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The Model: Oldroyd-B

A model for dilute polymer solutions: Oldroyd-B

Conservation of momentum:
Ou .
Re E+U'Vu =—-Vp+(l—¢e)Au+ divrt
Conservation of mass:
divu =10
Constitutive equation (Maxwell fluid):

orT 1 €
Fri (u-V)r — (Vu)r — 7(Vu)' = ~wiTt Wi [Vu -+ (Vu)']

u - velocity field, p - hydrostatic pressure, T - extra-stress tensor

Re = PTUL, e="T, Wi= A := fdestie (Weissenberg number)
ow



Local existence

Assume x € Q bounded in RY (d =2 or 3).

Provide initial data u(t = 0), 7(t = 0).

Assume Homogeneous Dirichlet boundary conditions on u.
Local in time existence theorem for smooth enough initial
data.

No global existence theorem.



Numerical difficulties

Problems as Wi  O(1):
@ Numerical instability causing divergence
@ Results are mesh-dependent

Possible reasons:

@ Analytical difficulties: apart from some cases, there may be no
steady-state solution, or an unstable solution.

o Bad numerical scheme



Goal: write a "good” numerical scheme which verifies a free
energy inequality.

Consequence: no spurious free energy is created.
Analytical outputs: global existence of discrete solutions.



Conformation tensor

Definition: conformation tensor

o is symmetric positive definite (spd)

Rewrite system: Oldroyd-B-o

Ou €
Re {E—F(U'V)u} = -Vp+(1-c)dut rdive
divu = 0
Jo T _ o1
¥T +(u-V)o—(Vu) o0 —0(Vu) = Wi

For a smooth solution with o(t = 0) spd, o(t) is spd at all time.



Improved stability of equations

Better numerical stability when using a logarithmic transformation
of o [Fattal, Kupferman]:

Y=Ino

(well-defined since o is spd.)
Question: does this improved stability show up in our analysis?



A micro-macro model: Hookean dumbbells

The Oldroyd-B model is formally equivalent to the following
micro-macro model:

Hookean dumbbells

Navier-Stokes equations +

€

I (/qu®qw(t7x,q)dq—l)

o divq <((Vu)q = %qu> ¢> + e Bt

ot

+ (u- V)

g - extension vector of dumbbells, 1) - distribution of the
dumbbells.



Entropy and kinetic energy

In the micro-macro context, it is natural to work with the entropy:

B . n¢(t,x,q)
H(t) = /Q [ xS

exp\— 2
where Tﬂoo(Q) = T Qx(ip(tq\qﬁg)

Compute and obtain a macroscopic quantity:

is the equilibrium distribution.

H(t):;/ﬂtr(a—lno'—l)

Define the kinetic energy:

Re
Exinetic(t) = 2/9 lul?



Definition: free energy
Let (u, p, o) be a smooth solution to Oldroyd-B-o. Define

Flu,o) = o /||2+2W1/ (o —Ino —1)

klnetlc energy entropy

o spd = F > 0 always.



Free energy dissipation

A free energy equality

Let (u, p, o) be a smooth solution to Oldroyd-B-o, then:

%F(u o) 1—5)/ |Vul? + tr(a’—i—a -2)=0

dissipative terms>0

= F decreases in time.

Consequence : there exists C > 0 s.t.
F(u,0) < F(u(t =0),0(t = 0)) exp(—Ct)

Useful to characterize long-time asymptotics of solutions.
[Jourdain, Le-Bris, Lelievre, Otto 06].



A remark: classical energy estimate

The classical energy estimate can be used, but to obtain
exponential decay, the assumption deto(t = 0) > 1 is needed.



Numerical framework: finite elements

In order to work in the F.E. framework, we need a variational
formulation.
Then we need to be able to recover the free energy equality.
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Variational formulation

A smooth solution to Oldroyd-B-o (u, p, o) satisfies

O—/Q<Re<gl:+(u-V)u> -v+(1—5)Vu:Vv+%a:Vv
NS terms
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NS terms
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for all sufficiently smooth test functions (v, g, ¢).



