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Eulerian equations

Re (v t + v .∇ v) − (1 − ε)∆v + ∇p − div τ = 0 in Ω(t)

div v = 0 in Ω(t)

τ + We
Da[v ]τ

Dt
− 2εD[v ] = 0 in Ω(t),

−pn + 2(1 − ε)D[v ] · n + τ · n − αHn + g0x2 n = 0 on SF (t),

v = 0 on SB ,
v(x , t = 0) = u0(x) in Ω,
τ(x , t = 0) = σ

0
(x) in Ω,

where

Da[ṽ ]τ̃

Dt̃
=

∂τ̃

∂t̃
+ ṽ .∇̃τ̃ − ga(∇̃v , τ̃ )

ga(∇v , τ) = a−1
2

(

∇vT τ + τ ∇v
)

+ a+1
2

(

τ ∇vT + ∇v τ
)

,

Hervé Le Meur Small time existence of the flow of a viscoelastic fluid with a free



Introduction
Intermediate results

Main proof
Why it does work

Eulerian equations
Lagrangian equations
Operators, spaces and sketch of the proof

Some notations

η(., t) : Ω → Ω(t)
X 7→ η(X , t),

and
η(X , t) = X + η(X , t).

and
Lagrangian Eulerian

u(X , t) = v(η(X , t), t),
q(X , t) = p(η(X , t), t),
σ(X , t) = τ(η(X , t), t),
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Some notations 2

(dη)ij =
∂ηi

∂Xj
(X , t) = ηi ,j(X , t),

(ξ) = (dη)−1(X , t);

N(X ) = (−h′(X1), 1)/
√

1 + h′2,
N (X , t) = (N1 − ∂τη2,N2 + ∂τη1),

where ∂τ = (1 + h′2)−1/2∂X1
.
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Re ui ,t − (1 − ε)ξkj∂k(ξljui ,l) + ξki∂kq − σij ,kξkj = 0,

ξkjuj ,k = 0,

σij + We

(

∂σij

∂t
− a − 1

2
(ξliuk,lσkj + σikuk,lξlj)

−a + 1
2 (σikξlkuj ,l + ui ,lξlkσkj)

)

− ε(ui ,kξkj + uj ,kξki ) = 0,

−qN i + (1 − ε)(ξkjui ,k + ξkiuj ,k)N j + σijN j+

g0(h(X1) + η2(X1, t))N i−
α∂τ

(

(1 + (Φ + h′)2)
−1
2

(

1
Φ + h′

))

= 0,

Φt −
(∂τu) · N

N 2
2

= 0,

with the conditions

Φ(t = 0) = 0; u(X , t = 0) = u0(X ), σ(X , t = 0) = σ
0
(X ), u = 0 on SB .
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Operators

η(X , t) = X + η(X , t) ≃ X so
(

(dη)−1 =
)

ξ = Id + ξ ≃ Id ,

From
P(ξ, u, q, φ, σ) = (0, 0, 0, 0, 0, u0, σ0

),

for u vanishing on SB and Φ(t = 0) = 0.
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Operators

η(X , t) = X + η(X , t) ≃ X so
(

(dη)−1 =
)

ξ = Id + ξ ≃ Id ,

From
P(ξ, u, q, φ, σ) = (0, 0, 0, 0, 0, u0, σ0

),

for u vanishing on SB and Φ(t = 0) = 0.

P(ξ, u, q, φ, σ) = P(0, 0, 0, 0, 0) + P1(u, q, φ, σ) + E (ξ, u, q, φ, σ)

= (0, 0, 0, 0, 0, u0, σ0
),
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Operators

η(X , t) = X + η(X , t) ≃ X so
(

(dη)−1 =
)

ξ = Id + ξ ≃ Id ,

From
P(ξ, u, q, φ, σ) = (0, 0, 0, 0, 0, u0, σ0

),

for u vanishing on SB and Φ(t = 0) = 0.

