Small time existence of the flow of a viscoelastic fluid with a free boundary

Hervé Le Meur

CNRS and Université Paris-Sud

January 6th 2009

Hervé Le Meur Small time existence of the flow of a viscoelastic fluid with a fi

(D) (A) (A) (A)

э

Outline

Introduction

- Eulerian equations
- Lagrangian equations
- Operators, spaces and sketch of the proof

Intermediate results

- Inverting reduced auxiliary operator (P_2)
- Lift the initial conditions (solve P₁)
- Solving the full second auxiliary operator (P₂)
- The error terms
- Main proof

Why it does work

- Lagrangian equations
- Constants do not depend on T_0

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Bibliography

- V.A. Solonnikov *Izvestija ANN SSSR* (77) existence without surface tension.
- J.T. Beale Comm. Pure and Appl. Math. (81) : Free boundary, no tension, Navier-Stokes in R³. 1) ∀ initial data ∃T₀. 2) ∀T, ∃ initial data sufficiently small.
- G. Allain *Appl. Math. Opt.* (87) : Navier-Stokes 2D with surface tension.
- C. Guillopé and J.-C. Saut *Nonlinear analysis* (90) : Viscoelastic fluids existence in a bounded domain.
- HLM C. R. Acad. Sci. Paris (95) : existence in 2D announced
- A. Tani Arch. Rational Mech. Anal. (96) : existence in small time with surface tension in \mathbb{R}^3 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction

Intermediate results Main proof Why it does work Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Geometry

◆□→ ◆□→ ◆三→ ◆三→ 三三

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Eulerian equations

$$\begin{array}{ll} \operatorname{Re}\left(\underline{v}_t + \underline{v}.\underline{\nabla}\,\underline{v}\right) - (1-\varepsilon)\Delta\underline{v} + \underline{\nabla}p - \operatorname{div}\,\underline{\tau} &= 0 & \text{in }\Omega(t) \\ \operatorname{div}\,v &= 0 & \text{in }\Omega(t) \end{array}$$

$$\underline{\underline{\tau}} + \mathsf{We} \frac{\mathcal{D}_{\mathfrak{a}}[\underline{v}]\underline{\underline{\tau}}}{\mathcal{D}t} - 2\varepsilon \underline{\underline{D}}[\underline{v}] \qquad \qquad = 0 \qquad \text{ in } \Omega(t),$$

$$\begin{array}{ll} -p\underline{n} + 2(\overline{1} - \varepsilon)\underline{D}[\underline{v}] \cdot \underline{n} + \underline{\tau} \cdot \underline{n} - \alpha H\underline{n} + g_0 x_2 \underline{n} &= 0 & \text{on } S_F(t), \\ \underline{v} &= 0 & \text{on } S_B, \\ \underline{v}(x, t = 0) &= \underline{u}_0(x) & \text{in } \Omega, \\ \underline{\tau}(x, t = 0) &= \underline{\sigma}_0(x) & \text{in } \Omega, \end{array}$$

where

$$\frac{\mathcal{D}_{a}[\underline{\tilde{v}}]\underline{\tilde{\tau}}}{\mathcal{D}\tilde{t}} = \frac{\partial \underline{\tilde{\tau}}}{\partial \tilde{t}} + \underline{\tilde{v}}.\overline{\nabla}\underline{\tilde{\tau}} - g_{a}(\underline{\nabla}\underline{\tilde{v}},\underline{\tilde{\tau}}) \\
g_{a}(\underline{\nabla}\underline{v},\underline{\tau}) = \frac{a-1}{2}\left(\underline{\nabla}\underline{v}^{T}\underline{\tau} + \underline{\tau}\underline{\nabla}\underline{v}\right) + \frac{a+1}{2}\left(\underline{\tau}\underline{\nabla}\underline{v}^{T} + \underline{\nabla}\underline{v}\underline{\tau}\right),$$

Small time existence of the flow of a viscoelastic fluid with a fr

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Some notations

$$egin{array}{rcl} \overline\eta(.,t):&\Omega& o&\Omega(t)\ &X&\mapsto&\overline\eta(X,t), \end{array}$$

and

$$\overline{\eta}(X,t) = X + \eta(X,t).$$

and

Lagrangian		Eulerian
<u>u</u> (X,t)	=	$\underline{v}(\overline{\eta}(X,t),t),$
q(X,t)	=	$p(\overline{\eta}(X,t),t),$
$\underline{\sigma}(X,t)$	=	$\underline{\tau}(\overline{\eta}(X,t),t),$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · の < ⊙

