Kinetic and Hydrodynamic Models of Flocking Phenomena

Giuseppe Toscani

Department of Mathematics University of Pavia, Italy

Paris, January 5-9 2009 Rheology of complex fluids: Modeling and Numerics

・ロッ ・ 一 ・ ・ ・ ・

Outlines

The Flocking phenomenon Kinetic models Hydrodynamic models Conclusions

Outline

- The Flocking phenomenon
 - Introduction
 - Discrete models of Flocking
- 2 Kinetic models
 - Ha-Tadmor model
 - Povzner-type models
- 3 Hydrodynamic models
 - The Povzner-Boltzmann equation
 - Dissipation through interactions
 - Passage to Euler equations

< 17 >

Image: Image:

Outlines

The Flocking phenomenon Kinetic models Hydrodynamic models Conclusions

Introduction Discrete models of Flocking

Birds flocking

Giuseppe Toscani

Hydrodynamics of flocking

Outlines

The Flocking phenomenon Kinetic models Hydrodynamic models Conclusions

Introduction Discrete models of Flocking

Flock of fish

Introduction Discrete models of Flocking

Continuum decription of flocking

- Discuss the modeling of hydrodynamic equations for *flocking phenomena*.
- Look for a macroscopic description by the equations for fluid dynamics, modified to account for birds type interactions.
- Problem close to the hydrodynamic description of a granular gas (dissipation substituted by adapting velocities).
- Only discrete and kinetic models present in the literature.

Introduction Discrete models of Flocking

The Cucker–Smale model

- The recent mathematical work of Cucker and Smale [F. Cucker, S. Smale, (2007)], connected with the emergent behaviors on flocks, obtained a noticeable resonance in the mathematical community.
- The goal was to prove, in agreement with observations, that under some initial conditions, for example on their positions and velocities, the state of the flock converges to one in which all birds fly with the same velocity.
- Main hypothesis which justifies the behavior of the population is that every bird adjusts its velocity by adding to it a weighted average of the differences of its velocity with those of the other birds.

Introduction Discrete models of Flocking

The Cucker–Smale model II

• Given a population of k birds, at time $t \in N$, and for *i*-th bird,

$$v_i(t+1) - v_i(t) = \sum_{i=1}^k a_{ij} (v_j(t) - v_i(t)).$$

• The weights *a_{ij}* quantify the way the birds influence each other.

$$\mathsf{a}_{ij} = \frac{\mathsf{K}}{\left(\sigma^2 + \|x_i - x_j\|^2\right)^\beta}$$

• K, $\sigma > 0$ and $\beta \ge 0$ are fixed constants.

イロト イポト イヨト イヨ

Introduction Discrete models of Flocking

The Cucker–Smale result

• For $x, v \in \mathbf{E}^k$, denote

$$\Gamma(x) = \frac{1}{2} \sum_{i \neq j} ||x_i - x_j||^2,$$

and

$$\Lambda(\mathbf{v}) = \frac{1}{2} \sum_{i \neq j} \|\mathbf{v}_i - \mathbf{v}_j\|^2.$$

• Then, when $\beta < 1/2$, it is proven that there exists a constant B_0 such that $\Gamma(x(t)) \leq B_0$ for all $t \in \mathbb{R}_+$, while $\Lambda(v(t))$ converges towards zero as $t \to \infty$, and the vectors $x_i - x_j$ tend to a limit vector \hat{x}_{ij} , for all $i, j \leq k$.

Ha-Tadmor model Povzner-type models

Nonlinear friction models

- A kinetic description of Cucker and Smale flocking model, obtained recently by [S-Y Ha, E. Tadmor, 2008].
- The kinetic model

$$\left(\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f\right)(x, v, t) = \nabla_{v} \cdot \left[f(x, v, t) \left(\nabla_{v} W * H * f\right)(x, v, t)\right]$$

The flux reads

$$(
abla_v W * H * f)(x,v) = \int_{\mathbb{R}^d} dy \int_{\mathbb{R}^d} dw \frac{v-w}{(1+|x-y|^2)^{eta}} f(y,w).$$

< □ > < 同 >

글 🖌 🖌 글 🕨

Ha-Tadmor model Povzner-type models

Large-time behavior

The large-time behavior obtained by studying the (energy) functional

$$F(f)(t) = \frac{1}{2} \int dx \, dy \, dv \, dw \frac{(v-w)^2}{(1+|x-y|^2)^{\beta}} f(x,v,t) f(y,w,t).$$

- Provided $\beta < 1/2$, the energy functional decays to zero, while the support in space and velocity remains bounded in time.
- The resulting density is concentrating in the velocity variable

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ha-Tadmor model Povzner-type models

