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Outline of this talk

I) Shallow-water type equations from Navier-Stokes equations.

I.a) Formal derivation: Effect of boundary conditions and Reynolds number order.

I.b) Mathematical justifications and open questions.

I.c) Global weak solutions for viscous shallow-water system.

II) Shallow-water type equations with thresholds terms.

II.a) Effect of contact angle: some physical works.

II.b) Compressible viscoplastic constitutive law :
Numerical difficulties, mathematical difficulties.

III) Other models used in avalanches simulation.
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Shallow water equations from Navier-Stokes equations

SHALLOW–WATER TYPE SYSTEMS:

Used in various applications (river flows, ocean, MHD.....)

Obtained in a simple version from elementary principles in 1871, De St Venant.

Described flow: vertical mean value of the horizontal flow components.

Various models obtained from 6= systems : Euler-Irrotationnel, Navier-Stokes, .....

From ’Euler-Irrotationnel’: see. D. Lannes et. al.

Here we focus on viscous effects and/or threshold effects through recent works.
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Shallow water equations from Navier-Stokes equations

Formal derivation from Navier-Stokes :

Strongly depends on boundary conditions choices.

a) No slip conditions.

b) Friction conditions (which BC ? Wall laws!).

c) Mixing of the both?

Strongly depends on the order of the Reynolds number.

i) Reynolds order 1 .

ii) Reynolds linked to the aspect ratio (which link?).

Examples.

cas a)-i) See for instance J.–P. Vila (2007),

cas b)-ii) See for Instance J.–F. Gerbeau, B. Perthame (2001) (Re = O(1/ε) ).
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Shallow water equations from Navier-Stokes equations

Denoting U = (u,w) the velocity of the flow governed by Navier-Stokes and

v =
“

R h(t,x)
0 u(t, ξ) dξ

”

/h(t, x) the vertical mean value of the horizontal component.

Asymptotic at order 2 !!

Slip boundary condition.

See: J.–F. Gerbeau, B. Perthame (DCDS, 2001) with a flat bottom.

8

<

:

ht + (hv)x = 0,

(hv)t + (h v2 +
h2

2
)x − κhhxxx − 4ε∂x(h∂xv) +

r0v

1 + εh
= 0.

No slip boundary condition with slop.

see: J.–P. V ILA (2007) with c = cos θ and s = sin θ , θ slop angle.

8

<

:

ht + (hv)x = 0,

(hv)t + (
6

5
h v2 + c

h2

2
− (2s)2

75
h5)x − κhhxxx =

1

ε

`

2s h− 3 v

h

´

.

If we want to see viscous effect, go next order!
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Shallow water equations from Navier-Stokes equations

Slip boundary condition (J.-F. Gerbeau, B. Perthame)

(

∂2
zu

0 = 0,

∂zu0|z=0 = 0, ∂zu0|z=h = 0.

=⇒ u0(t, x) only
=⇒ need dynamics for u0(t, x) (Hyperbolic Shallow-Water equations)
=⇒ Next order (viscous term). =⇒ Need order 2 to close the system since u1|z=0 is a

priori unknown.

No slip condition (J.-P. Vila)

(

−∂2
zu

0 = 2s,

u0|z=0 = 0, ∂zu0|z=h = 0.

=⇒ u0(t, x) depends explicitely on h (Nusselt profile).

=⇒ Thin film equation (see BERTOZZI, PUGH et al.).

=⇒ Need next order to get the shallow water dynamic.

=⇒ Need order 2 to close the system since ∂zu1|z=0 is a priori unknown.
ENPC/PKU Joint workshop 2009 – p.3/5



Shallow water equations from Navier-Stokes equations

Mathematical justification of the formal derivations.

1st mathematical justification and derivation of the J.–P. Vila model:
Non zero capillarity and lateral periodic condition !! : D.B., P. Noble (Methods of Anal. and
Appl., 2007), (strong solution, 2D->1D).

Global existence for free surface on slope: T. Nishida, Y. Teramoto, H.A. Win. J. Math. Kyoto
Univ. (1993).

Mathematical justification and derivation of the J.–F. Gerbeau, B. Perthame model:
D.B., P. Noble: large almost 2D initial data, from primitive equations, still in progress.

In the spirit of thin-domain Navier-Stokes equations: D. Iftimie, G. Raugel, G. Sell, R.
Temam, M. Ziane etc...