Introduction

Intermediate results Main proof Why it does work Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Some notations 2

$$(\mathrm{d}\overline{\eta})_{ij} = \frac{\partial\overline{\eta}_i}{\partial X_j}(X,t) = \overline{\eta}_{i,j}(X,t),$$

$$(\underline{\overline{\xi}}) = (\underline{\mathrm{d}\overline{\eta}})^{-1}(X,t);$$

$$\underline{N}(X) = (-h'(X_1),1)/\sqrt{1+h'^2},$$

$$\underline{N}(X,t) = (N_1 - \partial_{\underline{\tau}}\eta_2, N_2 + \partial_{\underline{\tau}}\eta_1)$$

where $\partial_{\underline{\tau}} = (1 + h'^2)^{-1/2} \partial_{X_1}$.

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

$$\begin{split} & \operatorname{Re} u_{i,t} - (1-\varepsilon)\overline{\xi}_{kj}\partial_k(\overline{\xi}_{lj}u_{i,l}) + \overline{\xi}_{ki}\partial_k q - \sigma_{ij,k}\overline{\xi}_{kj} &= 0, \\ & \overline{\xi}_{kj}u_{j,k} &= 0, \\ & \sigma_{ij} + \operatorname{We} \left(\frac{\partial\sigma_{ij}}{\partial t} - \frac{a-1}{2}(\overline{\xi}_{li}u_{k,l}\sigma_{kj} + \sigma_{ik}u_{k,l}\overline{\xi}_{lj}) \\ & -\frac{a+1}{2}(\sigma_{ik}\overline{\xi}_{lk}u_{j,l} + u_{i,l}\overline{\xi}_{lk}\sigma_{kj})\right) - \varepsilon(u_{i,k}\overline{\xi}_{kj} + u_{j,k}\overline{\xi}_{ki}) &= 0, \\ & -q\underline{\mathcal{N}}_i + (1-\varepsilon)(\overline{\xi}_{kj}u_{i,k} + \overline{\xi}_{ki}u_{j,k})\underline{\mathcal{N}}_j + \sigma_{ij}\underline{\mathcal{N}}_j + \\ & g_0(h(X_1) + \eta_2(X_1, t))\underline{\mathcal{N}}_i - \\ & \alpha\partial_{\underline{\mathcal{I}}} \left((1 + (\Phi + h')^2)^{\frac{-1}{2}} \begin{pmatrix} 1 \\ \Phi + h' \end{pmatrix} \right) &= 0, \\ & \Phi_t - \frac{(\partial_{\underline{\mathcal{I}}}\underline{u}) \cdot \underline{\mathcal{N}}}{\underline{\mathcal{N}}_2^2} &= 0, \end{split}$$

with the conditions

$$\Phi(t=0)=0; \underline{u}(X,t=0)=\underline{u}_0(X), \underline{\sigma}(X,t=0)=\underline{\sigma}_0(X), \underline{u}=0 \text{ on } S_B.$$

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Operators

$$\overline{\eta}(X,t) = X + \eta(X,t) \simeq X$$
 so

$$\left(\underline{(\mathrm{d}\overline{\eta})}^{-1}=\right)\underline{\overline{\xi}}=\underline{Id}+\underline{\xi}\simeq\underline{Id},$$

From

$$P(\xi, \underline{u}, q, \phi, \underline{\sigma}) = (0, 0, 0, 0, 0, \underline{u}_0, \underline{\sigma}_0),$$

for \underline{u} vanishing on S_B and $\Phi(t=0)=0$.

