Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Outline

- Motivation
- 2 Model
 - Rodlike models Macroscopic model
- **3** 0+1 model
- 4 1+1 model
- **5** The decoupled case in 3D for a given velocity field
- **6** 0+2 model
- 7 Entropy, stress and convergence to equilibrium
- 8 Generalization of the entropy method
- **9** Conclusion

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Hui Zhang

- Polymeric fluids: liquid crystal, egg white, etc....
- Special properties : shear thinning, kayaking, tumbling, phase transition, defects ...

School of Mathematical Sciences, Beijing Normal University

liquid crystals-phases

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Motivation Model 0+1 model 1+1 model The decoupled case in 3D for a given velocity field 0+2 model Entropy, stress and convergence to

Kinetic model

Hui Zhang

m-the orientation of a rodlike particle $\psi(\mathbf{x}, \mathbf{m}, t)$ —the distribution function $\frac{\partial \psi}{\partial t} + (\mathbf{u} \cdot \nabla)\psi = \frac{1}{k_B T} \nabla \cdot \left\{ [D_{\parallel} \mathbf{m} \mathbf{m} + D_{\perp} (\mathbf{I} - \mathbf{m} \mathbf{m})] \cdot (\psi \nabla \mu) \right\}$

$$+rac{D_r}{k_BT}\mathcal{R}\cdot(\psi\mathcal{R}\mu)-\mathcal{R}\cdot(\mathbf{m} imes\kappa\cdot\mathbf{m}\psi), \ \ \mathbf{m}\in\mathbb{S}^2,$$

 $\mathcal{R} = \mathbf{m} \times \frac{\partial}{\partial \mathbf{m}}$: rotational operator $D_r = \frac{\xi_r}{k_B T}$: rotary diffusivity $\mu = \ln \psi + \overline{U}$: the chemical potential \overline{U} : the excluded-volume potential

$$\bar{U}(\mathbf{x},\mathbf{m},t) = k_B T \alpha \int_{\Omega} \int_{|\mathbf{m}'|=1} B(\mathbf{x},\mathbf{x}',\mathbf{m},\mathbf{m}') \psi(\mathbf{x}',\mathbf{m}',t) d\mathbf{m}' d\mathbf{x}'.$$

$$B(\mathbf{x}, \mathbf{x}', \mathbf{m}, \mathbf{m}') = \frac{1}{\varepsilon^3} \chi(\frac{\mathbf{x} - \mathbf{x}'}{\varepsilon}) |\mathbf{m} \times \mathbf{m}'|^2$$

Motivation Model 0+1 model 1+1 model The decoupled case in 3D for a given velocity field 0+2 model Entropy, stress and convergence to

Macroscopic model

Macroscopic model[E & Zhang, Meth. Appl. Anal., 06]

$$\mathbf{u}_{t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nabla \cdot \tau + \mathbf{F},$$

$$\nabla \cdot \mathbf{u} = 0.$$

$$\tau = \underbrace{\tau^{s}}_{\text{viscous stress}} + \underbrace{\tau^{e}}_{\text{elastic stress}}$$

$$\tau^{s} = 2\eta_{s}\mathbf{D} + \frac{1}{2}\xi_{r}\mathbf{D} : \langle \mathbf{mmmm} \rangle$$

$$\eta_{s} : \text{solvent viscosity}$$

$$\mathbf{D} := \frac{1}{2}(\kappa + \kappa^{T}) = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}) \text{ strain tensor}$$

$$\tau^{e} = -\langle (\mathbf{m} \times \mathcal{R}\mu)\mathbf{m} \rangle \longleftarrow \text{the virtual work principle}$$

$$\mathbf{F} = -\langle \nabla \mu \rangle$$

$$\langle \cdot \rangle \text{ denotes averaging with respect to the distribution ψ , i.e.,

