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1. Introduction

• The hydrodynamics of the mixture of different fluids is playing an
increasingly important role in many scientific and engineering
applications. Among them one of the fundamental issues is the
interfacial dynamics.

• The conventional model for the mixture consists of separate hy-
drodynamic systems of each component, together with the free
interface that separates different fluids. In recent years, many
researchers have studied the phase field approach in various
fluid flows.

• The phase field approach, a mathematical technique, based on
thermodynamics, for describing the process of phase transition
in a material (e.g. from a liquid to solid or another liquid), in-
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troduces a continuous transition region between the two bulk
phases (e.g. solid/liquid). This transition region is defined in
terms of an additional field variable (the phase field), which is
formulated to represent the dynamical evolution of the phase-
change interface. This is in contrast to methods which assume
a sharp interface between phases.

• This has been studied as early as 19th century by Rayleigh and
van der Waals (see the wonderful survey paper by Anderson et
al.[Ann. Rev. Fluid Mech. 1998] in this area).

• Such an approach coincides with the usual phase field mod-
els that were developed in the theory of phase transition, and
attracted many interests in the mathematical community.

• These models allow topological changes of the interface and
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have many advantages in numerical simulations of the interfa-
cial motion.

• At the cost of solving an additional PDE, the advantage of the
phase field method is that the location of the interface does not
have to be explicitly determined (or tracked) as part of the solu-
tion. However, the discrete phase field method for the interface
dynamics should be of high order accuracy as well as high effi-
ciency.

• Up to now, some numerical methods have been developed for
the phase field models, for example, the discontinuous Galerkin
method and the Fourier-spectral method etc. The adaptive mesh
methods have also been proved very effective for the phase field
model. However, in those adaptive methods, the phase field
model is not coupled with the Navier-Stokes equations.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Adaptive moving mesh methods have important applications in
a variety of scientific and engineering areas such as solid and
fluid dynamics etc., where singular or nearly singular solutions
are developed dynamically in fairly localized regions of shock
waves, boundary layers, and detonation waves etc. Numerically
investigating these phenomena requires extremely fine meshes
over a small portion of the physical domain to resolve the large
solution variations.

• Successful implementation of an adaptive strategy can increase
accuracy of the numerical approximations and decrease the com-
putational cost.

• Up to now, there have been many important progresses in adap-
tive moving mesh methods for partial differential equations, in-
cluding grid redistribution approach based on the variational
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principle of Winslow [JCP1967], Brackbill [JCP1993], Ren and
Wang [JCP2000]; moving finite element methods of Millers [SINUM1981],
and Davis and Flaherty [SISC1982]; moving mesh PDEs meth-
ods of Russell et al. [JCP1999; CiCP2006], and Ceniceros and
Hou [JCP2001]; and moving mesh methods based on the har-
monic mapping of Dvinsky [JCP1991], and Li, Tang, and Zhang
[JCP2001, JCP2002, SISC2005]. Computational costs of mov-
ing mesh methods can be efficiently saved with locally varying
time steps [Tan et al. JCP2004].

Objective: Develope an adaptive moving mesh method for the INSEs
coupled the phase field model
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2. Governing Equations

• Let Ωp be a 2D (physical) domain with the Cartesian Coordinate
system x = (x, y), and assume that Ωp is filled with two incom-
pressible fluids separated by a free moving interface. One fluid
is included in a bubble while the other is the ambient fluid. A
phase function φ(x, t) is introduced to represent the interface
at the time t by the set {x : φ(x, t) = 0}, and label the in-
side and the outside of the bubble as {x : φ(x, t) > 0} and
{x : φ(x, t) < 0}, respectively.

• The dynamics of the phase function φ(x, t) can be relaxed (ap-
proximated) according to either Allen-Cahn or Cahn-Hilliard types
of gradient flow, depending on the choice of different dissipative
mechanisms.
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• Since numerical treatment of the Allen-Cahn phase equation is
simpler than that of the Cahn-Hilliard phase model which in-
volves 4th-order differential operators, this work chooses to use
the modified (fluid transported) Allen-Cahn phase equationφt + u · gradφ = γ

(
∆φ− F ′(φ) + ζ(t)

)
,

d
dt

∫
Ωp
φ dx = 0,

(2.1)

where ζ(t) is the Lagrangian multiplier corresponding to the
constant volume constraint in the last equation, and γ denotes
the elastic relaxation time. In Eq.(2.1), F (φ) = (φ2−1)2/4η̂2 is
the usual double-well potential, η̂ represents the capillary width
(width of the mixing layer).