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Operators

$$\overline{\eta}(X,t) = X + \eta(X,t) \simeq X$$
 so

$$\left(\underline{(\mathrm{d}\overline{\eta})}^{-1}=\right)\underline{\overline{\xi}}=\underline{Id}+\underline{\xi}\simeq\underline{Id},$$

From

$$P(\xi,\underline{u},q,\phi,\underline{\sigma}) = (0,0,0,0,0,\underline{u}_0,\underline{\sigma}_0),$$

for \underline{u} vanishing on S_B and $\Phi(t=0)=0$.

$$P(\underline{\xi}, \underline{u}, q, \phi, \underline{\sigma}) = P(0, 0, 0, 0, 0) + P_1(\underline{u}, q, \phi, \underline{\sigma}) + E(\underline{\xi}, \underline{u}, q, \phi, \underline{\sigma}) \\ = (0, 0, 0, 0, 0, \underline{u}_0, \underline{\sigma}_0),$$

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Operators

$$\overline{\eta}(X,t) = X + \eta(X,t) \simeq X$$
 so

$$\left(\underline{(\mathrm{d}\overline{\eta})}^{-1}=\right)\underline{\overline{\xi}}=\underline{Id}+\underline{\xi}\simeq\underline{Id},$$

From

$$P(\xi,\underline{u},q,\phi,\underline{\sigma}) = (0,0,0,0,0,\underline{u}_0,\underline{\sigma}_0),$$

for <u>u</u> vanishing on S_B and $\Phi(t = 0) = 0$.

$$P(\underline{\xi}, \underline{u}, q, \phi, \underline{\sigma}) = P(0, 0, 0, 0, 0) + P_1(\underline{u}, q, \phi, \underline{\sigma}) + E(\underline{\xi}, \underline{u}, q, \phi, \underline{\sigma}) \\ = (0, 0, 0, 0, 0, \underline{u}_0, \underline{\sigma}_0),$$

We define

 $P_2[\underline{u}^0, \underline{\sigma}^0](\underline{u}, q, \phi, \underline{\sigma}) := P_1(\underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}) - P_1(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Spaces

$$\begin{split} & \mathcal{K}^{r}(\Omega \times (0,T)) = L^{2}(0,T;H^{r}(\Omega)) \bigcap H^{r/2}(0,T;L^{2}(\Omega)), \\ & \mathcal{K}^{r}(S_{F} \times (0,T)) = L^{2}(0,T;H^{r}(S_{F})) \bigcap H^{r/2}(0,T;L^{2}(S_{F})), \\ & \mathcal{X}^{r}_{T}(\Omega \times (0,T)) = \left\{ (\underline{u},q,\phi,\underline{\sigma}) / \\ & \underline{u} \in \mathcal{K}^{r+2} \text{ and } \underline{u} = 0 \text{ on } S_{B} \times (0,T); \\ & \nabla q \in \mathcal{K}^{r} \text{ and } q|_{S_{F}} \in H^{\frac{r}{2}+\frac{1}{4}}(0,T;L^{2}(S_{F})) \\ & \partial_{\underline{\tau}}\phi \in L^{2}(0,T;H^{r+\frac{1}{2}}(S_{F})) \\ & \phi_{t} \in \mathcal{K}^{r+\frac{1}{2}}(S_{F} \times (0,T)) \\ & \phi(0) = 0; \\ & \underline{\sigma} \in \mathcal{K}^{r+1}(\Omega \times (0,T)) \ \}. \end{split}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · の < ⊙

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Spaces 2

The image space Y_T^r is $\begin{aligned}
Y_T^r(\Omega \times (0, T)) &= & \{(\underline{f}, a, \underline{m}, g, k, \underline{u}_0, \underline{\sigma}_0) / \\
& \underline{f} \in K^r(\Omega \times (0, T)), \\
& a \in L^2(0, T; H^{r+1}(\Omega)) \cap H^{\frac{r}{2}+1}(0, T, {}_0H^{-1}(\Omega)), \\
& \underline{m} \in K^{r+1}(\Omega \times (0, T)), \\
& \underline{g}, k \in K^{r+\frac{1}{2}}(S_F \times (0, T)), \\
& \underline{u}_0, \underline{\sigma}_0 \in H^{r+1}(\Omega)\},
\end{aligned}$

where $_0H^{-1}(\Omega)$ is the dual space of $^0H^1 = \{p \in H^1/p \equiv 0 \text{ on } S_F\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Eulerian equations Lagrangian equations Operators, spaces and sketch of the proof