Open problems: Mathematical justification without surface tension, dynamical shore
boundary conditions.
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Shallow water equations from Navier-Stokes equations

Global existence of weak solutions for viscous degenerate shallow-water system.
An interesting mathematical structure for a model as Gerbeau-Perthame model
(D.B., B. Desjardins, CMP2003)!!

Simplification =⇒ Expressions for r0 = 0 and κ = 0 :
1) Energy equality :

d

dt

Z

Ω

„

1

2
h|v|2 + |h|2

«

+

Z

Ω
4ε|∂xv|2 = 0.

2) A mathematical entropy (cf. works D.B., B. Desjardins on St. Venant.)

d

dt

Z

Ω

„

1

2
h|v − 2ε∂x log h|2 + |h|2

«

+

Z

Ω
|∂xh|2 = 0.

If we control ∂x

√
h initially, we control it all the time..... and prove global existence of weak

solutions!!

Remark: We find a specific velocity v − 2ε∂x log h ! What it means physically?? It comes
from degenerate viscosity!! How to conserve it numerically??

Some examples where such quantities appear: Fick law, Low Mach number..... see recent
works by Brenner (MIT): bi-velocity model!!!
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Shallow water equations from Navier-Stokes equations
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Shallow-water with thresholds terms

Thresholds phenomena?

Used in various applications: dense flows (lava, mud, snow), Landslide......

Different sources (earthquakes, precipitation ...), various scales, comparaison.

Not too much data : essentially on deposites.

Threshold = (chgt of state) : Below nothing, above yes.

Threshold = rest state friction angle δ given or plasticity stress tensor.

rest state friction angle = typical angle for granular state
=⇒ reproduces flow behavior, deposite shape, morphological structure.
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Shallow-water with thresholds terms

Physical works.

Some simulations by A. Mangeney et al. calibrating through friction angle δ , µ = tan δ :

Fei Tsui, Shum Wan (Hong-Kong) : δ = 26o, 18o

Six des eux froides (Suisse) : δ = 17o

Frank (Canada) : δ = 14o

Boxing day (Motserrat) : δ = 15o

Ophir Chasma, Candor Chasma, Ganges Chasma (Mars) : δ = 9.8o, 9.9o, 9.4o .

=⇒ large variability of friction angles...............
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Shallow-water with thresholds terms

Threshold terms under which form?

Examples.

A) Coulomb type friction term,

B) Viscoplastic constitutive law for example.

Results :

case B)-a)-i) / E. Fernandez-Nieto, P. Noble, J.–P. Vila. In progress (2008),

case B)-b)-i) / D.B., E. Fernandez-Nieto, I. Ionescu, P. Vigneaux, Adv. Math. Fluid
Mech. (2009).
To appear Adv. Math Fluid Mech. (2008).

cas A) bilayers / E. Fernandez-Nieto, F. Bouchut, D.B., M. Castro, A. Mangeney,
J. Comput Physics (2008).
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Shallow-water with thresholds terms

Which modeling and numerical problems?

Viscoplastic COMPRESSIBLE system: Mixing finite-volume/Augmented Lagrangian.
=⇒ Generalisation of the Fortin-Glowinski method to the compressible case!!

Which viscoplastic model ? Take into account other phenomena: Elasticity, fluidity ?

Other applications : Perforation......DGA....

COMPRESSIBLE system coupled with coulomb term. Models with threshold term in only
one momentum equation (term linked to the granulat friction angle) =⇒ Pb since
interaction solid/fluid and fluid/solid =⇒ How to discretize such term in an iterative
scheme? Granular medium in water? what time and space scales ?

Some references regarding finite volume/ Shallow-Water : F. Bouchut, M. Castro-Diaz et al.,
Th. Gallouët, R.J. Leveque, F. Marche.
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Shallow-water with thresholds terms

What kind of mathematical problems?

1) Shallow-water type models derivation from models with threshold and free surface.

2) Well posedness of derived systems.

3) Stability, long-time behavior.

4) Security criterium, time stopping estimate.

1) Really open since Newtonian case justification recent.

2)-3) The procedure to prove global existence of weak solutions à la Leray due P.–L. Lions
does not work. Use of BD type entropy? Strong solutions à la Hoff ?
Some Russian interesting refs: Mamontov (weak solution with linear pressure, multi-D
model), V. Shelukhin et I. Basov (strong solution on 1D model, asymptotic limit from
non-newtonian flow).

