Free-energy dissipative schemes for the Oldroyd-B model

Sébastien Boyaval, Tony Lelièvre, Claude Mangoubi

The Model: Oldroyd-B

A model for dilute polymer solutions: Oldroyd-B

Conservation of momentum:

$$\operatorname{Re}\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + (1 - \varepsilon)\Delta \mathbf{u} + \operatorname{div} \boldsymbol{\tau}$$

Conservation of mass:

$$\operatorname{div} \boldsymbol{u} = 0$$

Constitutive equation (Maxwell fluid):

$$\frac{\partial \tau}{\partial t} + (\mathbf{u} \cdot \nabla)\tau - (\nabla \mathbf{u})\tau - \tau(\nabla \mathbf{u})^{T} = -\frac{1}{\mathrm{Wi}}\tau + \frac{\varepsilon}{\mathrm{Wi}}\left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}\right]$$

u - velocity field, p - hydrostatic pressure, τ - extra-stress tensor $\mathrm{Re} = \frac{\rho U L}{\eta}$, $\varepsilon = \frac{\eta_p}{\eta}$, $\mathrm{Wi} = \frac{\lambda U}{L} := \frac{t_{elastic}}{t_{flow}}$ (Weissenberg number)

Local existence

Assume $\mathbf{x} \in \Omega$ bounded in \mathbb{R}^d (d = 2 or 3).

Provide initial data $\mathbf{u}(t=0), \boldsymbol{\tau}(t=0)$.

Assume Homogeneous Dirichlet boundary conditions on u.

Local in time existence theorem for smooth enough initial data.

No global existence theorem.

Numerical difficulties

Problems as Wi $\nearrow O(1)$:

- Numerical instability causing divergence
- Results are mesh-dependent

Possible reasons:

- Analytical difficulties: apart from some cases, there may be no steady-state solution, or an unstable solution.
- Bad numerical scheme

Goal

Goal: write a "good" numerical scheme which verifies a free energy inequality.

Consequence: no spurious free energy is created.

Analytical outputs: global existence of discrete solutions.

Conformation tensor

Definition: conformation tensor

$$oldsymbol{\sigma} = \mathbf{I} + rac{\mathrm{Wi}}{arepsilon} oldsymbol{ au}$$

 σ is symmetric positive definite (spd)

Rewrite system: Oldroyd-B- σ

$$\operatorname{Re}\left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right] = -\nabla p + (1 - \varepsilon)\Delta \mathbf{u} + \frac{\varepsilon}{\operatorname{Wi}}\operatorname{div}\boldsymbol{\sigma}$$
$$\operatorname{div}\mathbf{u} = 0$$
$$\frac{\partial \boldsymbol{\sigma}}{\partial t} + (\mathbf{u} \cdot \nabla)\boldsymbol{\sigma} - (\nabla \mathbf{u})^T \boldsymbol{\sigma} - \boldsymbol{\sigma}(\nabla \mathbf{u}) = -\frac{\boldsymbol{\sigma} - \mathbf{I}}{\operatorname{Wi}}$$

For a smooth solution with $\sigma(t=0)$ spd, $\sigma(t)$ is spd at all time.

Improved stability of equations

Better numerical stability when using a logarithmic transformation of σ [Fattal, Kupferman]:

$$\psi = \ln \sigma$$

(well-defined since σ is spd.)

Question: does this improved stability show up in our analysis?

A micro-macro model: Hookean dumbbells

The Oldroyd-B model is formally equivalent to the following micro-macro model:

Hookean dumbbells

Navier-Stokes equations +

$$\begin{split} \boldsymbol{\tau} &= & \frac{\varepsilon}{\mathrm{Wi}} \left(\int_{\mathbb{R}^d} \mathbf{q} \otimes \mathbf{q} \, \psi(t, \mathbf{x}, \mathbf{q}) d\mathbf{q} - \mathbf{I} \right) \\ \frac{\partial \psi}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \psi &= & \mathrm{div}_{\,\mathbf{q}} \left(\left((\boldsymbol{\nabla} \mathbf{u}) \, \mathbf{q} - \frac{1}{2 \mathrm{Wi}} \mathbf{q} \right) \psi \right) + \frac{1}{2 \mathrm{Wi}} \boldsymbol{\Delta}_{\mathbf{q}} \psi \end{split}$$

 ${\bf q}$ - extension vector of dumbbells, ψ - distribution of the dumbbells.