$$\langle g \rangle = \int_{|\mathbf{m}|=1} g\psi d\mathbf{m}.$$$$

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Macroscopic model

Hui Zhang

Dimensionless rodlike model

$$\mathbf{u}_{t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \frac{\gamma}{Re} \Delta \mathbf{u} + \frac{1 - \gamma}{2Re} \nabla \cdot (\mathbf{D} : \langle \mathbf{mmm} \rangle) \\ + \frac{1 - \gamma}{ReDe} (\nabla \cdot \tau^{e} + \mathbf{F}) \text{ for } \mathbf{x} \in \Omega$$
$$\nabla \cdot \mathbf{u} = 0, \quad \text{for } \mathbf{x} \in \Omega.$$
$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{u}\psi) = \frac{\varepsilon^{2}}{De} \nabla \cdot [(\mathbf{I} + \mathbf{mm})(\psi \nabla \mu)] \\ + \frac{1}{De} \mathcal{R} \cdot (\psi \mathcal{R}\mu) - \mathcal{R} \cdot (\mathbf{m} \times \kappa \cdot \mathbf{m}\psi), \quad \mathbf{m} \in \mathbb{S}^{2}$$

 $\varepsilon = \frac{L}{L_0} = \frac{\text{the characteristic length of the rods}}{\text{the typical size of the flow region}}$

School of Mathematical Sciences, Beijing Normal University

energy law

the energy law(
$$\lambda = \frac{1-\gamma}{ReDe}$$
):

$$\frac{d}{dt} \left[\frac{1}{2} \int_{\Omega} |\mathbf{u}|^2 d\mathbf{x} + \lambda E(\psi) \right] = -\int_{\Omega} \left[\frac{\gamma}{De} |\nabla \mathbf{u}|^2 + \frac{1-\gamma}{2Re} \langle (\mathbf{mm} : \mathbf{D})^2 \rangle \right] d\mathbf{x} \\ -\lambda \int_{\Omega} \left[\frac{\varepsilon^2}{De} \langle \nabla \mu \cdot [(\mathbf{I} + \mathbf{mm}) \nabla \mu \rangle + \frac{1}{De} \langle \mathcal{R}\mu \cdot \mathcal{R}\mu \rangle \right] d\mathbf{x},$$

where $E(\psi)$ is a nonlocal intermolecular potential. Here it is

$$E(\psi) = \int_{\Omega} \int_{|\mathbf{m}|=1} \psi(\mathbf{x}, \mathbf{m}, t) \ln \psi(\mathbf{x}, \mathbf{m}, t) + \frac{1}{2} U(\mathbf{x}, \mathbf{m}, t) \psi(\mathbf{x}, \mathbf{m}, t) d\mathbf{m} d\mathbf{x}.$$

 < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

questions

- Wellposed analysis [H. Zhang & P.W. Zhang, SIAM J. Math. Anal. 08]
- Numerical simulation [H.J. Yu & P.W. Zhang, J. Non-Newtonian Fluid Mech. 07]
- Steady states analysis [H.L. Liu, H. Zhang, P.W. Zhang, G. Warnecke, P. Constantin, I. Kevrekidis, E.S. Titi, I. Fatkullin, V. Slastikov, Q. Wang]
- Long time behavior?

$$\varepsilon = 0, B = |\mathbf{m} \times \mathbf{m}|^2.$$

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Motivation Model 0+1 model 1+1 model The decoupled case in 3D for a given velocity field 0+2 model Entropy, stress and convergence to

