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Continuum decription of flocking

Discuss the modeling of hydrodynamic equations for flocking
phenomena.

Look for a macroscopic description by the equations for fluid
dynamics, modified to account for birds type interactions.

Problem close to the hydrodynamic description of a granular
gas (dissipation substituted by adapting velocities).

Only discrete and kinetic models present in the literature.
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The Cucker–Smale model

The recent mathematical work of Cucker and Smale
[F. Cucker, S. Smale, (2007)], connected with the emergent
behaviors on flocks, obtained a noticeable resonance in the
mathematical community.

The goal was to prove, in agreement with observations, that
under some initial conditions, for example on their positions
and velocities, the state of the flock converges to one in which
all birds fly with the same velocity.

Main hypothesis which justifies the behavior of the population
is that every bird adjusts its velocity by adding to it a
weighted average of the differences of its velocity with those
of the other birds.
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The Cucker–Smale model II

Given a population of k birds, at time t ∈ IN, and for i-th bird,

vi (t + 1)− vi (t) =
k∑

i=1

aij (vj(t)− vi (t)) .

The weights aij quantify the way the birds influence each
other.

aij =
K

(σ2 + ‖xi − xj‖2)β

K , σ > 0 and β ≥ 0 are fixed constants.
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The Cucker–Smale result

For x , v ∈ IE k , denote

Γ(x) =
1

2

∑
i 6=j

‖xi − xj‖2,

and

Λ(v) =
1

2

∑
i 6=j

‖vi − vj‖2.

Then, when β < 1/2, it is proven that there exists a constant
B0 such that Γ(x(t)) ≤ B0 for all t ∈ R+, while Λ(v(t))
converges towards zero as t →∞, and the vectors xi − xj

tend to a limit vector x̂ij , for all i , j ≤ k.
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Nonlinear friction models

A kinetic description of Cucker and Smale flocking model,
obtained recently by [S-Y Ha, E. Tadmor, 2008].

The kinetic model

(
∂f

∂t
+ v · ∇x f

)
(x , v , t) = ∇v · [f (x , v , t) (∇vW ∗ H ∗ f ) (x , v , t)]

The flux reads

(∇vW ∗ H ∗ f ) (x , v) =

∫
Rd

dy

∫
Rd

dw
v − w

(1 + |x − y |2)β
f (y ,w).
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Large-time behavior

The large-time behavior obtained by studying the (energy)
functional

F (f )(t) =
1

2

∫
dx dy dv dw

(v − w)2

(1 + |x − y |2)β
f (x , v , t)f (y ,w , t).

Provided β < 1/2, the energy functional decays to zero, while
the support in space and velocity remains bounded in time.

The resulting density is concentrating in the velocity variable.
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Boltzmann models

A Boltzmann type description of Cucker and Smale flocking
model, obtained recently by [M. Fornasier, G. T., 2008].

The collisional rule

v∗ = (1− γa(|x − y |))v + γa(|x − y |)w ,

w∗ = γa(|x − y |)v + (1− γa(|x − y |))w .

As in Cucker-Smale model

a(|x − y |) =
K

(1 + |x − y |2)β
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Boltzmann models II

The Boltzmann equation(
∂f

∂t
+ v · ∇x f

)
(x , v , t) = Q(f , f )(x , v , t),

The collision integral

Q(f , f )(x , v) =

∫
Rd×Rd

dy dw

(
1

J
f (x , v∗)f (y ,w∗)− f (x , v)f (y ,w)

)
.

(w∗,w∗) are the pre-collisional velocities that generate the couple
(v ,w) after the interaction. J = (1− 2γa)d is the Jacobian of
the transformation of (v ,w) into (v∗,w∗).
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Boltzmann models III

Povzner [A.Y. Povzner, 1962] proposed a modified Boltzmann
collision operator considering a smearing process for the pair
collisions.
This modified Povzner collision operator looks as follows

QP(f , f )(x , v) =

∫
Rd×Rd

dydw B (f (x , v∗)f (y ,w∗)− f (x , v)f (y ,w)) .

The kernel B = B(x − y , v − w), while

v∗ = v − (v − w) · n(x − y)n(x − y)

w∗ = w + (v − w) · n(x − y)n(x − y)
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Boltzmann models IV

The model of Fornasier and G.T. is of Povzner type, with the
addition of dissipation in a collision.

The degree of dissipation depends of the distance between
birds.

For a small degree of dissipation ( small γ) the collision
integral is close to the nonlinear friction operator considered
by Ha and Tadmor.

Difficult to obtain a hydrodynamic description.
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The analogies with dissipative gases

Deeper understanding of macroscopic equations from kinetic
theory. Precise description of the evolution of materials
composed of many small discrete grains.

Valid when the mean free path of the grains is much larger
than the typical particle size.