Entropy and kinetic energy

In the micro-macro context, it is natural to work with the entropy:

$$H(t) = \int_{\Omega} \int_{\mathbb{R}^d} \psi(t, \mathbf{x}, \mathbf{q}) \ln rac{\psi(t, \mathbf{x}, \mathbf{q})}{\psi_{\infty}(\mathbf{q})}$$

where $\psi_{\infty}(\mathbf{q}) = \frac{\exp(-|\mathbf{q}|^2)}{\int_{\mathbb{R}^d} \exp(-|\mathbf{q}|^2)}$ is the equilibrium distribution.

Compute and obtain a macroscopic quantity:

$$H(t) = rac{1}{2} \int_{\Omega} \operatorname{tr}(oldsymbol{\sigma} - \ln oldsymbol{\sigma} - \mathbf{I})$$

Define the kinetic energy:

$$E_{\text{kinetic}}(t) = \frac{\text{Re}}{2} \int_{\Omega} |\mathbf{u}|^2$$

Free energy

Definition: free energy

Let (\mathbf{u}, p, σ) be a smooth solution to Oldroyd-B- σ . Define

$$F(\mathbf{u}, \boldsymbol{\sigma}) = \underbrace{\frac{\mathrm{Re}}{2} \int |\mathbf{u}|^2}_{\text{kinetic energy}} + \underbrace{\frac{\varepsilon}{2\mathrm{Wi}} \int_{\Omega} \mathrm{tr}(\boldsymbol{\sigma} - \ln \boldsymbol{\sigma} - \mathbf{I})}_{\text{entropy}}$$

 σ spd \Rightarrow $F \ge 0$ always.

Free energy dissipation

A free energy equality

Let (\mathbf{u}, p, σ) be a smooth solution to Oldroyd-B- σ , then:

$$\frac{d}{dt}F(\mathbf{u}, \boldsymbol{\sigma}) + \underbrace{(1 - \varepsilon)\int_{\Omega} |\nabla \mathbf{u}|^2 + \frac{\varepsilon}{2\mathrm{Wi}^2} \int_{\Omega} \mathrm{tr}(\boldsymbol{\sigma} + \boldsymbol{\sigma}^{-1} - 2\mathbf{I})}_{\text{dissipative terms} \geq 0} = 0$$

 \Rightarrow F decreases in time.

Consequence : there exists C > 0 s.t.

$$F(\mathbf{u}, \boldsymbol{\sigma}) \leq F(\mathbf{u}(t=0), \boldsymbol{\sigma}(t=0)) \exp(-Ct)$$

Useful to characterize long-time asymptotics of solutions. [Jourdain, Le-Bris, Lelièvre, Otto 06].

A remark: classical energy estimate

The classical energy estimate can be used, but to obtain exponential decay, the assumption $\det \sigma(t=0) > 1$ is needed.

Numerical framework: finite elements

In order to work in the F.E. framework, we need a variational formulation.

Then we need to be able to recover the free energy equality.

A smooth solution to Oldroyd-B- σ (\mathbf{u}, p, σ) satisfies

A smooth solution to Oldroyd-B- σ (\mathbf{u}, p, σ) satisfies

$$0 = \int_{\Omega} \left(\underbrace{\operatorname{Re} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) \cdot \mathbf{v} + (1 - \varepsilon) \nabla \mathbf{u} : \nabla \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma} : \nabla \mathbf{v}}_{\text{NS terms}} \right)$$

$$- p \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}$$

$$\underbrace{- p \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}}_{\text{NS terms}}$$