P(ξ, u, q, φ, σ) = P(0, 0, 0, 0, 0) + P1(u, q, φ, σ) + E (ξ, u, q, φ, σ)

= (0, 0, 0, 0, 0, u0, σ0
),

We define

P2[u
0, σ0](u, q, φ, σ) := P1(u

0+u, q0+q, φ0+φ, σ0+σ)−P1(u
0, q0, φ0, σ0)
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Spaces

K r (Ω × (0,T )) = L2(0,T ;Hr (Ω))
⋂

Hr/2(0,T ;L2(Ω)),

K r (SF × (0,T )) = L2(0,T ;Hr (SF ))
⋂

Hr/2(0,T ;L2(SF )),

X r
T (Ω × (0,T )) = {(u, q, φ, σ)/

u ∈ K r+2 and u = 0 on SB × (0,T );

∇q ∈ K r and q|SF
∈ H

r
2
+ 1

4 (0,T ;L2(SF ));

∂τφ ∈ L2(0,T ;Hr+ 1
2 (SF ))

φt ∈ K r+ 1
2 (SF × (0,T ))

φ(0) = 0;
σ ∈ K r+1(Ω × (0,T )) }.
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Spaces 2

The image space Y r
T is

Y r
T (Ω × (0,T )) = {(f , a,m, g , k, u0, σ0

)/

f ∈ K r (Ω × (0,T )),

a ∈ L2(0,T ;Hr+1(Ω))
⋂

H
r
2
+1(0,T , 0H

−1(Ω)),
m ∈ K r+1(Ω × (0,T )),

g , k ∈ K r+ 1
2 (SF × (0,T )),

u0, σ0
∈ Hr+1(Ω)},

where 0H
−1(Ω) is the dual space of 0H1 = {p ∈ H1/p ≡ 0 on SF}.
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Main result

Theorem

Let 0 < r < 1/2, the height functions h and (h0 − lim
±∞

h0) be in

Hr+5/2(R), (u0, σ0
) be in Hr+1 × Hr+1

sym and the compatibility

conditions div u0 = 0 in Ω, u0 = 0 on SB be satisfied. Then there

exists T0 > 0 depending on the data ; r ,Ω, u0, σ0
, h, h0,We, ε, a

and there exists (u, q, φ, σ) ∈ X r
T0

solution of the Lagrangian

system. Under the same hypothesis, the Eulerian system admits a

solution with η ∈ H1(0,T ;H2+r (Ω))
⋂

H2+ r
2 (0,T ;L2(Ω)).
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First step

We define

P2[u
0, σ0](u, q, φ, σ) := P1(u

0+u, q0+q, φ0+φ, σ0+σ)−P1(u
0, q0, φ0, σ0)

and we want to solve

P2[u
0, σ0](u, q, φ, σ) = (f , 0,m, 0, 0, 0, 0).
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The system P2

Re
∂u

∂t
− (1 − ε)∆u + ∇q − divσ = f ,

divu = 0,

σ + We

(

∂σ

∂t
− g(∇u, σ) − g(∇u

1
, σ) − g(∇u, τ

1
)

)

− 2εD[u] = m,

−qN + 2(1 − ε)D [u] · N − α∂τ (φN) + σ · N = 0,

φt − ∂τu · N = 0,
u(t = 0) = 0,
σ(t = 0) = 0,
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The sequence (σ)































σn+1 + We

(

∂σn+1

∂t
− g

a
(∇un, σn+1) − g

a
(∇u

1
, σn+1)−

g
a
(∇un, τ

1
)

)

= 2εD [un] + m

σn+1(0) = 0.
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The sequence (u, q, φ)

and then

Re
∂un+1

∂t
− (1 − ε)∆un+1 + ∇qn+1 = f + divσn+1,

divun+1 = 0,
−qn+1N + 2(1 − ε)D [un+1] · N − α∂τ (φn+1N) = −σn+1 · N ,

φn+1
t − (∂τun+1) · N = 0,

φn+1(t = 0) = 0,
un+1(t = 0) = 0,
un+1 = 0 on SB .
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Uniform (in n) estimates

Proof by induction of the existence of T0 > 0, 0 < V < 1,S > 0
such that ∀n







































































| σn |H1+r (t) ≤ S ,

| un, qn, φn, 0 |X r
T
≤ V ,

| ∇un |L2(0,T0;H1+r )≤ V ,

| ∇u
1
|L2(0,T0;H1+r )≤ 1,

C
√

T0(V + | ∇u
1
|L2(0,T0;H1+r )) < 1,

C (V + | m |L2(0,T0;H1+r )) < S ,

C | f |
H

r, r
2 (0,T0)