Starting point Boltzmann-like equations for partially inelastic
rigid spheres. Corrections to take into account statistical
correlation among particles.

Main problem to pass to macroscopic equations: No classical
Maxwellian equilibrium.

Alternative: look for a substitute: the homogeneous cooling
state, fundamental self-similar solution of the Boltzmann
equation.
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Closure problem

Two possible way of closure.

Weak inelasticity

Deviations of the coefficient of
restitution from unity of the
same order of magnitude as
the Knudsen number.
The equilibrium is still a local
Maxwellian.
Validity of Boltzmann
H-theorem to justify the
passage to hydrodynamics.
Valid for any variation in space

Cooling state closure

The zero order approximation
of the solution is constituted
by the so–called homogeneous
cooling state
Requires a detailed theory of
the homogeneous cooling
state. Difficult for a general
coefficient of restitution.
Correct only for small spatial
variations.
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Essential references

Macroscopic equations: P.K. Haff, “Grain flow as a
fluid-mechanical phenomenon,” (1983); A. Goldshtein, and M.
Shapiro, “Mechanics of collisional motion of granular
materials. Part 1. General hydrodynamic equations,” (1995).

Homogeneous cooling state: N.V. Brilliantov, and T. Pöschel,
“Self–diffusion in granular gases,” (2000); “Hydrodynamics of
Granular Gases of viscoelastic particles,” (2002).

Weak inelasticity: G. Toscani, “Kinetic and hydrodynamic
models of nearly elastic granular flows,” (2004); M. Bisi, G.
Spiga, G. Toscani “Grad’s equations and hydrodynamics for
weakly inelastic granular flows” (2005).
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Binary interactions

The birds entering into collision have positions and velocities
(x , v) and (y ,w). n = (x − y)/|x − y | is the unit vector along
the x − y direction.
The post collision velocities (v∗,w∗) satisfy

(v∗ − w∗) · n = −(1− 2γa(|x − y |)) (v − w) · n .

Assuming conservation of momentum, the change of velocity
for the colliding particles is

v∗ = v − (1−γa)[(v −w) ·n] n , w∗ = w +(1−γa)[(v −w) ·n] n.

Elastic collisions (Povzner equation) if γ = 0. In general, γ
increases with increasing interaction among birds.
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The birds collision

In the picture, birds are diminishing the relative velocity along
the x − y direction.

The dissipativity depends on the relative distance. Collisions
with small relative distance are more dissipative.

The choice of a(|x − y |) in accord with Cucker–Smale model

a(|x − y |) =
K

(1 + |x − y |2)β

This rule can be easily generalized changing the unit vector n.
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Details

Introduce a kinetic model of Boltzmann type

∂f

∂t
+ v · ∇x f = G (ρ)Q̄(f , f )(x , v , t),

Collision operator

Q̄(f , f )(x , v) = σ2

∫
R3

∫
R3

{χf (x , v∗)f (y ,w∗)− f (x , v)f (y ,w)} dy dw .

(v∗,w∗) pre collision velocities which results with (v ,w) as post
collision velocities. χ linked to the Jacobian of the transformation
dv∗dw∗ into dvdw .
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The Boltzmann equation I

In weak form

< ϕ , Q̄(f , f )(x , v) > = σ2

∫
R3

ϕ(v)Q̄(f , f )(x , v) dv =

σ2

∫
R3

∫
R3

∫
R3

(ϕ(v∗)− ϕ(v)) f (x , v)f (y ,w)dv dw dy

The post-collision velocity is

v∗ = v − (1− γa(|x − y |))((v − w) · n)n , n =
x − y

|x − y |
.
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The Boltzmann equation II

Elastic Povzner type collision with (v ,w) as incoming
velocities

v ′ = v − (q · n)n , w ′ = w + (q · n)n.

Connection with inelastic collision

v∗ = v ′ + γa(q · n)n , w∗ = w ′ − γa(q · n)n.

Obtain

v∗ − v ′ = γa (|x − y |) (q · n)n.
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The Boltzmann equation III

Taylor expansion of ϕ(v∗) around ϕ(v ′)

ϕ(v∗) = ϕ(v ′) + γ∇ϕ(v ′) · a (|x − y |) (q · n)n +

1

2
γ2

∑
i ,j

∂2ϕ(v ′)

∂v ′i ∂v ′j
a2 (|x − y |) (q · n)2ninj + . . .