Macroscopic model

Hui Zhang

stationary system

$$\begin{aligned} (\mathbf{u}_{\infty} \cdot \nabla)\mathbf{u}_{\infty} + \nabla p_{\infty} &= \frac{\gamma}{Re} \Delta \mathbf{u}_{\infty} + \frac{1 - \gamma}{ReDe} \nabla \cdot \tau_{\infty}, \quad \text{for } \mathbf{x} \in \Omega, \\ \nabla \cdot \mathbf{u}_{\infty} &= 0, \text{ for } \mathbf{x} \in \Omega, \\ (\mathbf{u}_{\infty} \cdot \nabla)\psi_{\infty} &= \frac{1}{De} \mathcal{R} \cdot \mathcal{R}\psi_{\infty} + \frac{1}{De} \mathcal{R} \cdot (\psi_{\infty} \mathcal{R}U_{\infty}) \\ &- \mathcal{R} \cdot (\mathbf{m} \times \kappa_{\infty} \cdot \mathbf{m}\psi_{\infty}), \\ U_{\infty} &= \alpha \int_{|\mathbf{m}'|=1} |\mathbf{m} \times \mathbf{m}'|^{2} \psi_{\infty}(\mathbf{x}, \mathbf{m}') d\mathbf{m}', \\ \tau_{\infty} &= \tau_{\infty}^{s} + \tau_{\infty}^{e}, \quad \kappa_{\infty} = (\nabla \mathbf{u}_{\infty})^{T}, \\ (\tau^{s})_{\infty} &= \frac{De}{2} \kappa_{\infty} : \langle \mathbf{mmm} \rangle_{\infty}, \ (\tau^{e})_{\infty} = 3S_{\infty} - \langle (\mathbf{m} \times \mathcal{R}U_{\infty})_{\infty} \mathbf{m} \rangle_{\infty}. \end{aligned}$$

School of Mathematical Sciences, Beijing Normal University

э

A D > <
 A P >
 A

Motivation Model 0+1 model 1+1 model The decoupled case in 3D for a given velocity field 0+2 model Entropy, stress and convergence to o
o
o
o
o
Macroscopic model

Potential

Hui Zhang

$$U(\mathbf{m}) \triangleq U(\mathbf{m}, [\psi]) = \int_{\mathbb{S}^2} K(\mathbf{m}, \mathbf{m}') \psi(\mathbf{m}', \mathbf{x}, t) d\mathbf{m}',$$

 $K(\mathbf{m}, \mathbf{m}')$ is a smooth, real valued, symmetric kernel.

- the dipolar potential: $K(\mathbf{m}, \mathbf{m}') = -\alpha \mathbf{m} \cdot \mathbf{m}'$
- Onsager potential: $K(\mathbf{m}, \mathbf{m}') = \alpha |\mathbf{m} \times \mathbf{m}'|$
- Maier-Saupe potential: K(m, m') = α|m × m'|² where α is a parameter that measures the potential intensity.

Here we can see that the potential depend on the PDF from the appearances.

Macroscopic model

Hui Zhang

Potential relation

1D Onsager potential

$$K(\mathbf{m},\mathbf{m}') = \alpha |\sin(\theta - \theta')|$$

1D Maier-Saupe potential

$$K(\mathbf{m},\mathbf{m}') = \alpha |\sin(\theta - \theta')|^2$$

1D Maier-Saupe potential is an approximation of the 1D Onsager potential since $\sin^2(\theta - \theta') = \frac{1}{2}(1 - \cos 2(\theta - \theta'))$ and

$$|\sin(\theta-\theta')|=rac{2}{\pi}\left[1-\sum_{k=1}^{\infty}rac{1}{2k-1}\cos 2k(\theta-\theta')
ight].$$

School of Mathematical Sciences, Beijing Normal University

Potential

The intrinsical potential forms are exactly some well-known functions.

• Example 1: dipolar potential:

$$U_{\theta\theta} + U = 0$$

$$U = \eta \cos(\theta - \theta_0).$$

• Example 2: Onsager potential:

$$U_{\theta\theta} + U = 4\alpha \frac{e^{-U}}{\int_0^{2\pi} e^{-U} d\theta}.$$

$$U_{\theta\theta\theta} + U_{\theta}U_{\theta\theta} + UU_{\theta} + U_{\theta} = 0.$$