Variational formulation

A smooth solution to Oldroyd-B-o (u, p, o) satisfies

Ou £
O—/Q<Re<8t+(u-V)u>-v+(1—€)Vu.Vv+W,ia.Vv

NS terms
—pdivv + gdivu
NS terms
+ <8U+u-Va> cp— ((Vu)o +o(Vu)): ¢+i,(a—l) ; ¢>,
ot Wi

constitutive eq. terms

for all sufficiently smooth test functions (v, g, ¢).

The free energy equality is recovered with
(v,q,0) = (u, p, 35 (1 = o071)) = o~ 1lis a test function.




A "simple” choice of F.E.

Scott-Vogelius mixed finite element space for (up, pp):
@ u, € (Pg)z
® pp € Py disc

Good because divupy(x) =0,Vx € Q.

For meshes built in a certain way, this F.E. satisfies the

Babugka-Brezzi inf-sup condition.
For op, assume simply

o 04 € (Pg)® = o, can be used as test function.



Main challenges

o Discretize the advection term (u- V)o:

@ Method of characteristics
@ Discontinuous Galerkin method

@ Recover a free energy dissipation.



Discrete problem

0= /Q (stuff?)



Local existence

Show local existence in time, then define
Definition: discrete free energy
The free energy for the solution (uf, pp,of) is:

Fp = F(u],of) = / ufj? + tr(ef — Inof — 1)



Recovering a free energy dissipation (method of

characteristics)

The problematic terms are the time derivatives.



Recovering a free energy dissipation (method of

characteristics)

The problematic terms are the time derivatives.
1. Treatment of u derivative: i
(% + (u- V)u) - v is discretized as (u” At 4 ull- VuZH) V.




Recovering a free energy dissipation (method of
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The problematic terms are the time derivatives.

1. Treatment of u derivative: i
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Recovering a free energy dissipation (method of

characteristics)
The problematic terms are the time derivatives.
1. Treatment of u derivative: it
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Recovering a free energy dissipation (method of

characteristics)
The problematic terms are the time derivatives.
1. Treatment of u derivative: it

(2‘2 + (u- V)u) - v is discretized as ("h At“h +uf- Vun+1> v.

Using as test function v = UZ+13

u?tl —un
/ h AL h + uz . Vuz—l—l . uz—l—l
Q
1 1 1
:/ |uh+ |2 |UZ|2 N |un+ UZ|2 o ‘ h+ |2
o 2Nt 2At h 2

:/ |uh+1|2 |UZ|2 N ’un-‘rl um2
0 20t 20t

(since divup(x) =0,Vx € Q).




Recovering a free energy dissipation (method of

characteristics)

2. Treatment of o derivative: Pl (g
(%—f +u- VO') : @ is discretized as (%”:(t)) : ¢ where

EX(t,x) =up(X"(t,x)), Vte [t "],
X"t x) = x.

divup(x) = 0,Vx € Q = X"(t) is a mapping with constant
Jacobian (= 1), Vt € [t", t"1].



Recovering a free energy dissipation (method of
characteristics)

Let o and 7T be two symmetric positive definite matrices. Then

tr ((o — ’T)’T_l) =tr(er 1 =1)>tr(lno —InT),




Recovering a free energy dissipation with the method of

characteristics

Use as test function ¢ =1 — (o7t)~1, and use Lemma 1:
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Recovering a free energy dissipation with the method of

characteristics

Use as test function ¢ =1 — (o7t)~1, and use Lemma 1:

[ (ort = apox(e) (- (o7
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Recovering a free energy dissipation with the method of
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Recovering a free energy dissipation with the method of

characteristics

Use as test function ¢ =1 — (o7t)~1, and use Lemma 1:
[ (ort = apox(e) (- (o7
= / tr(o ™) —tr(af o X"(t") +tr ([of o X (t")][ep ]t 1)
Q
> / tr(a) ) —tr(oho X (") +trin(aho X (t")) —trin(aftt)
Q