< V /5

CT ǫ′(V + | m |L2(0,T0;H1+r )) < V /5,

CT ǫ′(V + | m |L2(0,T0;H1)) < V /5,

CT ǫ′(V + | m |
L2(0,T0;H

1
2 )

) < V /5.
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One uniform estimate

Scalar product of the definition of σn+1 with σn+1 in H1+r :

| σn+1 |21+r +We
2

d | σn+1 |21+r

d t
≤ C

[

2ε | ∇un |1+r + | m |1+r +

CWe(| ∇un |1+r | σn+1 |1+r + | ∇u
1
|1+r | σn+1 |1+r +

+ | ∇un |1+r | τ
1
|1+r )

]

| σn+1 |1+r .

Hervé Le Meur Small time existence of the flow of a viscoelastic fluid with a free



Introduction
Intermediate results

Main proof
Why it does work

Inverting reduced auxiliary operator (P2)
Lift the initial conditions (solve P1)
Solving the full second auxiliary operator (P2)
The error terms

(1 − CWe(| ∇un |1+r + | ∇u
1
|1+r )) | σn+1 |21+r +We

2

d | σn+1 |21+r

d t
≤

C
[

(2ε + CWe | τ
1
|1+r ) | ∇un |1+r + | m |1+r

]

| σn+1 |1+r .

and so

d









e
2

∫ t

0

(1/2 − CWe(| ∇un |1+r + | ∇u
1
|1+r ))

We
ds

| σn+1 |21+r (t)









d t

≤ C (ε, τ
1
,We)

(

| ∇un |21+r + | m |21+r

)

×

×e
2

∫ t

0

(1/2 − CWe(| ∇un |1+r + | ∇u
1
|1+r ))

We
ds

,
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| σn+1 |21+r (t) ≤
∫ t

0
e
−2

∫ t

s

(1/2 − CWe(| ∇un |1+r + | ∇u
1
|1+r ))

We
dt ′

×
×(C | ∇un |21+r + | m |21+r )ds.

Thanks to the induction property ;

| σn+1 |1+r (t) ≤ C
(

| ∇un |L2(0,T ;H1+r ) + | m |L2(0,T ;H1+r )

)

≤ C
(

V + | m |L2(0,T ;H1+r )

)

,

Same computations for the contractance.
(un, qn, φn, σn) is of Cauchy type in X r

T and P2 is solved with
simple rhs.
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Let τ
1

such that

{

τ
1
+ We

∂τ
1

∂t
= 0

τ
1
(0,X ) = σ

0
(X ) ∀X .

and u1, p,Ψ such that























−pN + 2(1 − ε)D[u1] · N − α∂(ΨN) = −τ
1
· N + g on SF × (0,T )

Ψt − ∂τu1 · N = k on SF × (0,T )
u1 = 0 on SB × (0,T )
u1(t = 0) = u0(X ) in Ω
divu1 = a in Ω.

Then (u1 + u, p + q,Ψ + φ, τ
1
+ σ) ∈ X r

T and solves P1 (full).
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An other lifting

Lift the initial conditions and change of fields enables to solve :

P2[u1, σ1
](u, q, φ, σ) = (f , a,m, g , k, 0, 0)

Notice : initial vanishing conditions.
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The error is small and contracting

Theorem

Let 0 < r < 1/2, (u0, q0, φ0, σ0) ∈ X r
T0

and

(u, q, φ, σ) ∈ BX r∗
T

(0,R). There exists ǫ′ > 0 and 0 < T ′
0 ≤ T0

depending on (u0, q0, φ0, σ0) and R, such that if 0 < T < T ′

0,

then E (u0 + u, q0 + q, φ0 + φ, σ0 + σ) is in the space Y r
T (Ω) and

the following estimates hold :

| E i (u0 + u, q0 + q, φ0 + φ, σ0 + σ) |(Y r
T

)i≤ CT ǫ′ i 6= 2

| E 2(u0 + u, q0 + q, φ0 + φ, σ0 + σ)−
E 2(u0, q0, φ0, σ0) |(Y r

T
)2≤ CT ǫ′ .