Main result

Theorem

Let 0 < r < 1/2, the height functions h and $(h_0 - \lim_{\pm \infty} h_0)$ be in $H^{r+5/2}(\mathbb{R}), (\underline{u}_0, \underline{\sigma}_0)$ be in $H^{r+1} \times H^{r+1}_{sym}$ and the compatibility conditions div $\underline{u}_0 = 0$ in Ω , $\underline{u}_0 = 0$ on S_B be satisfied. Then there exists $T_0 > 0$ depending on the data; $r, \Omega, \underline{u}_0, \underline{\sigma}_0, h, h_0, We, \varepsilon, a$ and there exists $(\underline{u}, q, \phi, \underline{\sigma}) \in X^r_{T_0}$ solution of the Lagrangian system. Under the same hypothesis, the Eulerian system admits a solution with $\overline{\eta} \in H^1(0, T; H^{2+r}(\Omega)) \cap H^{2+\frac{r}{2}}(0, T; L^2(\Omega))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

First step

We define

$$P_2[\underline{u}^0,\underline{\underline{\sigma}}^0](\underline{u},q,\phi,\underline{\underline{\sigma}}) := P_1(\underline{u}^0 + \underline{u},q^0 + q,\phi^0 + \phi,\underline{\underline{\sigma}}^0 + \underline{\underline{\sigma}}) - P_1(\underline{u}^0,q^0,\phi^0,\underline{\underline{\sigma}}^0)$$

and we want to solve

$$P_2[\underline{u}^0,\underline{\underline{\sigma}}^0](\underline{u},q,\phi,\underline{\underline{\sigma}}) = (\underline{f},0,\underline{\underline{m}},0,0,0,0).$$

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

The system P_2

$$\begin{array}{ll} \operatorname{Re} \frac{\partial \underline{u}}{\partial t} - (1 - \varepsilon) \Delta \underline{u} + \underline{\nabla} q - \operatorname{div} \underline{\underline{\sigma}} &= \underline{f}, \\ \operatorname{div} \underline{\underline{u}} &= 0, \\ \\ \underline{\underline{\sigma}} + \operatorname{We} \left(\frac{\partial \underline{\underline{\sigma}}}{\partial t} - \underline{\underline{g}} (\underline{\nabla} \underline{u}, \underline{\underline{\sigma}}) - \underline{\underline{g}} (\underline{\nabla} \underline{u}_1, \underline{\underline{\sigma}}) - \underline{\underline{g}} (\underline{\nabla} \underline{u}, \underline{\underline{\tau}}_1) \right) - 2\varepsilon \underline{\underline{D}} [\underline{u}] &= \underline{\underline{m}}, \\ - \underline{q} \underline{\underline{N}} + 2(1 - \varepsilon) \underline{\underline{D}} [\underline{u}] \cdot \underline{\underline{N}} - \alpha \partial_{\underline{\tau}} (\underline{\phi} \underline{\underline{N}}) + \underline{\underline{\sigma}} \cdot \underline{\underline{N}} &= 0, \\ \\ \phi_t - \partial_{\underline{\tau}} \underline{\underline{u}} \cdot \underline{\underline{N}} &= 0, \\ \underline{\underline{u}} (t = 0) &= 0, \\ \underline{\underline{\sigma}} (t = 0) &= 0, \end{array}$$

(日) (圖) (트) (트) (트)

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

The sequence $(\underline{\sigma})$

$$\begin{cases} \underline{\underline{\sigma}}^{n+1} + \operatorname{We}\left(\frac{\partial \underline{\underline{\sigma}}^{n+1}}{\partial t} - \underline{\underline{g}}_{a}(\underline{\nabla \underline{u}}^{n}, \underline{\underline{\sigma}}^{n+1}) - \underline{\underline{g}}_{a}(\underline{\nabla \underline{u}}_{1}, \underline{\underline{\sigma}}^{n+1}) - \\ \underline{\underline{g}}_{a}(\underline{\nabla \underline{u}}^{n}, \underline{\underline{\tau}}_{1}) \end{pmatrix} = 2\varepsilon \underline{\underline{D}}[\underline{\underline{u}}^{n}] + \underline{\underline{m}} \\ \underline{\underline{\sigma}}^{n+1}(0) = 0. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