A smooth solution to Oldroyd-B- σ (\mathbf{u}, p, σ) satisfies

$$0 = \int_{\Omega} \left(\underbrace{\operatorname{Re} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) \cdot \mathbf{v} + (1 - \varepsilon) \nabla \mathbf{u} : \nabla \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma} : \nabla \mathbf{v}}_{\operatorname{NS \ terms}} \right. \\ \left. \underbrace{-\rho \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}}_{\operatorname{NS \ terms}} \right. \\ \left. + \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\sigma} \right) : \boldsymbol{\phi} - ((\nabla \mathbf{u}) \boldsymbol{\sigma} + \boldsymbol{\sigma} (\nabla \mathbf{u})^T) : \boldsymbol{\phi} + \frac{1}{\operatorname{Wi}} (\boldsymbol{\sigma} - \mathbf{I}) : \boldsymbol{\phi} \right),$$

constitutive eq. terms

A smooth solution to Oldroyd-B- σ (\mathbf{u}, p, σ) satisfies

$$0 = \int_{\Omega} \left(\underbrace{\operatorname{Re} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) \cdot \mathbf{v} + (1 - \varepsilon) \nabla \mathbf{u} : \nabla \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma} : \nabla \mathbf{v}}_{\text{NS terms}} \right)$$

$$\underbrace{-\rho \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}}_{\text{NS terms}}$$

$$\underbrace{+ \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\sigma} \right) : \phi - ((\nabla \mathbf{u}) \boldsymbol{\sigma} + \boldsymbol{\sigma} (\nabla \mathbf{u})^{T}) : \phi + \frac{1}{\operatorname{Wi}} (\boldsymbol{\sigma} - \mathbf{I}) : \phi}_{\text{constitutive eq. terms}} \right),$$

for all sufficiently smooth test functions (\mathbf{v}, q, ϕ) .

A smooth solution to Oldroyd-B- σ (\mathbf{u}, p, σ) satisfies

$$0 = \int_{\Omega} \left(\underbrace{\operatorname{Re}\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v} + (1 - \varepsilon)\nabla \mathbf{u} : \nabla \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma} : \nabla \mathbf{v}}_{\operatorname{NS \ terms}} \right)$$

$$\underbrace{-p \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}}_{\operatorname{NS \ terms}}$$

$$+\left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\sigma}\right) : \boldsymbol{\phi} - ((\nabla \mathbf{u})\boldsymbol{\sigma} + \boldsymbol{\sigma}(\nabla \mathbf{u})^T) : \boldsymbol{\phi} + \frac{1}{\mathrm{Wi}}(\boldsymbol{\sigma} - \mathbf{I}) : \boldsymbol{\phi}\right),$$

constitutive eq. terms

for all sufficiently smooth test functions (\mathbf{v}, q, ϕ) . The free energy equality is recovered with $(\mathbf{v}, q, \phi) = (\mathbf{u}, p, \frac{\varepsilon}{2W_i}(\mathbf{I} - \sigma^{-1})) \Rightarrow \sigma^{-1}$ is a test function.

A "simple" choice of F.E.

Scott-Vogelius mixed finite element space for (\mathbf{u}_h, p_h) :

•
$$\mathbf{u}_h \in (\mathbb{P}_2)^2$$

$$ullet$$
 $p_h \in \mathbb{P}_{1,disc}$

Good because $\operatorname{div} \mathbf{u}_h(\mathbf{x}) = 0, \forall \mathbf{x} \in \Omega$.

For meshes built in a certain way, this F.E. satisfies the Babuška-Brezzi inf-sup condition.

For σ_h , assume simply

ullet $\sigma_h \in (\mathbb{P}_0)^3 \Longrightarrow \sigma_h^{-1}$ can be used as test function.

Main challenges

- Discretize the advection term $(\mathbf{u} \cdot \nabla)\sigma$:
 - Method of characteristics
 - ② Discontinuous Galerkin method
- Recover a free energy dissipation.

Discrete problem

$$0 = \int_{\Omega} (\operatorname{stuff}_h^n)$$

Local existence

Show local existence in time, then define

Definition: discrete free energy

The free energy for the solution $(\mathbf{u}_h^n, p_h^n, \sigma_h^n)$ is:

$$F_h^n = F(\mathbf{u}_h^n, \boldsymbol{\sigma}_h^n) = \frac{\mathrm{Re}}{2} \int_{\Omega} |\mathbf{u}_h^n|^2 + \frac{\varepsilon}{2 \mathrm{Wi}} \int_{\Omega} \mathrm{tr}(\boldsymbol{\sigma}_h^n - \ln \boldsymbol{\sigma}_h^n - \mathbf{I})$$

The problematic terms are the time derivatives.