Nearly elastic interactions, γ << 1

< ϕ , Q̄(f , f ) > = σ2

∫
R3

∫
R3

∫
R3

(
ϕ(v ′)− ϕ(v)

+γ∇ϕ(v ′) · a (|x − y |) (q · n)n
)
f (x , v)f (y ,w)dv dw dy =

< ϕ , QP(f , f ) > + γ< ϕ , I (f , f ) > .
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The Boltzmann equation IV

The Boltzmann operator sum of Povzner elastic

QP(f , f )(x , v) = σ2

∫
R3

∫
R3

{
f (x , v ′)f (y ,w ′)− f (x , v)f (y ,w)

}
dw dy .

and nonlinear friction operator

I (f , f )(x , v) = σ2divv

∫
R3

∫
R3

n(q · n)a (|x − y |) f (x , v ′)f (y ,w ′)dw dy .

Enskog–Boltzmann equation for flocking at the leading order

∂f

∂t
+ v · ∇x f = G (ρ)QP(f , f )(x , v , t) + G (ρ)βI (f , f )(x , v , t),
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Exact computations

Exact computations for a locally Maxwellian function

M(x , v , t) =
ρ(x , t)

(2πT (x , t))3/2
exp

(
−(v − u(x , t))2

2T (x , t)

)
.

The moment correction

< v , I (M,M)(x , v , t) > = A(ρ, u)(x , t) =

σ2

∫
R3

dy a(|x − y |)n n · (u(x , t)− u(y , t)) ρ(x , t)ρ(y , t).

The momentum is conserved only globally∫
R3

dx < v , I (M,M)(x , v , t) > = 0
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Exact computations II

The energy correction

<
1

2
v2 , I (M,M)(x , v , t) > = −B(ρ, u,T )(x , t) =

−σ2

∫
R3

dy a(|x − y |) {T (x , t) + T (y , t) + (u(x , t) · n

−u(y , t) · n)2
}
ρ(x , t)ρ(y , t).

The contribution of the energy is negative
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Euler equations

Small mean free path for the Povzner equation

G (ρ) =
1

ε
g(ρ)

ψ collision invariant, ψ = 1, v , 1
2v2

∫
R3

ψ(v)

(
∂f

∂t
+ v · ∇x f − g(ρ)

γ

ε
I (f , f )(x , v , t)

)
dv =

1

ε
g(ρ)

∫
R3

ψ(v)QP(f , f )(x , v , t) dv = 0, (1)

Closure by assuming f to be the locally Maxwellian function.
→ I (f , f ) = I (M,M)
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Euler equations for flocking

let ε→ 0, γ/ε = λ.
Euler equations (in divergence form) for density ρ(x , t), bulk
velocity u(x , t) and temperature T (x , t) for flocking

∂ρ

∂t
+ div(ρu) = 0

∂

∂t
(ρui ) + div(ρuui + ρTei ) = λ g(ρ)Ai (ρ, u)

∂

∂t

(
ρ(

2

3
T +

1

2
u2)

)
+ div

(
ρu(

1

2
u2 +

5

2
T )

)
= −λ g(ρ)B(ρ, u,T )

ei is the component of the unit vector e in the i-th direction.
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Steady states

Possible steady state if A(ρ, u) = 0 and B(ρ, u,T ) = 0.

A(ρ, u) = 0 if ρ(x , t) = 0 or u(x , t) = ū.

Given a (bounded) domain D ⊆ R3, we choose ρ(x , t) = 0
outside D, and ρ(x , t) = ρ̄, u(x , t) = ū inside D.

In addition T (x , t) = 0 inside D. This implies B(ρ, u,T ) = 0.

All birds contained in a bounded domain, flying with constant
speed and constant density inside is a steady state of Euler
equations for flocking.
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Conclusions

We discussed the modeling of flocking phenomena.

It has been shown that various kinetic models can be
constructed on the basis of the discrete model proposed by
Cucker and Smale, in which birds adapt their velocity to that
of the other birds.

The kinetic models by Ha and Tadmor and Fornasier and G.T.
are not suitable to construct a reasonable hydrodynamics.

Analogies with granular gases, and the use of Povzner
modification of Boltzmann equation allow a powerful
approach, based on the closure with respect to a locally
Maxwellian function.

Numerical experiments are in progress.
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References for Flocking

Discrete models: F. Cucker and S. Smale, “On the
mathematics of emergence” (2007); “Emergent behavior in
flocks” (2007).

Kinetic models: S-Y Ha and E. Tadmor , “From particle to
kinetic and hydrodynamic description of flocking” (2008);
M.Fornasier and G. Toscani, “Kinetic models of flocking”
(2008).

Hydrodynamics: M. Fornasier and G. Toscani, “Povzner
equation and hydrodynamic models of flocking” (2008)

Giuseppe Toscani Hydrodynamics of flocking


	Outlines
	The Flocking phenomenon 
	Introduction
	Discrete models of Flocking

	Kinetic models
	Ha-Tadmor model
	Povzner-type models

	Hydrodynamic models
	The Povzner--Boltzmann equation
	Dissipation through interactions
	Passage to Euler equations

	Conclusions