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Potential

Hui Zhang

• Example 3: Maier-Saupe potential:

$$U_{\theta\theta} + 4U = 2\alpha$$

$$U = \frac{\alpha}{2} + \eta \cos 2(\theta - \theta_0)$$

• Example 4: Maier-Saupe potential:

$$\mathcal{R} \cdot \mathcal{R}U + 6U = 4\alpha$$
$$U = \frac{2\alpha}{3} - \eta \left(|\mathbf{m} \times \mathbf{d}|^2 - \frac{2}{3} \right)$$

School of Mathematical Sciences, Beijing Normal University

Entropy

Hui Zhang

- A. Arnold et al, Comm. Partial Diff. Equs. 01
- B. Jourdain et al, Arch. Rational Mech. Anal. 06

Denote $f(t, v)(v \in \mathbb{R}^n)$: the distribution function, *The physical entropy* (Boltzamann's H-functional) is

$$H(f)=\int_{\mathbb{R}^n}f\ln fdv.$$

 $M^{f}(v)$: the Maxwellian distribution function, *the relative to the Maxwellian entropy* is

$$e(f|M^f) = \int_{\mathbb{R}^n} f \ln(\frac{f}{M^f}) dv.$$
(1)

School of Mathematical Sciences, Beijing Normal University

Entropy

an admissible relative entropy: Let *J* be either \mathbb{R} or $\mathbb{R}^+ := (0, \infty)$. Let $\psi \in C(\overline{J}) \cap C^4(J)$ satisfying the conditions

$$egin{aligned} \psi(1) &= 0, \ \psi'' &\geq 0, \quad \psi''
eq 0 \quad ext{on} \quad J, \ (\psi''')^2 &\leq rac{1}{2} \psi'' \psi^{IV} \quad ext{on} \quad J. \end{aligned}$$

Let $\rho_1 \in L^1(\mathbb{R}^n)$, $\rho_2 \in L^1_+(\mathbb{R}^n)$ with $\int \rho_1 dx = \int \rho_2 dx = 1$ and $\rho_1/\rho_2 \in \overline{J}\rho_2(dx)$ -a.e. Then

$$e_{\psi}(
ho_1|
ho_2) = \int_{\mathbb{R}^n} \psi\left(rac{
ho_1}{
ho_2}
ight)
ho_2(dx)$$

is called an admissible relative entropy (of ρ_1 with respect to ρ_2) with generating function ψ .

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Entropy

Hui Zhang

• Admissible relative entropies \leftarrow strictly convex function ψ .

$$h(x) = x \ln x - (x - 1)$$
 $h(x) = x^p - 1 - p(x - 1), p = 2$

• The typical example: the physical relative entropy (1) generated by $\chi_{ph}(\sigma) = \sigma \ln \sigma - \sigma + 1$ not by $\psi = \sigma \ln \sigma$.

School of Mathematical Sciences, Beijing Normal University

Entropy

Hui Zhang

• The physical relative entropy $e = e_{\chi_{ph}}$ can be written as

$$e(
ho|
ho_{\infty})=F(
ho|A)-F(
ho_{\infty}|A); \quad F(
ho|A)=\int_{\mathbb{R}^n}(
ho\ln
ho+A(x)
ho)dx.$$

A potential

• The relative entropy is continuous: $\rho_j \to \rho(\text{as } j \to \infty)$ in $L^2_+(\mathbb{R}^n, \rho_\infty^{-1}(dx))$ with the normalization $\int \rho_j dx = \int \rho_\infty dx = 1$.

$$e_{\psi}(
ho_j|
ho_{\infty})
ightarrow e_{\psi}(
ho|
ho_{\infty}) \quad as \quad j
ightarrow \infty.$$

School of Mathematical Sciences, Beijing Normal University

0+1 Model and results

$$\psi_t = rac{1}{De} [\psi_{ heta heta} + (\psi U_{ heta})_{ heta}], \quad \int_0^{2\pi} \psi(heta, t) d heta = 1$$
 $U = lpha \int_0^{2\pi} \sin^2(heta - heta') \psi(heta', t) d heta'.$

Theorem

$$\frac{1}{2}(\int_0^{2\pi} |\psi - \psi_\infty| d\theta)^2 \le H(t) := \int_0^{2\pi} \psi \ln(\frac{\psi}{\psi_\infty}) d\theta \le H(0) e^{-2\beta t}$$

provided that
$$\alpha^2 \leq \frac{\lambda_1}{De}(1 - \frac{1}{2De}) - \beta$$
.