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

$$\int_{\Omega} \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1} \right) \cdot \mathbf{u}_h^{n+1}$$

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

$$\begin{split} & \int_{\Omega} \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \boldsymbol{\nabla} \mathbf{u}_h^{n+1} \right) \cdot \mathbf{u}_h^{n+1} \\ & = \int_{\Omega} \left(\frac{|\mathbf{u}_h^{n+1}|^2 - |\mathbf{u}_h^n|^2}{2\Delta t} + \frac{|\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2}{2\Delta t} + \mathbf{u}_h^n \cdot \boldsymbol{\nabla} \frac{|\mathbf{u}_h^{n+1}|^2}{2} \right) \end{split}$$

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

$$\begin{split} \int_{\Omega} \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1} \right) \cdot \mathbf{u}_h^{n+1} \\ &= \int_{\Omega} \left(\frac{|\mathbf{u}_h^{n+1}|^2 - |\mathbf{u}_h^n|^2}{2\Delta t} + \frac{|\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2}{2\Delta t} + \mathbf{u}_h^n \cdot \nabla \frac{|\mathbf{u}_h^{n+1}|^2}{2} \right) \\ &= \int_{\Omega} \left(\frac{|\mathbf{u}_h^{n+1}|^2 - |\mathbf{u}_h^n|^2}{2\Delta t} + \frac{|\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2}{2\Delta t} \right) \end{split}$$

The problematic terms are the time derivatives.

1. Treatment of u derivative:

$$\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) \cdot \mathbf{v}$$
 is discretized as $\left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1}\right) \cdot \mathbf{v}$.

$$\begin{split} \int_{\Omega} \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \nabla \mathbf{u}_h^{n+1} \right) \cdot \mathbf{u}_h^{n+1} \\ &= \int_{\Omega} \left(\frac{|\mathbf{u}_h^{n+1}|^2 - |\mathbf{u}_h^n|^2}{2\Delta t} + \frac{|\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2}{2\Delta t} + \mathbf{u}_h^n \cdot \nabla \frac{|\mathbf{u}_h^{n+1}|^2}{2} \right) \\ &= \int_{\Omega} \left(\frac{|\mathbf{u}_h^{n+1}|^2 - |\mathbf{u}_h^n|^2}{2\Delta t} + \frac{|\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2}{2\Delta t} \right) \end{split}$$

(since div
$$\mathbf{u}_h^n(\mathbf{x}) = 0, \forall \mathbf{x} \in \Omega$$
).

2. Treatment of σ derivative:

$$\left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \boldsymbol{\sigma}\right) : \boldsymbol{\phi} \text{ is discretized as } \left(\frac{\boldsymbol{\sigma}_h^{n+1} - \boldsymbol{\sigma}_h^n \circ \boldsymbol{X}^n(t^n)}{\Delta t}\right) : \boldsymbol{\phi} \text{ where }$$

$$\left\{ \begin{array}{l} \frac{d}{dt}X^n(t,x) = \mathbf{u}_h^n(X^n(t,x)), \quad \forall t \in [t^n,t^{n+1}], \\ X^n(t^{n+1},x) = x. \end{array} \right.$$

 $\operatorname{div} \mathbf{u}_h^n(\mathbf{x}) = 0, \forall \mathbf{x} \in \Omega \Rightarrow X^n(t)$ is a mapping with constant Jacobian $(=1), \forall t \in [t^n, t^{n+1}].$

Lemma 1:

Let σ and au be two symmetric positive definite matrices. Then

$$\operatorname{tr}\left((\boldsymbol{\sigma}-\boldsymbol{ au})\boldsymbol{ au}^{-1}\right)=\operatorname{tr}(\boldsymbol{\sigma}\boldsymbol{ au}^{-1}-\mathbf{I})\geq\operatorname{tr}\left(\operatorname{In}\boldsymbol{\sigma}-\operatorname{In}\boldsymbol{ au}\right),$$