• The phase field model (2.1) may be derived from a variation
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formulation of the elastic (mixing) energy as

Dφ

Dt
= −γ

δW

δφ
= γ(∆φ− F ′(φ)). (2.2)

where the elastic (mixing) energy W (φ, gradφ) is defined by

W (φ, gradφ) =

∫
Ωp

{
1

2
|gradφ|2 + F (φ)

}
dx.

Here Dφ
Dt

is the material derivative Dφ
Dt

= φt + (u · grad)φ, and
δW
δφ

represents the variation of the energy W with respect to φ.

• The system governing the mixture of two incompressible fluids
with same density (which is taken to be 1) and same viscosity
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constants can be written as follows:

ut + (u · grad)u− ν∆u+ gradp+ λdiv(gradφ⊗ gradφ)

= g(x), (2.3)

divu = 0, (2.4)

where g is the external body force, p is the pressure, ν is the
kinematic viscosity, λ corresponds to the surface tension, and
the term gradφ⊗ gradφ is the usual tensor product, i.e.

(gradφ⊗ gradφ)ij = gradiφgradjφ.

Since

div(gradφ⊗ gradφ) = ∆φgradφ+
1

2
grad|gradφ|2,

the momentum equation (2.3) can be simplified as follows:

ut +(u ·grad)u−ν∆u+gradp = −λ∆φgradφ+g(x), (2.5)
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here p has been redefined as p := p+ 1
2
λ|gradφ|2.

• The coupled system (2.1), (2.3) or (2.5), and (2.4) is supple-
mented with the initial conditions

u|t=0 = u0(x), φ|t=0 = φ0(x), x ∈ Ωp, (2.6)

and boundary conditions

u|∂Ωp = 0,
∂φ

∂n

∣∣
∂Ωp

= 0, (2.7)

where ∂φ
∂n

= n · gradφ, and n is the outward unit normal vec-
tor on the edge of the domain Ωp. From (2.1) and the above
conditions, one derives easily

ζ(t) =
1

|Ωp|

∫
Ωp

F ′(φ(x, t)
)
dx,

where |Ωp| denotes the area of Ωp.
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• Remark: As η̂ → 0, the Cahn-Hilliard phase model and Allen-
Cahn type of phase equation coupling with the INSEs (2.3) and
(2.4) will tend to the same limit, see [C. Liu & J. Shen, Physica D,
179 (2003), pp. 211–228] as well as [N.D. Alikakos, P.W. Bates,
and X.F. Chen, Arch. Rational Mech. Anal., 128(1994), pp. 165–
265]. ].
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3. Numerical Method

• Our adaptive phase field method consists of two independent
parts: the evolution of the governing equation and the mesh
iterative redistribution.

• In the following, the INSEs (2.3)-(2.4) will be solved by using the
rotational incremental pressure–correction scheme of Timmer-
mans, Minev, and Van De Vosse [Int. J. Numer. Meth. Fluids,
22 (1996), pp. 673–688] on a fixed half-staggered mesh, and a
conservative scheme is given for the phase field equation (2.1).
Its main advantage is that it can overcome the difficulty caused
by the artificial pressure Neumann BC.
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3.1. INSE solver

Give a partition of the physical domain Ωp, {Aj+1
2

,k+1
2
|j, k ∈ Z}, a

uniform partition of the computational or logical domain Ωc is given
with unit step sizes, i.e. ∆ξ = ∆η = 1, and a partition of the time in-
terval [0, T ], {tn = tn−1 + ∆tn|∆tn > 0, n ∈ N}, where Aj+1

2
,k+1

2

is a quadrangle with four corners xj,k, xj+1,k, xj+1,k+1, and xj,k+1.
For convenience, define Io := {xj+1

2
,k+1

2
∈ Ωp, j, k ∈ Z} and

In := {xj,k ∈ Ωp, j, k ∈ Z}, where xj+1
2

,k+1
2

denotes the centroid
coordinates of the quadrangle Aj+1

2
,k+1

2
. Let the scalar variables,

e.g. p and φ, be approximated at cell centers by their cell averages

Uj+1
2

,k+1
2
(t) =

1∣∣∣Aj+1
2

,k+1
2

∣∣∣
∫

A
j+1

2 ,k+1
2

U(x, t) dx, U = p or φ,

(3.1)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

and the vectors such as the velocity u be approximated at the cell
corners, see Fig. 3.1, where

∣∣∣Aj+1
2

,k+1
2

∣∣∣ denotes the area of the
control volume Aj+1

2
,k+1

2
. Moreover, the notations gradh, divh, and

∆h are used to denote the discretizations of the gradient, divergence,
and Laplacian operators, respectively, but will be given later, where
∆h = divhgradh.

p,
In

o

u,v

I

Figure 3.1: Half-staggered mesh, see [A. Geoge, L.C. Huang, W.P.
Tang, and Y.D. Wu, SIAM J. Sci. Comput., 21 (2000), pp. 2331–2351;
G.H. Golub, L.C. Huang, H. Simon, and W.P. Tang, SIAM J. Sci. Com-
put., 19 (1998), pp. 1606–1624].
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The discrete projection method for Eqs. (2.1)-(2.3) is described as
follows:

Algorithm 1

Step 0 Give initial data φn, un, pn.