The sequence (\underline{u}, q, ϕ)

and then

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

Uniform (in *n*) estimates

Proof by induction of the existence of $\mathcal{T}_0 > 0, 0 < V < 1, S > 0$ such that $\forall n$

$$\left\{ \begin{array}{l} | \underline{\sigma}^{n} |_{H^{1+r}}(t) \leq S, \\ | \underline{u}^{n}, q^{n}, \phi^{n}, 0 |_{X_{T}^{r}} \leq V, \\ | \underline{\nabla}\underline{u}^{n} |_{L^{2}(0, T_{0}; H^{1+r})} \leq V, \\ | \underline{\nabla}\underline{u}^{n} |_{L^{2}(0, T_{0}; H^{1+r})} \leq 1, \\ C \sqrt{T_{0}}(V + | \underline{\nabla}\underline{u}^{n} |_{L^{2}(0, T_{0}; H^{1+r})}) < 1, \\ C(V + | \underline{m} |_{L^{2}(0, T_{0}; H^{1+r})}) < S, \\ C | \underline{f} |_{H^{r, \frac{r}{2}}(0, T_{0})} < V/5 \\ CT^{\epsilon'}(V + | \underline{m} |_{L^{2}(0, T_{0}; H^{1+r})}) < V/5, \\ CT^{\epsilon'}(V + | \underline{m} |_{L^{2}(0, T_{0}; H^{1})}) < V/5, \\ CT^{\epsilon'}(V + | \underline{m} |_{L^{2}(0, T_{0}; H^{1})}) < V/5. \end{array} \right.$$

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

One uniform estimate

Scalar product of the definition of $\underline{\underline{\sigma}}^{n+1}$ with $\underline{\underline{\sigma}}^{n+1}$ in H^{1+r} :

$$\begin{aligned} |\underline{\underline{\sigma}}^{n+1}|_{1+r}^2 + & \underline{\mathsf{We}} \frac{\mathrm{d} |\underline{\underline{\sigma}}^{n+1}|_{1+r}^2}{\mathrm{d} t} \leq C \left[2\varepsilon |\underline{\underline{\nabla}}\underline{\underline{u}}^n|_{1+r} + |\underline{\underline{m}}|_{1+r} + \\ & C\mathsf{We}(|\underline{\nabla}\underline{\underline{u}}^n|_{1+r}|\underline{\underline{\sigma}}^{n+1}|_{1+r} + |\underline{\nabla}\underline{\underline{u}}_1|_{1+r}|\underline{\underline{\sigma}}^{n+1}|_{1+r} + \\ & + |\underline{\underline{\nabla}}\underline{\underline{u}}^n|_{1+r}|\underline{\underline{\tau}}_1|_{1+r}) \right] |\underline{\underline{\sigma}}^{n+1}|_{1+r} .\end{aligned}$$

 Introduction
 Inverting reduced auxiliary operator (P_2)

 Intermediate results
 Lift the initial conditions (solve P_1)

 Main proof
 Solving the full second auxiliary operator (P_2)

 Why it does work
 The error terms

. 1 . 2

$$(1 - C \operatorname{We}(|\underline{\nabla u}^{n}|_{1+r} + |\underline{\nabla u}_{1}|_{1+r})) |\underline{\sigma}^{n+1}|_{1+r}^{2} + \frac{\operatorname{We}}{2} \frac{\mathrm{d} |\underline{\sigma}^{n+1}|_{1+r}^{2}}{\mathrm{d} t} \leq C \left[(2\varepsilon + C \operatorname{We} |\underline{\tau}_{1}|_{1+r}) |\underline{\nabla u}^{n}|_{1+r} + |\underline{\underline{m}}|_{1+r} \right] |\underline{\sigma}^{n+1}|_{1+r}.$$

and so

$$\frac{\mathrm{d}\left(e^{2}\int_{0}^{t}\frac{\left(1/2-C\mathsf{We}(|\underline{\nabla \underline{u}}^{n}|_{1+r}+|\underline{\nabla \underline{u}}_{1}|_{1+r})\right)}{\mathsf{We}}ds\right||\underline{\sigma}^{n+1}|_{1+r}^{2}(t)}{\leq C(\varepsilon,\underline{\tau}_{1},\mathsf{We})\left(|\underline{\nabla \underline{u}}^{n}|_{1+r}^{2}+|\underline{\underline{m}}|_{1+r}^{2}\right)\times}$$

$$\times e^{2} \int_{0}^{t} \frac{(1/2 - C \operatorname{We}(|\underline{\nabla u}^{n}|_{1+r} + |\underline{\nabla u}_{1}|_{1+r}))}{\operatorname{We}} ds,$$