4) Some works have been done related to vicoplastic solids in some admissible motions: T.
Lachand-Robert, I. Ionescu et al., G. Carlier (Cheeger sets).
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Shallow-water with thresholds terms

Shallow water and Bingham

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

∂th+ (hv)x = 0,
Z L

0
h(∂tv + v∂xv)(ψ − v) dx+

Z L

0
βv(ψ − v) dx+

Z L

0
4ηh∂xv∂x(ψ − v) dx

+

Z L

0
Bh

√
2(|∂xψ| − |∂xv|) dx >

−1

Fr2

Z L

0
h sin θ(ψ − v) dx

+
ε

Fr2

Z L

0

cos θ

2
h2(∂xψ − ∂xv) dx.

If B = 0 then viscous-shallow water similar to Gerbeau-Perthame.

Case B)-b)-i) : We get such model from variational formulation of incompressible Bingham
flows with free surface and adequate test functions choices.
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Shallow-water with thresholds terms

Incompressible visco-plastic Bingham equations

Constitutive law

Cauchy tensor: σ = −pId + τ.

Bingham model (1992):

8

>

<

>

:

|τ | 6B when |D(u)| = 0,

τ = 2ηD(u) +B
D(u)

|D(u)| when |D(u)| 6= 0.

The case B = 0 gives Newtonian fluid.
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Shallow-water with thresholds terms

Incompressible Bingham type visco-plastic equations

∂tu− divσ = f, divu = 0.

If fixed domain Ω : minimization problem with non differentiable convex energy.

J(u) =

Z

Ω
2η|D(u)|2 +

Z

Ω
B|D(u)| −

Z

Ω
f · u

Problem:

Minv∈H1

0

J(v).

Difficulties: Non-differentiable energy =⇒ Variational inequality.

Numerical strategy :
Augmented Lagrangian Algorithm + mesh adaptation (cf. P. Saramito (Grenoble)).
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Shallow-water with thresholds terms

Standart Bingham

8

>

<

>

:

|τ | 6B when |D(u)| = 0,

τ = ηD(u) + B
D(u)

|D(u)|
when |D(u)| 6= 0

equivalent to

max
`

0,
|τ | −B

|τ |
´

τ = ηmD(u).

Remark: We have written a shallow-water/Bingham type model for order 1 Reynolds number
and slip boundary condition at order i.e. B)-b)-i). The asymptotic is realized on the variational
inequality.

Remark: For model assuming order 1 Reynolds number and no slip boundary condition (i.e.
B)-a)-i)). See E. Fernandez-Nieto, P. Noble, J.P. Vila (2009).
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Shallow-water with thresholds terms

Difficulty coming from viscoplastic compressible equations : Finite volume and Augmented
Lagrangian method.

Simple idea : The numerical flux has to take into account the several steps of the Augmented
Lagrangian method (Saddle point calculus in (V, q, µ) then iterative method).

Linear system associated to the velocity problem with right-hand side term.

Minimization problem associated to Lagrangian multiplier (explicit calculus).

Stationary states have to be preserved on the linear system associated to the velocity
problem, we get a necesary and sufficient condition on the iterates which push to choose
adequate numerical fluxes.
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Shallow-water with thresholds terms

An idea of how it works !!
In the iterative scheme: Let V n

0 , Hn , µn and qn be given for k = 0 .

1) Calculus of qk+1

2) Calculus of V k+1 as solution of linear ODE with right hand side

3) Update of µk+1 .

4) Loop on µk .

At convergence, we get the velocity at time tn+1 . We let V n+1
0 = V k+1 , µn+1 = µk ,

qn+1 = qk+1 .
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Shallow-water with thresholds terms

In the iterative calculus we get the following expression at the right hand-ide of the velocity
pb that we denote b at time tn :

−Hn

»

∂x

„

ρ0(V n
0 )2

2
+

ε

Fr2
Hnρ0 cos θ

«

− ρ0St
V n
0

∆t
− 1

Fr2
ρ0 sin θ

–

.

+∂x
`

Hn(µk − rqk+1)
´

.

From the height equation, we also have the term evaluated at time t = tn :

−StH
n

∆t
+
∂(HnV n

0 )

∂x
.

We define the flux

F (W ) =

 

ρV 2/2 + εHρ0 cos θ/Fr2

HV

!

, with W =

 

H

V

!