Use as test function $\phi = \mathbf{I} - (\sigma_h^{n+1})^{-1}$, and use Lemma 1:

Use as test function $\phi = \mathbf{I} - (\boldsymbol{\sigma}_h^{n+1})^{-1}$, and use Lemma 1:

$$\int_{\Omega} \left(\boldsymbol{\sigma}_h^{n+1} - \boldsymbol{\sigma}_h^n \circ \boldsymbol{X}^n(t^n) \right) : (\mathbf{I} - (\boldsymbol{\sigma}_h^{n+1})^{-1})$$

Use as test function $\phi = \mathbf{I} - (\boldsymbol{\sigma}_h^{n+1})^{-1}$, and use Lemma 1:

$$\begin{split} &\int_{\Omega} \left(\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n}) \right) : (\mathbf{I} - (\boldsymbol{\sigma}_{h}^{n+1})^{-1}) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr}\left([\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})][\boldsymbol{\sigma}_{h}^{n+1}]^{-1} - \mathbf{I} \right) \end{split}$$

Use as test function $\phi = \mathbf{I} - (\sigma_h^{n+1})^{-1}$, and use Lemma 1:

$$\begin{split} &\int_{\Omega} \left(\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n}) \right) : \left(\mathbf{I} - (\boldsymbol{\sigma}_{h}^{n+1})^{-1} \right) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr}\left([\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})][\boldsymbol{\sigma}_{h}^{n+1}]^{-1} - \mathbf{I} \right) \\ &\geq \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) - \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n+1}) \end{split}$$

Use as test function $\phi = \mathbf{I} - (\boldsymbol{\sigma}_h^{n+1})^{-1}$, and use Lemma 1:

$$\begin{split} \int_{\Omega} \left(\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n}) \right) : \left(\mathbf{I} - (\boldsymbol{\sigma}_{h}^{n+1})^{-1} \right) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr}\left([\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})][\boldsymbol{\sigma}_{h}^{n+1}]^{-1} - \mathbf{I} \right) \\ &\geq \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) - \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n+1}) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1} - \ln \boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} - \ln \boldsymbol{\sigma}_{h}^{n}) \end{split}$$

Recovering a free energy dissipation with the method of characteristics

Use as test function $\phi = \mathbf{I} - (\sigma_h^{n+1})^{-1}$, and use Lemma 1:

$$\begin{split} \int_{\Omega} \left(\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n}) \right) : \left(\mathbf{I} - (\boldsymbol{\sigma}_{h}^{n+1})^{-1} \right) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr}\left([\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})][\boldsymbol{\sigma}_{h}^{n+1}]^{-1} - \mathbf{I} \right) \\ &\geq \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) + \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})) - \operatorname{tr} \ln(\boldsymbol{\sigma}_{h}^{n+1}) \\ &= \int_{\Omega} \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n+1} - \ln \boldsymbol{\sigma}_{h}^{n+1}) - \operatorname{tr}(\boldsymbol{\sigma}_{h}^{n} - \ln \boldsymbol{\sigma}_{h}^{n}) \end{split}$$

(since X^n has Jacobian equal to 1).

A discrete free energy inequality

Discrete free energy inequality

Let $(\mathbf{u}_h^n, p_h^n, \sigma_h^n)_{0 \le n \le N_T}$ be a solution to the discrete problem, such that σ_h^n is spd. Then, the free energy of the solution $(\mathbf{u}_h^n, p_h^n, \sigma_h^n)$: satisfies:

$$\begin{aligned} F_h^{n+1} - F_h^n + \int_{\Omega} \frac{\mathrm{Re}}{2} |\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2 + \Delta t \int_{\Omega} (1 - \varepsilon) |\nabla \mathbf{u}_h^{n+1}|^2 \\ + \Delta t \frac{\varepsilon}{2 \mathrm{Wi}^2} \int_{\Omega} \mathrm{tr} \left(\boldsymbol{\sigma}_h^{n+1} + (\boldsymbol{\sigma}_h^{n+1})^{-1} - 2I \right) \leq 0. \end{aligned}$$

In particular, the sequence $(F_h^n)_{0 \le n \le N_T}$ is non-increasing.

