 0.001, M = 5000$$

0th-order approximation

Convergence of the stochastic simulations by symmetric reflection

$$\lambda = p' = 1$$
$$b = 20$$
$$\kappa(t) = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix}$$
$$M = 25000$$

Red $-\Delta t = 0.1$ Green $-\Delta t = 0.01$ Blue $-\Delta t = 0.001$ Black - FP

Convergence to the correct solution

Convergence of the stochastic simulations by symmetric reflection

$$\lambda = \eta_p = 1$$
$$b = 20$$
$$\kappa(t) = \begin{pmatrix} 0 & 10\\ 0 & 0 \end{pmatrix}$$
$$M = 25000$$

Red $-\Delta t = 0.1$ Green $-\Delta t = 0.01$ Blue $-\Delta t = 0.001$ Cyan $-\Delta t = 0.0001$ Black - FP

Too much noise with small Δt

An algorithm by half-space approximation

D. Lepingle (1995), E. Gobet (2001)

Going from $Q_{t_n}^h$ to $Q_{t_{n+1}}^h$:

• Set $\Pi_n = \pi_{\partial D}(Q_{t_n}^h)$ and approximate the domain D by the half-space $\{z \in \mathbb{R}^d : (z - \Pi_n) \cdot \mathbf{n}(\Pi_n) < 0\}$

• Use the exact solution for the diffusion reflected in the halfspace

$$\widetilde{Q}_{t_{n+1}}^h - Q_{t_n}^h = \left(\kappa Q_{t_n}^h - \frac{1}{2\lambda}Q_{t_n}^h\right)h + \sqrt{\frac{1}{\lambda}}(B_{t_{n+1}} - B_{t_n}) - (\eta_{t_{n+1}}^h - \eta_{t_n}^h)\mathbf{n}$$

where the increment of the local time is

$$\eta_{t_{n+1}}^{h} - \eta_{t_{n}}^{h} = \max\left(0, \sup_{0 \le s \le h} \left(Q_{t_{n}}^{h} + \left(\kappa Q_{t_{n}}^{h} - \frac{1}{2\lambda}Q_{t_{n}}^{h}\right)s + \sqrt{\frac{1}{\lambda}}(B_{t_{n}+s} - B_{t_{n}})\right) \cdot \mathbf{n} - R\right)_{27}$$

The algorithm (continued)

the supremum is equivalent in law to

$$\sup_{0 \le s \le h} a \cdot \tilde{B}_s + cs \sim \frac{1}{2} (a \cdot B_h + ch + \sqrt{|a|^2 V + (a \cdot \tilde{B}_h + ch)^2})$$
where $\tilde{B}_s = B_{t_n+s} - B_{t_n}$ and V is an random variable exponentially distributed with rate $\frac{1}{2h}$ and independent of \tilde{B}_h .

 \bullet If the half-space approximation was not accurate enough, i.e. $|\tilde{Q}^h_{t_{n+1}}|>R,$ set

$$Q_{t_{n+1}}^{h} = \frac{R}{|Y_{n+1}^{\Delta t}|} \tilde{Q}_{t_{n+1}}^{h},$$

otherwise $Q_{t_{n+1}}^h = \tilde{Q}_{t_{n+1}}^h$.

Approximation of the stress

We have the convergence of order h for the functionals of Q_t and η_t

$$\mathbb{E}(f(Q_t) + \int_0^t g(Q_t) d\eta_t) = \\\mathbb{E}(f(Q_{t_n}^h) + \sum_{i=0}^{n-1} g(\pi_{\partial D}(Q_{t_i}^h))(\eta_{t_{i+1}}^h - \eta_{t_i}^h + |\tilde{Q}_{t_{i+1}}^h - Q_{t_{i+1}}^h|) + O(h)$$

but the formula for the stress τ includes a derivative of the local time:

$$\tau(t) = \frac{\eta_p}{\lambda} \left(\mathbb{E}(Q_t \otimes Q_t) + \frac{2\lambda}{R} \frac{\mathbb{E}(Q_t \otimes Q_t d\eta_t)}{dt} - I \right)$$

We approximate the stress by

$$\tau^{h}(t_{n}) = \frac{\eta_{p}}{\lambda} \Big(\mathbb{E}(Q_{t_{n}}^{h} \otimes Q_{t_{n}}^{h}) \\ + \frac{2\lambda}{Rh} \mathbb{E}(\pi_{\partial D}(Q_{t}) \otimes \pi_{\partial D}(Q_{t})(\eta_{t_{n}}^{h} - \eta_{t_{n-1}}^{h} + |\tilde{Q}_{t_{n}}^{h} - Q_{t_{n}}^{h}|) - I \Big)$$

Convergence of the stochastic simulations

$$\lambda = '_p = 1$$
$$b = 20$$
$$\kappa(t) = \begin{pmatrix} 0 & 10\\ 0 & 0 \end{pmatrix}$$
$$M = 25000$$

Red
$$-\Delta t = 0.1$$

Green $-\Delta t = 0.01$
Blue $-\Delta t = 0.001$
Cyan $-\Delta t = 0.0001$
Black - FP

Convergence to the correct solution with less noise

Possible connection with FENE

Reminder:

$$dQ_t = \left(\kappa Q_t - \frac{1}{2\lambda} \frac{Q_t}{1 - |Q_t|^2/b}\right) dt + \sqrt{\frac{1}{\lambda}} dB_t$$

HC Ottinger discreization in time

$$Q_{t_{n+1}}^{h} + \frac{h}{2\lambda} \frac{Q_{t_{n+1}}^{h}}{1 - |Q_{t_{n+1}}^{h}|^2/b} = \kappa Q_{t_n}^{h} h + \sqrt{\frac{1}{\lambda}} \Delta B_{t_n}$$
$$\tau^h(t_n) = \frac{r}{\lambda} \mathbb{E}\left(\left(Q_{t_n}^{h} \otimes \frac{Q_{t_{n+1}}^{h}}{1 - |Q_{t_{n+1}}^{h}|^2/b}\right)\right)$$

One can apply the same ideas as above to prove the boundedness of τ^h and possible the convergence of τ^h to τ

Convergence of the stochastic simulations for FENE

$$\lambda = p' = 1$$
$$b = 20$$
$$\kappa(t) = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix}$$
$$M = 25000$$

Red
$$-\Delta t = 0.1$$

Green $-\Delta t = 0.01$
Blue $-\Delta t = 0.001$
Cyan $-\Delta t = 0.0001$

Convergence to the correct solution with less noise

Constrained Hookean vs FENE (steady state shear flow)

$$\lambda = \eta_p = 1$$

$$b = 20$$

$$\kappa(t) = \begin{pmatrix} 0 & \dot{\gamma} \\ 0 & 0 \end{pmatrix}$$

Solid - Cons. Hook. Dashed - FENE

FP steady-state simulations

Constrained Hookean vs FENE (shear flow)

$$\lambda = \eta_p = 1$$

$$b = 20$$

$$\kappa(t) = \begin{pmatrix} 0 & 10 \\ 0 & 0 \end{pmatrix}$$

Solid - Cons. Hook. Dashed - FENE

FP transient simulations

Constrained Hookean vs FENE (shear flow)

$$\lambda = \eta_p = 1$$

$$b = 20$$

$$\kappa(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Solid - Cons. Hook. Dashed - FENE

FP transient simulations