Step 1 (Fluid evolution step) Compute the intermediate velocity field
ũ = (ũ, ṽ)T on In by a semi-implicit scheme:

ũ− un

∆tn
− ν∆hũ =− (un · gradh)u

n − gradhp
n

− (λ∆hφ
n)gradhφ

n + g(x), (3.2)

with homogeneous Dirichlet boundary conditions

ũ = 0, on ∂Ωp .
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Step 2 (Projection step) Project the intermediate velocity field ũ onto
the divergence-free vector space by the standard Helmholtz de-
composition

ũ = un+1 + ∆tngradhψ
n+1 on In,

divhu
n+1 = 0 on Io,

un+1 · n = 0 on ∂Ωp,

(3.3)

and update the pressure pn+1 by

ψn+1 = pn+1 − pn + νdivhũ on Io. (3.4)

The projection step is equivalent to solving a PPE together with
the homogeneous Neumann BC∆hψ = 1

∆tn
divhũ,

gradhψ · n = 0.
on Io. (3.5)
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Step 3 (Phase evolution step) Compute the phase field φn+1 by

φn+1 − φn

∆tn
− γ∆hφ

n+1 =− divh(un+1φn)− γf(φn) + γζ(tn)

on Io. (3.6)

The detailed definitions of the discrete operators gradh, divh, and ∆h

used in the above projection method are presented as follows. The
gradient, divergence, and Laplacian operators are first transferred into
the logical domain Ωc by the coordinate transformation x = x(ξ) as
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follows

gradφ =
1

J

(
yηφξ − yξφη,−xηφξ + xξφη

)T (non-conservative)

=
1

J

(
(yηφ)ξ − (yξφ)η,−(xηφ)ξ + (xξφ)η

)T
, (conservative)

(3.7)

divu =
1

J

(
yηuξ − yξuη − xηvξ + xξvη

)
(non-conservative)

=
1

J

(
(yηu)ξ − (yξu)η − (xηv)ξ + (xξv)η

)
, (conservative)

(3.8)

∆ψ =
1

J

(
(J−1y2

ηψξ)ξ − (J−1yξyηψη)ξ − (J−1yξyηψξ)η

+ (J−1y2
ξψη)η + (J−1x2

ηψξ)ξ − (J−1xξxηψη)ξ

− (J−1xξxηψξ)η + (J−1x2
ξψη)η

)
, (3.9)

where J = xξyη − xηyξ is the Jacobian matrix of the coordinate
transformation. Then all partial derivatives involved in (3.7) and (3.8)
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are approximated by using second-order accurate central finite differ-
ence scheme. For example, the non-conservative gradient of a scalar
variable is approximated on In, see Fig. 3.2, by

gradhψ =
1

Ĵ

(
(̂yη)(̂ψξ)− (̂yξ)(̂ψη),−(̂xη)(̂ψξ) + (̂xξ)(̂ψη)

)T
, on In,

(3.10)

where

(̂ψξ)j,k :=(ψj+1
2

,k+1
2
− ψj−1

2
,k+1

2
+ ψj+1

2
,k−1

2
− ψj−1

2
,k−1

2
)/2,

(̂ψη)j,k :=(ψj+1
2

,k+1
2
− ψj+1

2
,k−1

2
+ ψj−1

2
,k+1

2
− ψj−1

2
,k−1

2
/2,

(̂Zξ)j,k :=(Zj+1,k − Zj−1,K)/2, (̂Zη)j,k := (Zj,k+1 − Zj,k−1)/2,

Ĵj,k =
(
x̂ξŷη − x̂ηŷξ

)
j,k
, Z = x or y.
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Div w

(j,k)

Grad

Figure 3.2: Half-staggered mesh for divh and gradh.