,

and by φ a numerical flux approaching F .
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Shallow-water with thresholds terms

Approximation of bi :

bi = −Hn
i

»φV n

i+1/2
− φV n

i−1/2

∆x
− 1

Fr2
ρ0 sin θ − St

ρ0V n
0

∆t

–

+
GV

i−1/2
+GV

i+1/2

2

with

GV
i+1/2 = Hn

i+1/2

µk
i+1 − rqk+1

i+1 − (µk
i − rqk+1

i )

∆x
.

Approximation of Hn+1 :

StHn+1
i = StHn

i +
∆t

∆x
(φH

i+1/2 − φH
i−1/2).
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Shallow-water with thresholds terms

The source term due to the topography has to be taken into account in φH . If we note

Gtopo =

 

0

− 1
Fr2

ρ0 sin θ

!

then φH is defined as the first component of

φtopo,i+1/2 =
F (Wi) + F (Wi+1)

2
− 1

2
Di+1/2(Wi+1 −Wi −A−1

i+1/2
Gtopo).
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Shallow-water with thresholds terms

Due to source terms associated to the Augmented-Lagrangian, µ+ r q , φH have to take
into account them. If the algorithm tops at index ke , we approach the terms by
µke+1 + r qke+1 . And we define φH as first component of

φµ,q,i+1/2 =
F (Wi) + F (Wi+1)

2
−

1

2
Di+1/2(Wi+1 −Wi −A−1

i+1/2
(Gtopo,i+1/2 +Gµ,q,i+1/2)).

where

Gµ,q,i+1/2 =

 

0

Hn
i+1/2

(µke+1
i+1 − rqke+1

i+1 ) −Hn
i−1/2

(µke+1
i − rqke+1

i ).

!

.
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Shallow-water with thresholds terms

Properties: We show that if initially, for all x ∈ [0, L]

µ(x) =
1

Fr2
ρ0 sin θ(x− L/2) − ε

Fr2
ρ0 cos θ(H(x) −H(L/2)), q(x) = 0

then the scheme preserves exactly the stationary solutions.
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Shallow-water with thresholds terms

Various numerical schemes:

1) What happens with bad flux discretization?

2) What is the influence of the Bingham number?

3) What happens on a stationary solution if we change Bingham number?

4) What happens for a big bump?

Detail : See D. Bresch, E. Fernandez-Nieto, I. Ionescu, P. Vigneaux. Augmented lagrangian
method and compressible viscoplastic flows: application to shallow dense avalanches. To
appear Adv. Math. Fluid Mech. (2008).
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Shallow-water with thresholds terms

Other elasto-viscoplastic models

A mixed Oldroyd-Bingham type model:

see P. Saramito, J. Non Newtonian Fluid Mech (2007).

=⇒ Generalisation of Schwedoff model.

8

>

>

>

<

>

>

>

:

σ = −pId − 2ηD(u) + τ,

λDtτ + max
`

0,
|τd| −B

|τd|
´

τ = 2ηmD(u)

Dtτ = ∂tτ + u · ∇τ +W (u)τ − τW (u) − a[D(u)τ + τD(u)]

with a ∈ [−1, 1] , τd the deviatoric part of τ .

See also paper of S. Benito, C.–H. Bruneau, T. Colin, C. Gay, F. Molino. Eur. Phys. J.E. (2008).

Question : Quid St-Venant type model derivation from such kind of model?

Interest: Take into account the elastic character for instance for lava. Important also in
cosmetic.....
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Shallow-water with thresholds terms

Stratified model with a fluid ρ1 and a granular medium ρs

H1) Fluid and granular material immiscible and "Euler” for both.

ρ2 = (1 − ψ0)ρs + ψ0ρ1.

H2) Anisotropy in the pressure tensors which has a part due to fluid and one due to material:
Iverson-Delinger law (2001) for granular material.

H3) Continuity normal part and friction interface tangential part.

H4) At bottom, tangential part on P 2 with Coulomb law taking into account P 1 (Archimede.)
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Shallow-water with thresholds terms

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

∂th1 + ∂x(h1v1) = 0,

∂t(h1v1) + ∂x
`

h1v
2
1 + gh2

1(cos θ)/2
´

= −gh1bx + g(sin θ)θxh
2
1/2 − gh1∂x((cos θ)h2) + fric(v1, v2)/ρ1,

∂th2 + ∂x(h2v2) = 0,

∂t(h2v2) + ∂x
`

h2v22 + Λ2gh2
2(cos θ)/2

´

= −gh2∂xb− rgh2Λ1∂x(h1 cos θ) − fric(v1, v2)/ρ2 + gh2
2(sin θ)∂xθ/2 + τ

where g gravité, ρ2 = (1 − ψ0)ρs + ψ0ρ1 , r = ρ1/ρ2 , rs = ρs/ρ2 , Λ1 = λ1 +K(1 − λ1) ,
Λ2 = rλ2 +K(1 − rΛ2) where K mesures anisotropy.