Same free energy inequality for the DG method

The log transformation

The same treatment can be applied to the log-transformed system. We obtain an equivalent free energy inequality:

log free energy inequality

For a solution $(\mathbf{u}_h^n, p_h^n, \boldsymbol{\psi}_h^n)$, the free energy is

$$F_h^n = F(\boldsymbol{u}_h^n, e^{\boldsymbol{\psi}_h^n}) = \frac{\mathrm{Re}}{2} \int_{\Omega} |\boldsymbol{u}_h^n|^2 + \frac{\varepsilon}{2\mathrm{Wi}} \int_{\Omega} \mathrm{tr} (e^{\boldsymbol{\psi}_h^n} - \boldsymbol{\psi}_h^n - \boldsymbol{I}) \,,$$

and it satisfies

$$\begin{aligned} F_h^{n+1} - F_h^n + \int_{\Omega} \frac{\mathrm{Re}}{2} |\mathbf{u}_h^{n+1} - \mathbf{u}_h^n|^2 + \Delta t \int_{\Omega} (1 - \varepsilon) |\nabla \mathbf{u}_h^{n+1}|^2 \\ + \Delta t \frac{\varepsilon}{2\mathrm{Wi}^2} \int_{\Omega} \mathrm{tr} \left(e^{\psi_h^{n+1}} + e^{-\psi_h^{n+1}} - 2I \right) \le 0. \end{aligned}$$

We obtained a "good" scheme

As a consequence, we obtain some numerical stability:

- Global existence in time and uniqueness of discrete solutions for Δt small enough in the σ formulation.
- ② In the case of the log formulation, global existence for any Δt .

ullet analysis shows a difference between σ and log-formulation

- ullet analysis shows a difference between σ and log-formulation
- ullet minimal Δt for existence depends on Wi

- ullet analysis shows a difference between σ and log-formulation
- ullet minimal Δt for existence depends on Wi
- implementation using other FE

- ullet analysis shows a difference between σ and log-formulation
- \bullet minimal Δt for existence depends on Wi
- implementation using other FE
- ullet higher order discretizations for $oldsymbol{\sigma}$

- ullet analysis shows a difference between σ and log-formulation
- ullet minimal Δt for existence depends on Wi
- implementation using other FE
- ullet higher order discretizations for σ

MERCI!

Properties needed to obtain free energy estimate

Advection discretized by:	Characteristics	DG
Requirements for \mathbf{u}_h :	$\begin{array}{c} \operatorname{div} \mathbf{u}_h = 0 \\ (\Rightarrow \det(\nabla_{\mathbf{x}} X^n) \equiv \end{array}$	$\int_{\Omega} q \operatorname{div} \mathbf{u}_h = 0,$
	$(\Rightarrow \det(\nabla_{x}X^n) \equiv$	$\forall q \in \mathbb{P}_0$
	1)	and
	$(\Rightarrow (\mathbf{u}_h \cdot \mathbf{n}) _{E_i}$	$(\mathbf{u}_h \cdot \mathbf{n}) _{E_i}$ well de-
	well defined)	fined

Table: Summary of the arguments with $(\mathbf{u}_h, p_h, \sigma_h)$ or $(\mathbf{u}_h, p_h, \psi_h)$ in $(\mathbb{P}_2)^d \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^{\frac{d(d+1)}{2}}$

Discretized problem (characteristics method)