Similarly, the conservative divergence of the velocity vector is approx-
imated on Io, see Fig. 3.2, by

divhu =
1

Ĵ

(
(yηu− xηv)ξ + (−yξu+ xξv)η

)
on Io, (3.11)

where(
(yηu− xηv)ξ

)
j+ 1

2 ,k+ 1
2

=
1

2

(
(ŷηu− x̂ηv)j+1,k − (ŷηu− x̂ηv)j−1,k

)
,(

(−yξu+ xξv)η

)
j+ 1

2 ,k+ 1
2

=
1

2

(
(−ŷξu+ x̂ξv)j,k+1 − (−ŷξu+ x̂ξv)j,k−1

)
,

Ĵj+ 1
2 ,k+ 1

2
=|Aj+ 1

2 ,k+ 1
2
|.
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From (3.10) and (3.11), a discrete Laplacian operator ∆h = divhgradh

is gotten. For the Poisson problems in Algorithm 1, such defined
Laplacian operator ∆h = divhgradh will give a mimetic discretiza-
tion [M. Shashkov and S. Steinberg, Conservative Finite-Difference
Methods on General Grids, CRC Press, 1996] and a linear algebraic
system with a symmetric and semi-definite coefficient matrix. Many
methods can be used to solve this linear system, for example, the al-
gebraic multigrid (AMG), the conjugate gradient (CG) method, and the
multi-level dissection method, see [A. Geoge, L.C. Huang, W.P. Tang,
and Y.D. Wu, SIAM J. Sci. Comput., 21 (2000), pp. 2331–2351; G.H.
Golub, L.C. Huang, H. Simon, and W.P. Tang, SIAM J. Sci. Comput., 19
(1998), pp. 1606–1624]. In this study, the AMG package [R. Li & W.B.
Liu, The AFEPack Handbook, http://circus.math.pku.edu.cn/AFEPack]
or the CG method have been used to solve this linear system.

If the mesh is uniformly rectangular, then the approximations (3.10)
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and (3.11) lead to a skewed 5 point scheme of the Poisson equation,
see Fig. 3.3(a). The solution ψ = (· · · , ψj+1

2
,k+1

2
, · · · )T has two

degrees of freedom, that say, ψ+ψ1 + cψ2 is also its solution, where
c is an arbitrary constant, ψ1 is a constant vector, see Fig. 3.3(b),
and ψ2 is a so-called “checkerboard mode”, see Fig. 3.3(c). However,
neither ψ1 nor ψ2 will affect gradhψ, see (3.10).

C

C

C C

C

C C

C

C C

C

C CC C C

CC

C C C

C

C

C C C

−C −C −C−C

−C −C −C

−C

−C−C−C−C

−C −C

(a) Skewed scheme; (b) ψ1; (c) ψ2

Figure 3.3: Stencil of the skewed scheme and profile of the vector ψi,
i = 1, 2.
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Finally, a few remarks on the above algorithm are given.

Remark 3.1 gradψ and divũ in step 2 of Algorithm 1 are discretized
by using the formulae (3.10) and (3.11), respectively, so that the ap-
proximate velocity is exactly divergence free in the discrete sense.
Such approach will also be used to project the velocity vector onto a
divergence-free space at the end of the iterative mesh redistribution.

Remark 3.2 The gradient operator in the momentum equation (3.2)
may be either non-conservative or conservative. Moreover, the Lapla-
cian operators in (3.2) and (3.6) may also be a 2nd-order accurate
finite difference approximation of (3.9). Such resulting linear algebra
system of the Poisson equation will be symmetric and definite, and
may be solved by using the multigrid method [R. Li and W.B. Liu, The
AFEPack Handbook, http://circus.math.pku. edu.cn/AFEPack
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]. The tolerance for the l2 norm of the residual is set to be 10−8 and
the average iterative number 3 ∼ 5.

Remark 3.3 To preserve the mass-conservation of the phase field φ,
i.e. ∑

j,k

|An+1

j+1
2

,k+1
2

|φn+1

j+1
2

,k+1
2

=
∑
j,k

|An
j+1

2
,k+1

2
|φn

j+1
2

,k+1
2
,

the discrete operators in (3.6) should be conservative, and corre-
sponding Lagrangian multiplier becomes

ζn
j+1

2
,k+1

2
=

1

|Ωn
p |

∑
j,k

|An
j+1

2
,k+1

2
|F ′(φn

j+1
2

,k+1
2
),

where |Aj+1
2

,k+1
2
| is the area of the control cellAj+1

2
,k+1

2
, and |Ωn

p | =∑
j,k

|An
j+1

2
,k+1

2

|.
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3.2. Adaptive mesh redistribution

This section introduces our adaptive mesh redistribution briefly. The
readers are referred to [H.Z. Tang & T. Tang, SIAM J. Numer. Anal.
2003] for detailed descriptions.