Hervé Le Meur Small time existence of the flow of a viscoelastic fluid with a fi

 Introduction
 Inverting reduced auxiliary operator (P_2)

 Intermediate results
 Lift the initial conditions (solve P_1)

 Main proof
 Solving the full second auxiliary operator (P_2)

 Why it does work
 The error terms

$$|\underline{\sigma}^{n+1}|_{1+r}^{2}(t) \leq \int_{0}^{t} e^{-2} \int_{s}^{t} \frac{(1/2 - C \operatorname{We}(|\underline{\nabla u}^{n}|_{1+r} + |\underline{\nabla u}_{1}|_{1+r}))}{\operatorname{We}} dt' \times (C |\underline{\nabla u}^{n}|_{1+r}^{2} + |\underline{m}|_{1+r}^{2}) ds.$$

Thanks to the induction property;

$$ert \underline{\sigma}^{n+1} ert_{1+r}(t) \quad \leq C\left(ert
abla \underline{u}^n ert_{L^2(0,T;H^{1+r})} + ert \underline{\underline{m}} ert_{L^2(0,T;H^{1+r})}
ight) \\ \leq C\left(V + ert \underline{\underline{m}} ert_{L^2(0,T;H^{1+r})}
ight),$$

Same computations for the contractance. $(\underline{u}^n, q^n, \phi^n, \underline{\sigma}^n)$ is of Cauchy type in X_T^r and P_2 is solved with simple rhs.

 Introduction
 Inverting reduced auxiliary operator (P2)

 Intermediate results
 Lift the initial conditions (solve P1)

 Main proof
 Solving the full second auxiliary operator (P2)

 Why it does work
 The error terms

Let $\underline{\tau}_1$ such that

$$\begin{cases} \underline{\underline{\tau}}_1 + \operatorname{We} \frac{\partial \underline{\underline{\tau}}_1}{\partial t} = 0\\ \underline{\underline{\tau}}_1(0, X) = \underline{\underline{\sigma}}_0(X) \quad \forall X. \end{cases}$$

and \underline{u}_1, p, Ψ such that

$$\begin{cases} -p\underline{N} + 2(1-\varepsilon)\underline{D}[\underline{u}_{1}] \cdot \underline{N} - \alpha \partial(\underline{\Psi}\underline{N}) &= -\underline{\tau}_{1} \cdot \underline{N} + g \text{ on } S_{F} \times (0, T) \\ \Psi_{t} - \partial_{\underline{\tau}}\underline{u}_{1} \cdot \underline{N} &= k \text{ on } S_{F} \times (0, T) \\ \underline{u}_{1} &= 0 \text{ on } S_{B} \times (0, T) \\ \underline{u}_{1}(t=0) &= \underline{u}_{0}(X) \text{ in } \Omega \\ \operatorname{div}\underline{u}_{1} &= a \text{ in } \Omega. \end{cases}$$

Then $(\underline{u}_1 + \underline{u}, p + q, \Psi + \phi, \underline{\tau}_1 + \underline{\sigma}) \in X_T^r$ and solves P_1 (full).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三 ● の Q ()

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

An other lifting

Lift the initial conditions and change of fields enables to solve :

$$P_2[\underline{u}_1,\underline{\sigma}_1](\underline{u},q,\phi,\underline{\sigma}) = (\underline{f},a,\underline{\underline{m}},g,k,0,0)$$

Notice : initial vanishing conditions.

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

The error is small and contracting

Theorem

Let 0 < r < 1/2, $(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0) \in X_{T_0}^r$ and $(\underline{u}, q, \phi, \underline{\sigma}) \in B_{X_T^{r*}}(0, R)$. There exists $\epsilon' > 0$ and $0 < T'_0 \leq T_0$ depending on $(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$ and R, such that if $0 < T < T'_0$, then $E(\underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma})$ is in the space $Y_T^r(\Omega)$ and the following estimates hold :

$$| \underbrace{E^{i}(\underline{u}^{0} + \underline{u}, q^{0} + q, \phi^{0} + \phi, \underline{\sigma}^{0} + \underline{\sigma})}_{|(Y_{T}^{\epsilon})_{i}} \leq CT^{\epsilon'} i \neq 2$$

$$| \underbrace{E^{2}(\underline{u}^{0} + \underline{u}, q^{0} + q, \phi^{0} + \phi, \underline{\sigma}^{0} + \underline{\sigma})}_{E^{2}(\underline{u}^{0}, q^{0}, \phi^{0}, \underline{\sigma}^{0})} |_{(Y_{T}^{\epsilon})_{2}} \leq CT^{\epsilon'}.$$

See next slide.