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

0+1 Model and results(continuous)

Here $\psi_{\infty} = \frac{e^{-U_{\infty}}}{\int_{0}^{2\pi} e^{-U_{\infty}} d\theta}$ is a formal expression, which satisfies the steady state equation $0 = \psi_{\theta\theta} + (\psi U_{\theta})_{\theta}$.

Theorem

(i) $\alpha \leq 4$, the only stationary solution $\psi_{\infty} = 1/2\pi$. (ii) $\alpha > 4$, $\psi_{\infty} = 1/2\pi$ and $\psi_{\infty}(\theta) = \frac{e^{-\eta^* \cos 2(\theta - \theta_0)}}{\int_0^{2\pi} e^{-\eta^* \cos 2\theta} d\theta}$, θ_0 depends on the initial data, η^* is uniquely determined by

$$\frac{\int_0^{2\pi}\cos 2\theta \ e^{-\eta^*\cos 2\theta}d\theta}{\int_0^{2\pi}e^{-\eta^*\cos 2\theta}d\theta} + \frac{2\eta^*}{\alpha} = 0.$$

[P. Constantin et al 05, I. Fatkullin et al 05, C. Luo et al 05, H.L. Liu et al 05]

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Proof of results

Hui Zhang

$$\psi_t = \frac{1}{De} \partial_\theta \left[\psi \partial_\theta \ln(\frac{\psi}{\psi_\infty}) + \psi (U - U_\infty)_\theta \right]$$

Multiplication by $\mu = \ln \psi + U_{\infty} = \ln(\frac{\psi}{\psi_{\infty}})$ and integration

$$\begin{split} & \frac{1}{2}\frac{d}{dt}\int_0^{2\pi}\psi\ln(\frac{\psi}{\psi_\infty})d\theta + \frac{1}{De}\int_0^{2\pi}\psi\left|(\ln\frac{\psi}{\psi_\infty})_\theta\right|^2d\theta\\ & \leq \frac{1}{2De^2}\int_0^{2\pi}\psi\left|(\ln\frac{\psi}{\psi_\infty})_\theta\right|^2d\theta + \frac{1}{2}\int_0^{2\pi}\psi|(U-U_\infty)_\theta|^2d\theta. \end{split}$$

School of Mathematical Sciences, Beijing Normal University

Proof of results(continuous)

- $\int_0^{2\pi} \psi |(U U_\infty)_\theta|^2 d\theta \le 2\alpha^2 \int_0^{2\pi} \psi \ln(\frac{\psi}{\psi_\infty}) d\theta$,
- The well-known Csiszár-Kullback inequality

$$(\int_0^{2\pi} |\psi-\psi_\infty| d heta)^2 \leq 2\int_0^{2\pi} \psi \ln(rac{\psi}{\psi_\infty}) d heta.$$

• There exists a constant $\lambda_1 > 0$ such that

$$\int_{0}^{2\pi}\psi\ln(\frac{\psi}{\psi_{\infty}})d\theta\leq\frac{1}{\lambda_{1}}\int_{0}^{2\pi}\psi\left|(\ln\frac{\psi}{\psi_{\infty}})_{\theta}\right|^{2}d\theta$$

from Theorem 3.4 in [A. Arnold et al, 01].