= / tr(of ™ — Ina™) — tr(of — Inof)
Q



Recovering a free energy dissipation with the method of

characteristics

Use as test function ¢ =1 — (o7t)~1, and use Lemma 1:

[ (ort = apox(e) (- (o7
= [ lor ™) —tr(o X" () + o (o o X (el ]~
> [ (o) oo X"(17) + trin(erh o X7 (e7) — trin(erf )
= [ 6ler ~ino}) (e}~ o)

(since X" has Jacobian equal to 1).



A discrete free energy inequality

Discrete free energy inequality

Let (uf, pf, o7 )o<n<n, be a solution to the discrete problem, such
that o} is spd. Then, the free energy of the solution (uf, py,o7):
satisfies:

R
At = Fp+ [ St w4 ac [ (1wt

€ n+1 n+1y—1

In particular, the sequence (F})o<n<n; is non-increasing.

Same free energy inequality for the DG method



The log transformation

The same treatment can be applied to the log-transformed system.
We obtain an equivalent free energy inequality:

log free energy inequality

For a solution (uf, pj,1}), the free energy is
Ff = F(uf,e%h) = E/ uj? + L/ tr(e¥h — b — 1)
h [ 2 Jo' M T 2wWi Jq h
and it satisfies
n+l _ pn @ n+l _  .n|2 o n+12
F; Fi + 5 luy upl“+ At | (1 —¢)|Vu]™|
Q Q

g n+1 n+1
+ At /tr <e’/’h te ¥ 2/) < 0.
2Wi2 Jq




We obtained a "good” scheme

As a consequence, we obtain some numerical stability:

Q Global existence in time and uniqueness of discrete solutions
for At small enough in the o formulation.

@ In the case of the log formulation, global existence for any At.
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Comments and further work

analysis shows a difference between o and log-formulation
minimal At for existence depends on Wi

implementation using other FE

higher order discretizations for o

MERCI!



Properties needed to obtain free energy estimate

Advection discretized by: || Characteristics DG

Requirements for uy: divu, =0 fQ gdivu, = 0,
(= det(VxX") = | Vg e Py
1) and
( = (uh-n)|Ej (u;,-n)|Ej well de-
well defined ) fined

Table: Summary of the arguments with (up, pp, o) or (Up, pr,1y) in
d(d+1)

(P2)? X Py disc X (Bo) "2



Discretized problem (characteristics method)

For a given (uf, py, o), find
(u "H,pZH, "H) (P2)2 x Py gisc X (Po)® such that, for any test

function (v, q, @) € (P2)? x Py gisc X (Po)3,

utl —u?
o:/Re hTth~|—uZ~VuZ+1 v—pittdivvtgdivul ™
Q

+(1-e)Vuptt Vv W ot vy

n+1 no xn(¢n
+< h o —opoX(t )) :¢—<(Vu2+1) n+1+az+l(vuz+l)T) ”

At

1 n+1
+ ﬁ(0h+ —1): ¢.



Discretized problem (DG)

For a given (uf, pp, o), find
(uptt pptt o) € (P2)? X Py gise % (Po)® such that, for any test
function (v, g, @) € (P2)? x P1 gisc X (Po)3,

& uptt —up 1 1 1
— h h + n+1 3: vyt
0= g /Kk Re A +up - Vuy v—pp - divv+gdivuy
k=1

+(1—-e)Vuptt . Vv + %0’2—1—1 : Vv

ot — "
+ <h Az hil.¢— <(Vuz+1)az+1 + aZ“(VuZH)T) P

Ng
1 n n
R I O NIt i B
1 =1 EJ



Discretization of the advection term in the DG method

(%it’ +u-Vo) : ¢ is discretized as

+1_ _n n(n
(=) s o+ 5 [ luonl g
J