イロン イヨン イヨン ・

Inverting reduced auxiliary operator (P_2) Lift the initial conditions (solve P_1) Solving the full second auxiliary operator (P_2) The error terms

The error is small and contracting

Theorem

Same assumptions as before. In addition, let $(\underline{u}', q', \phi', \underline{\sigma}') \in X_T^*$ also. The operator E is contracting :

$$\begin{array}{l} | \ E(\underline{u}^{0} + \underline{u}, q^{0} + q, \phi^{0} + \phi, \underline{\sigma}^{0} + \underline{\sigma}) - \\ E(\underline{u}^{0} + \underline{u}', q^{0} + q', \phi^{0} + \phi', \underline{\sigma}^{0} + \underline{\sigma}') |_{Y_{T}^{r}} \leq \\ CT^{\epsilon'} | \ \underline{u} - \underline{u}', q - q', \phi - \phi', \underline{\sigma} - \underline{\sigma}' |_{X_{T}^{r}} \end{array}$$

with constants C that depend on ε , a, We, r, R, $(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$, but not on T provided $T \leq T'_0$.

(日)

Let us remind :

$$P(\xi, \underline{u}, q, \phi, \underline{\sigma}) = P(0, 0, 0, 0, 0) + P_1(\underline{u}, q, \phi, \underline{\sigma}) + E(\xi, \underline{u}, q, \phi, \underline{\sigma})$$

= $(0, 0, 0, 0, 0, 0, \underline{u}_0, \underline{\sigma}_0)$

Let $(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$ be such that :

$$P_1(\underline{u}^0, q^0, \phi^0, \underline{\underline{\sigma}}^0) = (0, 0, 0, 0, 0, \underline{u}_0, \underline{\underline{\sigma}}_0) - P(0, 0, 0, 0, 0),$$

Let $(\underline{u}, q, \phi, \underline{\sigma}) := (\underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}).$

◆□> ◆□> ◆目> ◆目> ◆日 ● のへで

The final proof

We look for $(\underline{u}, q, \phi, \underline{\sigma}) \in X_T^r$ with $\underline{u}(t = 0) = 0, \underline{\sigma}(t = 0) = 0$ such that :

$$P_{1}(\underline{u}^{0} + \underline{u}, q^{0} + q, \phi^{0} + \phi, \underline{\sigma}^{0} + \underline{\sigma}) + E(\xi(\underline{u}^{0} + \underline{u}), \underline{u}^{0} + \underline{u}, q^{0} + q, \phi^{\overline{0}} + \phi, \underline{\sigma}^{0} + \underline{\sigma}) = P_{1}(\underline{u}^{0}, q^{0}, \phi^{0}, \underline{\sigma}^{0})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The final proof

We look for $(\underline{u}, q, \phi, \underline{\sigma}) \in X_T^r$ with $\underline{u}(t = 0) = 0, \underline{\sigma}(t = 0) = 0$ such that :

$$P_1(\underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}) + E(\xi(\underline{u}^0 + \underline{u}), \underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}) = P_1(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$$

which is equivalent to

$$P_2[\underline{u}^0,\underline{\underline{\sigma}}^0](\underline{u},q,\phi,\underline{\underline{\sigma}}) = -E(\xi(\underline{u}^0+\underline{u}),\underline{u}^0+\underline{u},q^0+q,\phi^0+\phi,\underline{\underline{\sigma}}^0+\underline{\underline{\sigma}}).$$