Iterative mesh redistribution

Let x = (x, y) and ξ = (ξ, η) denote the physical and logical or com-
putational coordinates, respectively. A one-to-one coordinate trans-
formation from the logical or computational domain Ωc to the physical
domain Ωp is denoted by

x = x(ξ), ξ ∈ Ωc. (3.12)
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Our attention is limited to the case of that the physical domain Ωp is
convex and the map (3.12) is to find the minimizer of the following
functional

Ẽ(x) =
1

2

2∑
i=1

∫
Ωc

(∇̃xi)
TGi∇̃xi dξ, (3.13)

where ∇̃ = (∂ξ, ∂η)
T , andGi (i = 1, 2) are given symmetric positive

definite matrices called monitor functions. In general, the monitor
functions depend on the solution or its derivatives of the underlying
governing equations. The simplest choice of the monitor functions is
Gi = ωI, i = 1, 2, where I denotes the identity matrix and ω is
a positive weight function. More terms can be added to the above
functional to control other aspects of the mesh such as orthogonality
and alignment with a given vector field.

Using Winslow’s choice, one deduces the Euler-Lagrange equations
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of the functional (3.13) to

∇̃ · (ω∇̃x) = 0. (3.14)

In this study, ω = ω(gradφ). Eq. (3.14) is first discretized by the
central difference scheme and then solved by the Gauss-Seidel (GS)
iteration, that is to say,

ω
[m]

j+ 1
2 ,k

(
x

[m]
j+1,k − x

[m+1]
j,k

)
− ω[m]

j− 1
2 ,k

(
x

[m+1]
j,k − x[m+1]

j−1,k

)
+ω[m]

j,k+ 1
2

(
x

[m]
j,k+1 − x

[m+1]
j,k

)
− ω[m]

j,k− 1
2

(
x

[m+1]
j,k − x[m+1]

j,k−1

)
= 0, (3.15)

for m = 0, 1, · · · , where ωj+1
2

,k = 1
2
(ωj+1,k + ωj,k), ωj,k+1

2
=

1
2
(ωj,k+1+ωj,k). The GS iteration is continued until ||x[m]−x[m+1]|| <
ε or m < µ, where µ is a given small integer. In practice, a few iter-
ations (say µ = 3 to 5) are required at each time level, so the cost
for generating new mesh is not too expensive. In order to obtain a
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smooth mesh distribution, the low-pass filter

ωj,k ←
4

16
ωj,k +

2

16
(ωj+1,k + ωj−1,k + ωj,k+1 + ωj,k−1)

+
1

16
(ωj−1,k−1 + ωj−1,k+1 + ωj+1,k−1 + ωj+1,k+1).

is applied to the discrete monitor function, which is usually carried
out 3∼5 times at each GS iterative step.
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Interpolation of the cell-averaged variables

After each GS iterative step, the approximate solutions need to be
remapped onto the newly resulted mesh {x[m+1]

j,k } from the old mesh
{x[m]

j,k }. The remapping procedure of the cell-averaged variables such
as the phase field φ and p can be conducted by using the conserva-
tive interpolation technique proposed by Tang & Tang [SINUM2003],
which is

|A[m+1]

j+1
2

,k+1
2

|U [m+1]

j+1
2

,k+1
2

= |A[m]

j+1
2

,k+1
2

|U [m]

j+1
2

,k+1
2

−
(
(c2nU

[m])j+1,k+1
2

+ (c4nU
[m])j,k+1

2

)
−

(
(c3nU

[m])j+1
2

,k+1 + (c1nU
[m])j+1

2
,k

)
,

(3.16)

where U = φ or p, |Aj+1
2

,k+1
2
| means area of the corresponding

control cell, and cl
n := cxnl

x+cynl
y with the mesh velocity (cx, cy) =

(x[m] − x[m+1], y[m] − y[m+1]) and the normal outward vector nl =
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(nl
x, n

l
y), defined as follows:

c
1
n =

1

2
(c

x
j,k + c

x
j+1,k)(yj+1,k − yj,k) −

1

2
(c

y
j,k

+ c
y
j+1,k

)(xj+1,k − xj,k),

c
2
n =

1

2
(c

x
j+1,k + c

x
j+1,k+1)(yj+1,k+1 − yj+1,k) −

1

2
(c

y
j+1,k

+ c
y
j+1,k+1

)(xj+1,k+1 − xj+1,k),

c
3
n =

1

2
(c

x
j+1,k+1 + c

x
j,k+1)(yj,k+1 − yj+1,k+1) −

1

2
(c

y
j+1,k+1

+ c
y
j,k+1

)(xj,k+1 − xj+1,k+1),

c
4
n =

1

2
(c

x
j,k+1 + c

x
j,k)(yj,k − yj,k+1) −

1

2
(c

y
j,k+1

+ c
y
j,k

)(xj,k − xj,k+1),

and the fluxes (cl
nU)j+r,k+1

2
and (cl

nU)j+1
2

,k+s, r, s = 0 or 1, de-
note the values of cl

nU on the corresponding surface of the control
volume Aj+1

2
,k+1

2
, where l = 1, 2, 3, 4. The fluxes will be approxi-

mated by using an upwind scheme. For example, the term (c2nU)j+1,k+1
2

may be approximated by

(c2nU)j+1,k+ 1
2

=
c2n
2

(Uj+ 3
2 ,k+ 1

2
+Uj+ 1

2 ,k+ 1
2
)−
|c2n|
2

(Uj+ 3
2 ,k+ 1

2
−Uj+ 1

2 ,k+ 1
2
).

(3.17)

The above approximation is only first order accurate in space. In or-
der to avoid large numerical dissipation, the reconstruction technique
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will be used, and (3.17) is replaced by

(c2nU)j+1,k+1
2

=
c2n
2

(Uj+1+0,k+1
2
+ Uj+1−0,k+1

2
) (3.18)

−
|c2n|
2

(Uj+1+0,k+1
2
− Uj+1−0,k+1

2
), (3.19)

with

Uj+1+0,k+1
2

=Uj+3
2

,k+1
2
−

1

2
Sξ

j+3
2

,k+1
2

,

Uj+1−0,k+1
2

=Uj+1
2

,k+1
2
+

1

2
Sξ

j+1
2

,k+1
2

.

Here Sξ is an approximation of ∂U/∂ξ, taken by us as

Sξ

j+1
2

,k+1
2

= vLL(∆ξUj+1
2

,k,∆ξUj−1
2

,k),
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where ∆ξUj−1
2

,k+1
2

= Uj+1
2

,k+1
2
−Uj−1

2
,k+1

2
. The function vLL(a, b)

denotes van Leer’s limiter defined by

vLL(a, b) =
(
sign(a) + sign(b)

) |ab|
|a|+ |b|+ ε

, (3.20)

where the parameter ε, 0 < ε� 1, is used to avoid that the denom-
inator becomes zero.

The formula (3.16) is obtained by using the classical perturbation the-
ory, and satisfies the following mass–conservation property:∑
j,k

|A[m+1]

j+1
2

,k+1
2

|U [m+1]

j+1
2

,k+1
2

=
∑
j,k

|A[m]

j+1
2

,k+1
2

|U [m]

j+1
2

,k+1
2

, U = φ or p.

(3.21)
Some further theoretical properties of this conservative interpolation
can be found in [H.Z. Tang & T. Tang, SINUM2003].
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Interpolation of the velocity variables

This subsection begins to remap the velocity variables onto the newly
resulted mesh {x[m+1]

j,k } from the old mesh {x[m]
j,k }. For the velocity

vector u = (u, v), the high-resolution, nonconservative interpolation
of Tang, Tang, and Zhang [JCP2003] is employed, which is obtained
by using Taylor’s expansion, i.e.

u(x
[m+1]
j,k ) ≈ u(x

[m]
j,k )− (x

[m]
j,k − x

[m+1]
j,k ) · gradu(x[m]

j,k ). (3.22)

Using the coordinate transformation ξ = ξ(x) and a high resolution
Hamilton-Jacobi solver gives

u
[m+1]
j,k = u

[m]
j,k −

1

2

(
cξ

j,k(v
[m]
j+0,k + v

[m]
j−0,k)− |c

ξ
j,k|(v

[m]
j+0,k − v

[m]
j−0,k)

)
−

1

2

(
cη

j,k(w
[m]
j,k+0 + w

[m]
j,k−0)− |c

η
j,k|(w

[m]
j,k+0 − w

[m]
j,k−0)

)
,(3.23)
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where

(cξ)j,k =
1

Jj,k

[xη(y
[m] − y[m+1])− yη(x

[m] − x[m+1])]j,k,

(cη)j,k =
1

Jj,k

[yξ(x
[m] − x[m+1])− xξ(y

[m] − y[m+1])]j,k,

and

vj+0,k =∆ξuj,k −
1

2
vLL(∆ξuj+1,k −∆ξuj,k,∆ξuj,k −∆ξuj−1,k),

vj−0,k =∆ξuj−1,k +
1

2
vLL(∆ξuj,k −∆ξuj−1,k,∆ξuj−1,k −∆ξuj−2,k),

wj,k+0 =∆ηuj,k −
1

2
vLL(∆ηuj,k+1 −∆ηuj,k,∆ηuj,k −∆ηuj,k−1),

wj,k−0 =∆ηuj,k−1 +
1

2
vLL(∆ηuj,k −∆ηuj,k−1,∆ηuj,k−1 −∆ηuj,k−2),

here ∆ξuj,k = uj+1,k − uj,k, ∆ηuj,k = uj,k+1 − uj,k. The function
vLL(a, b) denotes van Leer’s limiter, see (3.20).
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It is worth noting that the velocity u
[m+1]
j,k updated by (3.23) is not