For a given $(\mathbf{u}_h^n, p_h^n, \sigma_h^n)$, find $(\mathbf{u}_h^{n+1}, p_h^{n+1}, \sigma_h^{n+1}) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$ such that, for any test function $(\mathbf{v}, q, \phi) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$,

$$\begin{split} 0 &= \int_{\Omega} \operatorname{Re} \left(\frac{\mathbf{u}_{h}^{n+1} - \mathbf{u}_{h}^{n}}{\Delta t} + \mathbf{u}_{h}^{n} \cdot \boldsymbol{\nabla} \mathbf{u}_{h}^{n+1} \right) \cdot \mathbf{v} - p_{h}^{n+1} \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}_{h}^{n+1} \\ &+ (1 - \varepsilon) \boldsymbol{\nabla} \mathbf{u}_{h}^{n+1} : \boldsymbol{\nabla} \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma}_{h}^{n+1} : \boldsymbol{\nabla} \mathbf{v} \\ &+ \left(\frac{\boldsymbol{\sigma}_{h}^{n+1} - \boldsymbol{\sigma}_{h}^{n} \circ \boldsymbol{X}^{n}(t^{n})}{\Delta t} \right) : \boldsymbol{\phi} - \left((\boldsymbol{\nabla} \mathbf{u}_{h}^{n+1}) \boldsymbol{\sigma}_{h}^{n+1} + \boldsymbol{\sigma}_{h}^{n+1} (\boldsymbol{\nabla} \mathbf{u}_{h}^{n+1})^{T} \right) : \boldsymbol{\phi} \\ &+ \frac{1}{\operatorname{Wi}} (\boldsymbol{\sigma}_{h}^{n+1} - \mathbf{I}) : \boldsymbol{\phi}. \end{split}$$

Discretized problem (DG)

For a given $(\mathbf{u}_h^n, p_h^n, \sigma_h^n)$, find $(\mathbf{u}_h^{n+1}, p_h^{n+1}, \sigma_h^{n+1}) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$ such that, for any test function $(\mathbf{v}, q, \phi) \in (\mathbb{P}_2)^2 \times \mathbb{P}_{1,disc} \times (\mathbb{P}_0)^3$,

$$\begin{split} 0 &= \sum_{k=1}^{N_K} \int_{\mathcal{K}_k} \operatorname{Re} \left(\frac{\mathbf{u}_h^{n+1} - \mathbf{u}_h^n}{\Delta t} + \mathbf{u}_h^n \cdot \boldsymbol{\nabla} \mathbf{u}_h^{n+1} \right) \cdot \mathbf{v} - p_h^{n+1} \operatorname{div} \mathbf{v} + q \operatorname{div} \mathbf{u}_h^{n+1} \\ &\quad + (1 - \varepsilon) \boldsymbol{\nabla} \mathbf{u}_h^{n+1} : \boldsymbol{\nabla} \mathbf{v} + \frac{\varepsilon}{\operatorname{Wi}} \boldsymbol{\sigma}_h^{n+1} : \boldsymbol{\nabla} \mathbf{v} \\ &\quad + \left(\frac{\boldsymbol{\sigma}_h^{n+1} - \boldsymbol{\sigma}_h^n}{\Delta t} \right) : \boldsymbol{\phi} - \left((\boldsymbol{\nabla} \mathbf{u}_h^{n+1}) \boldsymbol{\sigma}_h^{n+1} + \boldsymbol{\sigma}_h^{n+1} (\boldsymbol{\nabla} \mathbf{u}_h^{n+1})^T \right) : \boldsymbol{\phi} \\ &\quad + \frac{1}{\operatorname{Wi}} (\boldsymbol{\sigma}_h^{n+1} - \mathbf{I}) : \boldsymbol{\phi} + \sum_{i=1}^{N_E} \int_{E_i} |\mathbf{u}_h^n \cdot \mathbf{n}| \, [\![\boldsymbol{\sigma}_h^{n+1}]\!] : \boldsymbol{\phi}^+ \end{split}$$

Discretization of the advection term in the DG method

$$\begin{array}{l} \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \boldsymbol{\sigma}\right) : \boldsymbol{\phi} \text{ is discretized as } \\ \left(\frac{\boldsymbol{\sigma}_h^{n+1} - \boldsymbol{\sigma}_h^n \diamond \boldsymbol{X}^n(t^n)}{\Delta t}\right) : \boldsymbol{\phi} + \sum_{j=1}^{N_E} \int_{E_j} |\mathbf{u}_h^n \cdot \mathbf{n}| \, [\![\boldsymbol{\sigma}_h^{n+1}]\!] : \boldsymbol{\phi}^+ \end{array}$$