The friction term τ of Coulomb type is defined by :

If |τ | > σc then τ = −gh2

`

(cos θ)(1 − r) + v22θx
´

(tan δ0)v2/|v2| elsewhere v2 = 0 .
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Shallow-water with thresholds terms

I) This model possesses a dissipative entropy inequality:

II) It preserves the stationary-state

v1 = v2 = 0, b+ (h1 + h2) cos θ = cst

|(Λ2 − rΛ1)∂x(b+ h2(cos θ)) + (1 − Λ2)(∂xb− h2(sin θ)∂xθ/2)| 6 (1 − r) tan δ0.

Remark : For K = 1 , we get

|∂x(b+ h2 cos θ)| 6 tan δ0.
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Shallow-water with thresholds terms

Finite volume scheme preserving stationary states!!
Discretized system following Roe Scheme.
Scheme in two steps in order to the friction Coulomb term:
1) Calculus of W ∗

i = (h∗1,i, Q
∗
1,i, h

∗
2,i, Q

∗
2,i) by flux of generalized Roe type.

W ∗
i = Wn

i − ∆t

∆x

“

DFn,+
i−1/2

+ DFn,−
i+1/2

”

.

2) Then we define Wn1

i = [h1,i, q1,i, h2,i, q
n+1
2,i with qn+1

2,i ] defined following threshold

compared to q∗2,i .

Details : See E.D. Fernandez-Nieto, F. Bouchut, D. Bresch, M.J. Castro-Diaz, A. Mangeney.
A new Savage–Hutter type model for submarine avalanches and generated tsunami. J.
Comput. Physics 227, (2008), 7720-7754.
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Shallow-water with thresholds terms

Various numerical tests:

1) Sub-aerial landslide.

2) Generation of "Tsunamis” and propagation : Inspired from paper
Heinrich-Piatanesi-Hèbert on 1998 Papaa New Guinea event.
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Other models

Kazhikov-smagulov type model:

8

>

>

<

>

>

:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + D + ∇P = 0,

u = v + α∇ log ρ, divv = 0,

where D is the viscosity term.

See J. Etienne, E. Hopfinger, P. Saramito for simulation: Annals of Glaciology, (2004).

Global existence of weak solutions for adequate viscosity : −αdiv(ρD(u)) .
D.B., E. Essoufi, M. Sy (2003).
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Other models

Biphasic compressible system.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∂t(α
±ρ±) + div(α±ρ±u±) = 0,

∂t(α
±ρ±u±) + div(α±ρ±u± ⊗ u±) + α±∇p,

= div(α±τ±) + σ±α±ρ±∇∆(α±ρ±),

α+ + α− = 1, p = p±(ρ±), τ± = 2µ±D(u±) + λ±divu±Id,

(α±ρ±)|t=0 = R±
0 , (α±ρ±u±)|t=0 = m±

0

R±
0 > 0, α±

0 ∈ [0, 1] tel que α−
0 + α−

0 = 1,

|m±
0 |2/R±

0 = 0 sur {x ∈ Ω : R±
0 (x) = 0}.

See D. Dutykh for numerical simulation.
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Other models

Non conservative model and non-hyperbolic model without viscosity.

D.B., B. Desjardins, J.M. Ghidaglia, E. Grenier. Submitted (2008).

Result. Let µ±(ρ±) = µ±ρ± , λ± = 0 and p(ρ±) = a±(ρ±)γ± with 1 < γ± < 6 . Standart

hypothesis on initial data + ∇
√
R

±

0 in (L2(R3))3 . There exists a global weak solution of the
biphasic system.

Compactness (integrability) in pressure term =⇒ constraints on γ± .

Weak solutions formulation similar to D. Bresch, B. Desjardins, C.K. Lin. CPDE (2001).

Other results in this paper: local existence of strong sol, invariant sets, spectral analysis.....

Similar to bi-layers shallow-water system.
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Other models

For more details on recent results related to viscoplastic fluids:
see J. Non-Newtonian Fluid Mech, volume 142 (2007), Guest editors: N.J. Balmforth, I.
Friguard.

Herschel-Bulkley, power laws fluids, suspension models......
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