divergence-free generally. So u[µ]
j,k cannot be considered as the “ini-

tial” data of the INSEs, that is to say, one has to project u[µ]
j,k onto the

divergence-free space before evolving the INSEs. Following the pro-
jection method for the INSEs, the standard Helmholtz decomposition
is used: un+1 = u[µ] − gradhψ, divhu

n+1 = 0,

un+1 · n = 0, on ∂Ωp.
(3.24)

to get the divergence-free velocity vector un+1 on the resultant adap-
tive mesh {x[µ]

j,k}. It is equivalent to solving the Neumann BVP of a
Poisson equation: ∆hψ = divhu

[µ],

gradhψ · n = 0, on ∂Ωp.
(3.25)
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Definitions of the above discrete operators are similar to those given
before.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Solution Procedure

Our solution procedure is composed by two independent parts: evo-
lution of the governing equations and an iterative mesh redistribution.
The first part is a divergence-free finite volume method. In each it-
eration of the second part, mesh points are first redistributed by the
GS method (3.15), and then φ and p are updated on the newly gen-
erated meshes by the conservative-interpolation formula (3.16), while
the velocity vector u is remapped by the non-conservative approach
(3.23) and corrected finally by (3.24). The solution procedure can be
illustrated by the following flowchart:



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Algorithm 2

Step 0 Give an initial adaptive mesh xn
j,k based on the initial function,

n ≥ 0.

Step 1 Advance the solution one time step ∆tn by Algorithm 1 to get
un+1, pn+1 and φn+1.

Step 2 Set x[0]
j,k := xn

j,k, u[0]
j,k := u

n+1
j,k , and U [0]

j+1
2

,k+1
2

:= Un+1

j+1
2

,k+1
2

,
U = φ or p.

Step 3 For m = 0, 1, 2, · · · , µ− 1, do the following:

a. Solve the mesh redistributing equation (a generalized Lapla-
cian equation) by one Gauss-Seidel iteration to get x[m+1];

b. Remap the approximate solutions on the new grid x[m+1]

to get u[m+1], p[m+1] and φ[m+1].
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c. Compute the monitor function ω[m+1].

Step 4 Perform the projection method to get the divergence-free ve-
locity field u

n+1
j,k , and reset xn+1

j,k := x
[µ]
j,k and Un+1

j+1
2

,k+1
2

:=

U
[µ]

j+1
2

,k+1
2

, U = φ or p.

Step 5 If t ≥ T , then save the result and stop. Otherwise, go to Step
1 for the next time circle.

Remark 3.4 The conservative interpolation (3.16) and the non-conservative
interpolation (3.23) are carried out after each GS iteration step, while the di-
vergence free correction in (3.24) is only performed once after all µ GS iter-
ations are finished. In our computations, the parameter µ is taken as 3 ∼ 5

to get a satisfactory mesh redistribution.

Remark 3.5 Using Algorithm 2 can get a new set of mesh points and cor-
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responding solutions, e.g. {xn+1, φn+1, pn+1, un+1}, which satisfy∑
j,k

|An+1

j+1
2

,k+1
2

|φn+1

j+1
2

,k+1
2

=
∑
j,k

|An
j+1

2
,k+1

2
|φn+1

j+1
2

,k+1
2

,

(divhu)
n+1

j+1
2

,k+1
2

= 0,

i.e., the phase variable is conservative and the velocity field is locally diver-
gence free in the discrete sense.
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4. Numerical Results

Example 1 We start with a square bubble centered at (π, π). The length
of the square is 2.
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Figure 4.1: Example 1: the phase φ along x = π. The symbol “circle” and solid
line denote the adaptive solution with a resolution of 64 × 64 and the computed
solution obtained on a 256× 256 uniform mesh. Left: t = 0.3; right: t = 0.5.
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Figure 4.2: Example 1: the phase evolution, velocity field and mesh redistribution
at t = 0.1, 0.3, 0.5.
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Example 2 We start with two initially kissing unit cycle bubbles. The ra-
dius of each bubble is unit.