Boltzmann models

- A Boltzmann type description of Cucker and Smale flocking model, obtained recently by [M. Fornasier, G. T., 2008].
- The collisional rule

$$v^* = (1 - \gamma a(|x - y|))v + \gamma a(|x - y|)w,$$

$$w^* = \gamma a(|x - y|)v + (1 - \gamma a(|x - y|))w.$$

• As in Cucker-Smale model

$$a(|x-y|) = \frac{K}{\left(1+|x-y|^2\right)^{\beta}}$$

< ロ > < 同 > < 三 > <

Ha-Tadmor model Povzner-type models

Boltzmann models II

• The Boltzmann equation

$$\left(rac{\partial f}{\partial t}+v\cdot
abla_x f
ight)(x,v,t)=Q(f,f)(x,v,t),$$

• The collision integral

$$Q(f,f)(x,v) = \int_{\mathbb{R}^d \times \mathbb{R}^d} dy \, dw \left(\frac{1}{J} f(x,v_*) f(y,w_*) - f(x,v) f(y,w) \right).$$

(w_{*}, w_{*}) are the pre-collisional velocities that generate the couple (v, w) after the interaction. J = (1 - 2γa)^d is the Jacobian of the transformation of (v, w) into (v^{*}, w^{*}).

(a)

Ha-Tadmor model Povzner-type models

Boltzmann models III

- Povzner [A.Y. Povzner, 1962] proposed a modified Boltzmann collision operator considering a smearing process for the pair collisions.
- This modified Povzner collision operator looks as follows

$$Q_P(f,f)(x,v) = \int_{\mathbb{R}^d \times \mathbb{R}^d} dy dw B \left(f(x,v_*)f(y,w_*) - f(x,v)f(y,w) \right).$$

• The kernel B = B(x - y, v - w), while

$$v^* = v - (v - w) \cdot n(x - y)n(x - y)$$

 $w^* = w + (v - w) \cdot n(x - y)n(x - y)$

Ha-Tadmor model Povzner-type models

Boltzmann models IV

- The model of Fornasier and G.T. is of Povzner type, with the addition of dissipation in a collision.
- The degree of dissipation depends of the distance between birds.
- For a small degree of dissipation (small γ) the collision integral is close to the nonlinear friction operator considered by Ha and Tadmor.
- Difficult to obtain a hydrodynamic description.

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The analogies with dissipative gases

- Deeper understanding of macroscopic equations from kinetic theory. Precise description of the evolution of materials composed of many small discrete grains.
- Valid when the mean free path of the grains is much larger than the typical particle size.
- Starting point Boltzmann-like equations for partially inelastic rigid spheres. Corrections to take into account statistical correlation among particles.
- Main problem to pass to macroscopic equations: No classical Maxwellian equilibrium.
- Alternative: look for a substitute: the homogeneous cooling state, fundamental self-similar solution of the Boltzmann equation.

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Closure problem

• Two possible way of closure.

Weak inelasticity

- Deviations of the coefficient of restitution from unity of the same order of magnitude as the Knudsen number.
- The equilibrium is still a local Maxwellian.
- Validity of Boltzmann *H*-theorem to justify the passage to hydrodynamics.
- Valid for any variation in space

Cooling state closure

- The zero order approximation of the solution is constituted by the so-called homogeneous cooling state
- Requires a detailed theory of the homogeneous cooling state. Difficult for a general coefficient of restitution.
- Correct only for small spatial variations.

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Essential references

- Macroscopic equations: P.K. Haff, "Grain flow as a fluid-mechanical phenomenon," (1983); A. Goldshtein, and M. Shapiro, "Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations," (1995).
- Homogeneous cooling state: N.V. Brilliantov, and T. Pöschel, "Self-diffusion in granular gases," (2000); "Hydrodynamics of Granular Gases of viscoelastic particles," (2002).
- Weak inelasticity: G. Toscani, "Kinetic and hydrodynamic models of nearly elastic granular flows," (2004); M. Bisi, G. Spiga, G. Toscani "Grad's equations and hydrodynamics for weakly inelastic granular flows" (2005).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Binary interactions

- The birds entering into collision have positions and velocities (x, v) and (y, w). n = (x y)/|x y| is the unit vector along the x y direction.
- The post collision velocities (v^*, w^*) satisfy

$$(v^* - w^*) \cdot n = -(1 - 2\gamma a(|x - y|))(v - w) \cdot n.$$

• Assuming conservation of momentum, the change of velocity for the colliding particles is

$$v^* = v - (1 - \gamma a)[(v - w) \cdot n] n$$
, $w^* = w + (1 - \gamma a)[(v - w) \cdot n] n$.