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Proof of results(continuous)

$$\frac{1}{2}\frac{d}{dt}\int_0^{2\pi}\psi\ln(\frac{\psi}{\psi_\infty})d\theta\leq \left[\alpha^2+\lambda_1(-\frac{1}{De}+\frac{1}{2De^2})\right]\int_0^{2\pi}\psi\ln(\frac{\psi}{\psi_\infty})d\theta.$$

Here we can see that

$$H(t):=\int_{0}^{2\pi}\psi\ln(rac{\psi}{\psi_{\infty}})d heta\leq H(0)e^{-2eta t}$$

provided that

Hui Zhang

$$\alpha^2 + \lambda_1 \left(-\frac{1}{De} + \frac{1}{2De^2} \right) \le -\beta < 0,$$

where β is a arbitrary small positive constant.

School of Mathematical Sciences, Beijing Normal University

1+1 Model and result

$$\psi_t = \frac{1}{De} [\psi_{\theta\theta} + (\psi U_{\theta})_{\theta}] + \gamma (\psi \sin^2 \theta)_{\theta}$$

Theorem

Hui Zhang

$$\frac{1}{2} \left(\int_0^{2\pi} |\psi - \bar{\psi}_{\infty}| d\theta \right)^2 \le G(t) := \int_0^{2\pi} \psi \ln(\frac{\psi}{\bar{\psi}_{\infty}}) d\theta \le G(0) e^{-2\beta t}$$
provided that $\alpha^2 \le \frac{\lambda_1}{De} \left(1 - \frac{1}{2De}\right) - \beta.$

1+1 Model and results(continuous)

Here
$$\bar{\psi}_{\infty} = \frac{e^{-V_{\infty}}}{\int_{0}^{2\pi} e^{-V_{\infty}} d\theta}$$
, $V_{\infty}(\theta) = U_{\infty} + De \gamma(\frac{1}{2} - \frac{1}{4}\sin 2\theta)$ is a formal expression, which satisfies the steady state equation
 $0 = \psi_{\theta\theta} + (\psi U_{\theta})_{\theta} + De\gamma(\psi \sin^2 \theta)_{\theta}$
Theorem (G. Warnecke & H. Zhang. 09)

$$\begin{split} \bar{\psi}_{\infty}(\theta) &= \frac{1}{Z} \left[1 + b(\theta) \right] e^{-a(\theta)} \\ a(\theta) &= \frac{\alpha}{2} + \eta \cos 2(\theta - \theta_0) + \frac{\gamma \theta}{2}, b(\theta) = (e^{\gamma \pi} - 1) \frac{\int_0^\theta e^{a(\tau)} d\tau}{\int_0^{2\pi} e^{a(\tau)} d\tau}, \end{split}$$

$$\frac{1}{Z} \int_0^{2\pi} \cos 2(\theta - \theta_0) [1 + b(\theta)] e^{-a(\theta)} d\theta + \frac{2\eta}{\alpha} + \frac{\gamma}{2\alpha} \sin 2\theta_0 = 0,$$
$$\frac{1}{Z} \int_0^{2\pi} \sin 2(\theta - \theta_0) [1 + b(\theta)] e^{-a(\theta)} d\theta + \frac{\gamma}{2\alpha} \cos 2\theta_0 = 0.$$

500

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

1+1 Model and results(continuous)

- $\alpha < \alpha_1(\alpha_1 \approx 4.083)$, there is only one pair of solutions (η, θ_0)
- $\alpha > \alpha_2(\alpha_2 \approx 5.125)$, there is only a pair of solutions (η, θ_0) .
- α₁ < α < α₂, there are possible many pairs of solutions (η, θ₀),
 one/ two/ three.