◆□ → ◆□ → ◆三 → ◆□ → ● ● ● ●

The final proof

We look for $(\underline{u}, q, \phi, \underline{\sigma}) \in X_T^r$ with $\underline{u}(t = 0) = 0, \underline{\sigma}(t = 0) = 0$ such that :

$$P_1(\underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}) + E(\xi(\underline{u}^0 + \underline{u}), \underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}) = P_1(\underline{u}^0, q^0, \phi^0, \underline{\sigma}^0)$$

which is equivalent to

$$P_2[\underline{u}^0,\underline{\underline{\sigma}}^0](\underline{u},q,\phi,\underline{\underline{\sigma}}) = -E(\xi(\underline{u}^0+\underline{u}),\underline{u}^0+\underline{u},q^0+q,\phi^0+\phi,\underline{\underline{\sigma}}^0+\underline{\underline{\sigma}}).$$

or

$$\underbrace{(\underline{u}, q, \phi, \underline{\sigma})}_{= F_2^{-1}[\underline{u}^0, \underline{\sigma}^0](-E(\xi(\underline{u}^0 + \underline{u}), \underline{u}^0 + \underline{u}, q^0 + q, \phi^0 + \phi, \underline{\sigma}^0 + \underline{\sigma}^0) = F(\underline{u}, q, \phi, \underline{\sigma}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you for your attention

◆□ > ◆□ > ◆三 > ◆三 > ● □ ● ● ●

Lagrangian equations Constants do not depend on T_0

The equations

The constitutive equation :

$$\underline{\underline{\sigma}} + \mathsf{We}\left(\frac{\partial \underline{\underline{\sigma}}}{\partial t} - \underline{\underline{g}}_{a}(\underline{\nabla u}, \underline{\underline{\sigma}})\right) - 2\varepsilon \underline{\underline{D}}[\underline{u}] = \underline{\underline{m}}$$

No loss of regularity.

・ロン ・四 と ・ ヨ と ・ 日 と

臣

Lagrangian equations Constants do not depend on T_0

A crucial lemma

In an algebra, product is continuous.

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ● ◆

Lagrangian equations Constants do not depend on T_0

A crucial lemma

In an algebra, product is continuous.

$$|1|_{H^{rac{1+r}{2}}(0,T)} \leq C(\mathcal{A}) |1|_{H^{rac{1+r}{2}}(0,T)} |1|_{H^{rac{1+r}{2}}(0,T)}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Lagrangian equations Constants do not depend on T_0

A crucial lemma

In an algebra, product is continuous.

$$|1|_{H^{rac{1+r}{2}}(0,T)} \leq C(\mathcal{A}) |1|_{H^{rac{1+r}{2}}(0,T)} |1|_{H^{rac{1+r}{2}}(0,T)}$$

Then

$$1 \leq C(\mathcal{A}) | 1 |_{H^{\frac{1+r}{2}}(0,T)}.$$

Hervé Le Meur Small time existence of the flow of a viscoelastic fluid with a fi

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Lagrangian equations Constants do not depend on T_0

A crucial lemma

In an algebra, product is continuous.

$$|1|_{H^{\frac{1+r}{2}}(0,T)} \leq C(\mathcal{A}) |1|_{H^{\frac{1+r}{2}}(0,T)} |1|_{H^{\frac{1+r}{2}}(0,T)}$$

Then

$$1 \leq C(\mathcal{A}) \mid 1 \mid_{H^{rac{1+r}{2}}(0,T)}.$$

So $C(\mathcal{A}) = C(T)$ and even tends to $+\infty$ when T tends to 0.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三 ● の Q ()

Lagrangian equations Constants do not depend on T_0

A crucial lemma

In an algebra, product is continuous.

$$|1|_{H^{\frac{1+r}{2}}(0,T)} \leq C(\mathcal{A}) |1|_{H^{\frac{1+r}{2}}(0,T)} |1|_{H^{\frac{1+r}{2}}(0,T)}$$

Then

$$1 \leq C(\mathcal{A}) \mid 1 \mid_{H^{rac{1+r}{2}}(0,T)}.$$

So $C(\mathcal{A}) = C(T)$ and even tends to $+\infty$ when T tends to 0.

Lemma

Let X a Hilbert space, $0 \le s \le 2$, such that $s - \frac{1}{2}$ is not integer. There exists a bounded extension operator from $\left\{ \underline{u} \in H^{s}(0, T; X), \partial_{t}^{k} \underline{u}(0) = 0, \ 0 \le k < s - \frac{1}{2} \right\}$ in $H^{s}(\mathbb{R}^{+}; X)$. The boundedness constant C does not depend on $T \le T_{0}$.

Lagrangian equations Constants do not depend on T_0

Thank you for your attention.

◆□ > ◆□ > ◆三 > ◆三 > ● □ ● ● ●