See next slide.
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The error is small and contracting

Theorem

Same assumptions as before. In addition, let (u′, q′, φ′, σ′) ∈ X ∗

T

also. The operator E is contracting :

| E (u0 + u, q0 + q, φ0 + φ, σ0 + σ)−
E (u0 + u′, q0 + q′, φ0 + φ′, σ0 + σ′) |Y r

T
≤

CT ǫ′ | u − u′, q − q′, φ − φ′, σ − σ′ |X r
T

with constants C that depend on ε, a,We, r ,R , (u0, q0, φ0, σ0), but

not on T provided T ≤ T ′
0.
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Let us remind :

P(ξ, u, q, φ, σ) = P(0, 0, 0, 0, 0) + P1(u, q, φ, σ) + E (ξ, u, q, φ, σ)

= (0, 0, 0, 0, 0, u0, σ0
)

Let (u0, q0, φ0, σ0) be such that :

P1(u
0, q0, φ0, σ0) = (0, 0, 0, 0, 0, u0, σ0

) − P(0, 0, 0, 0, 0),

Let (u, q, φ, σ) := (u0 + u, q0 + q, φ0 + φ, σ0 + σ).
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The final proof

We look for (u, q, φ, σ) ∈ X r
T with u(t = 0) = 0, σ(t = 0) = 0

such that :

P1(u
0 + u, q0 + q, φ0 + φ, σ0 + σ)+

+E (ξ(u0 + u), u0 + u, q0 + q, φ0 + φ, σ0 + σ) =

= P1(u
0, q0, φ0, σ0)
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The final proof

We look for (u, q, φ, σ) ∈ X r
T with u(t = 0) = 0, σ(t = 0) = 0

such that :

P1(u
0 + u, q0 + q, φ0 + φ, σ0 + σ)+

+E (ξ(u0 + u), u0 + u, q0 + q, φ0 + φ, σ0 + σ) =

= P1(u
0, q0, φ0, σ0)

which is equivalent to

P2[u
0, σ0](u, q, φ, σ) = −E (ξ(u0+u), u0+u, q0+q, φ0+φ, σ0+σ).
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The final proof

We look for (u, q, φ, σ) ∈ X r
T with u(t = 0) = 0, σ(t = 0) = 0

such that :

P1(u
0 + u, q0 + q, φ0 + φ, σ0 + σ)+

+E (ξ(u0 + u), u0 + u, q0 + q, φ0 + φ, σ0 + σ) =

= P1(u
0, q0, φ0, σ0)

which is equivalent to

P2[u
0, σ0](u, q, φ, σ) = −E (ξ(u0+u), u0+u, q0+q, φ0+φ, σ0+σ).

or

(u, q, φ, σ) = P−1
2 [u0, σ0](−E (ξ(u0 + u), u0 + u, q0 + q, φ0 + φ, σ0 + σ

= F (u, q, φ, σ).
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Thank you for your attention
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Lagrangian equations
Constants do not depend on T0

The equations

The constitutive equation :

σ + We

(

∂σ

∂t
− g

a
(∇u, σ)

)

− 2εD[u] = m

No loss of regularity.
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A crucial lemma

In an algebra, product is continuous.
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Lagrangian equations
Constants do not depend on T0

A crucial lemma

In an algebra, product is continuous.

| 1 |
H

1+r
2 (0,T )

≤ C (A) | 1 |
H

1+r
2 (0,T )

| 1 |
H

1+r
2 (0,T )

.
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So C (A) = C (T ) and even tends to +∞ when T tends to 0.
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Then
1 ≤ C (A) | 1 |

H
1+r
2 (0,T )
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So C (A) = C (T ) and even tends to +∞ when T tends to 0.

Lemma

Let X a Hilbert space, 0 ≤ s ≤ 2, such that s − 1
2 is not integer.

There exists a bounded extension operator from
{

u ∈ Hs(0,T ;X ), ∂k
t u(0) = 0, 0 ≤ k < s − 1

2

}

in Hs(R+;X ).

The boundedness constant C does not depend on T ≤ T0.
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Thank you for your attention.
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