Figure 4.3: Example 2: Phase evolution at t = 0.2, 0.5, 0.8.
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Example 3 Consider three kissing bubbles. Inside the bubbles φ = 1;
outside the bubbles φ = −1. The radius of each bubble is π/4.

|divu|
9.832E-08
9.176E-08
8.521E-08
7.866E-08
7.210E-08
6.555E-08
5.899E-08
5.244E-08
4.588E-08
3.933E-08
3.277E-08
2.622E-08
1.966E-08
1.311E-08
6.555E-09

|divu|
1.643E-07
1.533E-07
1.424E-07
1.314E-07
1.205E-07
1.095E-07
9.857E-08
8.762E-08
7.666E-08
6.571E-08
5.476E-08
4.381E-08
3.286E-08
2.190E-08
1.095E-08

Figure 4.4: Example 3: the divergence of velocity |divhu| at t =
0.2(left), 1.0(right).
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Figure 4.5: Example 3: the development of phase, velocity at t = 0.1, 0.2, 0.5.
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Figure 4.6: Example 3: the development of phase and mesh redistribution at
t = 1.0, 1.2, 2.0.
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Example 4 Consider the gravitational effect. We start with a bigger cir-
cular bubble higher than the smaller bubble. The density of the bubbles is
lighter than the density of the surrounding fluid. g = (0, 1)T . The NS
equations become

ρ0(ut + (u · ∇)u) +∇p− ν∆u+ λ∇ · (∇φ⊗∇φ) = −gφ(ρ1 − ρ2),

where ρ1 − ρ2 = −1.

|divu|
1.248E-07
1.164E-07
1.081E-07
9.980E-08
9.149E-08
8.317E-08
7.485E-08
6.653E-08
5.822E-08
4.990E-08
4.158E-08
3.327E-08
2.495E-08
1.663E-08
8.317E-09

abs(div)
2.010E-07
1.876E-07
1.742E-07
1.608E-07
1.474E-07
1.340E-07
1.206E-07
1.072E-07
9.378E-08
8.038E-08
6.698E-08
5.359E-08
4.019E-08
2.679E-08
1.340E-08

Figure 4.7: Example 4: |divhu| at t = 0.2(left) and t = 1.5(right).
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Figure 4.8: Example 4: the phase and velocity at t = 0.2, 1.2, 6.0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example 5 Consider the gravitational effect on three bubbles. Initially, the
two kissing bubbles are located higher than the third one which is smaller.
g = (0, 0.1)T .

|divu|
1.002E-07
9.352E-08
8.684E-08
8.016E-08
7.348E-08
6.680E-08
6.012E-08
5.344E-08
4.676E-08
4.008E-08
3.340E-08
2.672E-08
2.004E-08
1.336E-08
6.680E-09

|divu|
1.002E-07
9.352E-08
8.684E-08
8.016E-08
7.348E-08
6.680E-08
6.012E-08
5.344E-08
4.676E-08
4.008E-08
3.340E-08
2.672E-08
2.004E-08
1.336E-08
6.680E-09

Figure 4.9: Example 5: |divhu| at t = 0.5(left) and 1.5(right).
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Figure 4.10: Example 5: the phase field and mesh distribution at t = 0, 0.4, 1.0.
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5. Conclusion

• We have developed an efficient and fast adaptive moving mesh
method to solve the Allen-Cahn type of phase field model for the
mixture of two incompressible fluids. In the present algorithm
the rotational incremental pressure-correction scheme was suc-
cessfully implemented on a half-staggered, moving quadrilateral
mesh to keep the velocity field divergence-free, and the conju-
gate gradient or multigrid method was employed to fast solve
the discrete Poisson equations.

• The proposed algorithm consists of two independent parts: evo-
lution of the governing equations and mesh-redistribution.

• In the 1st part, the rotational incremental pressure-correction
scheme is used to solve the INSEs on a fixed half-staggered
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mesh, and the Allen-Cahn type of phase equation modified by
the Lagrangian multiplier is approximated by a conservative,
2nd-order accurate central difference scheme, where the La-
grangian multiplier is used to preserve the overall mass of bub-
bles.

• The second part is an iteration procedure. The phase field is
remapped onto the newly resulted meshes by the high-resolution
conservative interpolation formula, while the non-conservative
interpolation scheme is applied to the velocity field. The projec-
tion method is again used to obtain a divergence-free velocity
at the end of the iterative mesh redistribution. Several numeri-
cal experiments have been conducted to demonstrate that the
resultant numerical scheme is stable, mass conservative, highly
efficient and fast, and capable of handling variable density and
viscosity.
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• It is convenient to extend the present adaptive phase field method
to three-dimensional phase field model for the mixture of two in-
compressible fluids.
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——————

Thanks!

——————
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