• Elastic collisions (Povzner equation) if $\gamma = 0$. In general, γ increases with *increasing* interaction among birds.

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The birds collision

- In the picture, birds are diminishing the relative velocity along the x y direction.
- The dissipativity depends on the relative distance. *Collisions with small relative distance are more dissipative.*
- The choice of a(|x y|) in accord with Cucker–Smale model

$$a(|x-y|) = \frac{K}{\left(1+|x-y|^2\right)^{\beta}}$$

• This rule can be easily generalized changing the unit vector

< ロ > < 同 > < 回 > < 回 >

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Details

• Introduce a kinetic model of Boltzmann type

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \mathbf{G}(\rho) \bar{Q}(f, f)(x, v, t),$$

Collision operator

$$\bar{Q}(f,f)(x,v) = \sigma^2 \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \left\{ \chi f(x,v_*) f(y,w_*) - f(x,v) f(y,w) \right\} \, dy \, dw.$$

 (v_{*}, w_{*}) pre collision velocities which results with (v, w) as post collision velocities. χ linked to the Jacobian of the transformation dv_{*}dw_{*} into dvdw.

< ロ > < 同 > < 回 > < 回 >

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The Boltzmann equation I

• In weak form

$$< arphi, \, ar{Q}(f,f)(x,v) > = \sigma^2 \int_{\mathbb{R}^3} \varphi(v) ar{Q}(f,f)(x,v) \, dv =$$

 $\sigma^2 \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} (\varphi(v^*) - \varphi(v)) \, f(x,v) f(y,w) \, dv \, dw \, dy$

• The post-collision velocity is

$$v^* = v - (1 - \gamma a(|x - y|))((v - w) \cdot n)n, \qquad n = \frac{x - y}{|x - y|}.$$

∃ ▶ ∢

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The Boltzmann equation II

• Elastic Povzner type collision with (v, w) as incoming velocities

$$v'=v-(q\cdot n)n$$
, $w'=w+(q\cdot n)n$.

• Connection with inelastic collision

$$\mathbf{v}^* = \mathbf{v}' + \gamma \mathbf{a}(q \cdot n)n, \quad \mathbf{w}^* = \mathbf{w}' - \gamma \mathbf{a}(q \cdot n)n.$$

Obtain

$$v^* - v' = \gamma a \left(|x - y| \right) (q \cdot n) n.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The Boltzmann equation III

• Taylor expansion of $\varphi(\mathbf{v}^*)$ around $\varphi(\mathbf{v}')$

$$\varphi(\mathbf{v}^*) = \varphi(\mathbf{v}') + \gamma \nabla \varphi(\mathbf{v}') \cdot \mathbf{a} (|\mathbf{x} - \mathbf{y}|) (\mathbf{q} \cdot \mathbf{n}) \mathbf{n} + \frac{1}{2} \gamma^2 \sum_{i,j} \frac{\partial^2 \varphi(\mathbf{v}')}{\partial \mathbf{v}'_i \partial \mathbf{v}'_j} \mathbf{a}^2 (|\mathbf{x} - \mathbf{y}|) (\mathbf{q} \cdot \mathbf{n})^2 n_i n_j + \dots$$

• Nearly elastic interactions, $\gamma << 1$

$$\begin{array}{l} <\varphi\,,\,\bar{Q}(f,f)>\,=\sigma^2\int_{\mathbb{R}^3}\int_{\mathbb{R}^3}\int_{\mathbb{R}^3}\left(\varphi(v')-\varphi(v)\right.\\ \left.+\gamma\nabla\varphi(v')\cdot a(|x-y|)\,(q\cdot n)n\right)f(x,v)f(y,w)dv\,dw\,dy=\\ <\varphi\,,\,Q_{\mathsf{P}}(f,f)>\,+\,\gamma<\varphi\,,\,I(f,f)>\,. \end{array}$$

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

The Boltzmann equation IV

• The Boltzmann operator sum of Povzner elastic

$$Q_{\mathsf{P}}(f,f)(x,v) = \sigma^2 \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \left\{ f(x,v')f(y,w') - f(x,v)f(y,w) \right\} dw \, dy.$$

• and nonlinear friction operator

$$I(f,f)(x,v) = \sigma^2 \operatorname{div}_v \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} n(q \cdot n) a\left(|x-y|\right) f(x,v') f(y,w') dw \, dy.$$

• Enskog-Boltzmann equation for flocking at the leading order

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = G(\rho) Q_{\mathsf{P}}(f, f)(\mathbf{x}, \mathbf{v}, t) + G(\rho) \beta I(f, f)(\mathbf{x}, \mathbf{v}, t),$$

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Exact computations

• Exact computations for a locally Maxwellian function

$$M(x, v, t) = \frac{\rho(x, t)}{(2\pi T(x, t))^{3/2}} \exp\left(-\frac{(v - u(x, t))^2}{2T(x, t)}\right).$$

• The moment correction

$$\langle v, I(M,M)(x,v,t) \rangle = A(\rho,u)(x,t) =$$

$$\sigma^2 \int_{\mathbb{R}^3} dy \, a(|x-y|) n \, n \cdot (u(x,t)-u(y,t)) \, \rho(x,t) \rho(y,t).$$

• The momentum is conserved only globally

$$\int_{\mathbb{R}^3} dx < v, I(M,M)(x,v,t) > = 0$$

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Exact computations II

The energy correction

$$<\frac{1}{2}v^{2}, I(M, M)(x, v, t) > = -B(\rho, u, T)(x, t) = -\sigma^{2} \int_{\mathbb{R}^{3}} dy \, a(|x - y|) \{T(x, t) + T(y, t) + (u(x, t) \cdot n - u(y, t) \cdot n)^{2} \} \rho(x, t)\rho(y, t).$$

• The contribution of the energy is negative

・ロッ ・ 一 ・ ・ ヨッ ・

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Euler equations

• Small mean free path for the Povzner equation

$$G(\rho) = \frac{1}{\epsilon}g(\rho)$$

• ψ collision invariant, $\psi = 1, v, \frac{1}{2}v^2$

$$\int_{\mathbb{R}^{3}} \psi(v) \left(\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f - g(\rho) \frac{\gamma}{\epsilon} I(f, f)(x, v, t) \right) dv = \frac{1}{\epsilon} g(\rho) \int_{\mathbb{R}^{3}} \psi(v) Q_{\mathsf{P}}(f, f)(x, v, t) dv = 0,$$
(1)

• Closure by assuming f to be the locally Maxwellian function $\rightarrow I(f, f) = I(M, M)$

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Euler equations for flocking

- let $\epsilon \to 0$, $\gamma/\epsilon = \lambda$.
- Euler equations (in divergence form) for density ρ(x, t), bulk velocity u(x, t) and temperature T(x, t) for flocking

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho u) &= 0\\ \frac{\partial}{\partial t}(\rho u_i) + \operatorname{div}(\rho u u_i + \rho T e_i) &= \lambda g(\rho) A_i(\rho, u)\\ \frac{\partial}{\partial t}\left(\rho(\frac{2}{3}T + \frac{1}{2}u^2)\right) + \operatorname{div}\left(\rho u(\frac{1}{2}u^2 + \frac{5}{2}T)\right) &= -\lambda g(\rho) B(\rho, u, T) \end{aligned}$$

• e_i is the component of the unit vector e in the *i*-th direction

< ロ > < 同 > < 回 > < 回 >

The Povzner–Boltzmann equation Dissipation through interactions Passage to Euler equations

Steady states

- Possible steady state if $A(\rho, u) = 0$ and $B(\rho, u, T) = 0$.
- $A(\rho, u) = 0$ if $\rho(x, t) = 0$ or $u(x, t) = \overline{u}$.
- Given a (bounded) domain $\mathcal{D} \subseteq \mathbb{R}^3$, we choose $\rho(x, t) = 0$ outside \mathcal{D} , and $\rho(x, t) = \overline{\rho}, u(x, t) = \overline{u}$ inside \mathcal{D} .
- In addition T(x, t) = 0 inside \mathcal{D} . This implies $B(\rho, u, T) = 0$.
- All birds contained in a bounded domain, flying with constant speed and constant density inside is a steady state of Euler equations for flocking.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- We discussed the modeling of flocking phenomena.
- It has been shown that various kinetic models can be constructed on the basis of the discrete model proposed by Cucker and Smale, in which birds adapt their velocity to that of the other birds.
- The kinetic models by Ha and Tadmor and Fornasier and G.T. are not suitable to construct a reasonable hydrodynamics.
- Analogies with granular gases, and the use of Povzner modification of Boltzmann equation allow a powerful approach, based on the closure with respect to a locally Maxwellian function.
- Numerical experiments are in progress.

(日)

References for Flocking

- Discrete models: F. Cucker and S. Smale, "On the mathematics of emergence" (2007); "Emergent behavior in flocks" (2007).
- Kinetic models: S-Y Ha and E. Tadmor, "From particle to kinetic and hydrodynamic description of flocking" (2008); M.Fornasier and G. Toscani, "Kinetic models of flocking" (2008).
- Hydrodynamics: M. Fornasier and G. Toscani, "Povzner equation and hydrodynamic models of flocking" (2008)