 $(\eta, \theta_0) = (0.1333, 0.8374), (0.967, 1.728), (1.0596, 1.935)$ are solutions for $\gamma De = 0.01$ and $\alpha = 4.5$

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Model and results for the decoupled case in 3D

Set $\mathbf{x}(t, \mathbf{x}_0)$ to be the flow map satisfying

l

Hui Zhang

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{u}(t, \mathbf{x}(t)), \quad \mathbf{x}(0) = \mathbf{x}_0,$$

$$\tilde{\psi}(t, \mathbf{m}) = \psi(t, \mathbf{x}(t, \mathbf{x}_0), \mathbf{m})$$
. Then
 $\frac{\partial \tilde{\psi}}{\partial t}(t, \mathbf{m}) = \frac{1}{De} \mathcal{R} \cdot \mathcal{R} \tilde{\psi} + \mathcal{R} \cdot [(\frac{1}{De} \mathcal{R} U - \mathbf{m} \times \kappa \cdot \mathbf{n})]$

If find a scalar function $A(\mathbf{m})$ and $B(\mathbf{m})$ such that

$$\mathcal{R}A(\mathbf{m}) = \mathbf{m} \times \kappa_{\infty} \cdot \mathbf{m}, \quad \mathcal{R}B(\mathbf{m}) = \mathbf{m} \times (\kappa - \kappa_{\infty}) \cdot \mathbf{m} \quad (2)$$

When $\|\kappa - \kappa_{\infty}\|_{L^{\infty}} \to 0$ as $t \to \infty$,
 $\tilde{G}(t) := \int_{\mathbb{S}^{2}} \tilde{\psi} \ln(\frac{\tilde{\psi}}{\tilde{\psi}_{\infty}}) d\mathbf{m} \leq \tilde{G}(0) e^{-2\beta t}$

School of Mathematical Sciences, Beijing Normal University

 $\mathbf{m})\tilde{\psi}],$

Model and results for the decoupled case in 3D(continuous)

Here formally $\tilde{\psi}_{\infty} = e^{-(U_{\infty}+DeA)} / \int_{\mathbb{S}^2} e^{-(U_{\infty}+DeA)} d\mathbf{m}$. For example, when κ_{∞} is symmetric $(\kappa_{\infty}^T = \kappa_{\infty})$ (elongational flows), $A = \frac{1}{2}\mathbf{m} \cdot \kappa_{\infty} \cdot \mathbf{m}$. Thus

$$\tilde{\psi}_{\infty} = e^{-(U_{\infty} + \frac{De}{2}\mathbf{m}\cdot\kappa_{\infty}\cdot\mathbf{m})} / \int_{\mathbb{S}^2} e^{-(U_{\infty} + \frac{De}{2}\mathbf{m}\cdot\kappa_{\infty}\cdot\mathbf{m})} d\mathbf{m}.$$

But for some cases we can prove such $ilde{\psi}_\infty$ does not exist. e.g.

$$\kappa_{\infty} = \left(\begin{array}{ccc} 0 & 0 & \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

solutions at the weak shear flow

[H. Zhang & P.W. Zhang, Physica D, 07]

- Tumbling
- Logrolling
- Kayaking

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

0+2 Model and results

$$\begin{split} \psi_t &= \frac{1}{De} \mathcal{R} \cdot (\mathcal{R}\psi + \psi \mathcal{R}U), \\ U &= \alpha \int_{\mathbb{S}^2} |\mathbf{m} \times \mathbf{m}'|^2 \psi(\mathbf{m}', t) d\mathbf{m}', \\ &\int_{\mathbb{S}^2} \psi(\mathbf{m}, t) d\mathbf{m} = 1. \end{split}$$

Similar result

$$\frac{1}{2} \left(\int_{0}^{2\pi} |\psi - \psi_{\infty}| d\theta \right)^{2} \leq N(t) := \int_{0}^{2\pi} \psi \ln(\frac{\psi}{\psi_{\infty}}) d\theta \leq N(0) e^{-2\beta t}$$

where $\psi_{\infty} = \frac{e^{-U_{\infty}}}{\int_{0}^{2\pi} e^{-U_{\infty}} d\theta}$ satisfies
$$0 = \mathcal{R} \cdot (\mathcal{R}\psi + \psi \mathcal{R}U).$$

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

0+2 Model and results(continuous)

Theorem

Hui Zhang

$$\alpha^* = \min_{\eta} \frac{\int_0^1 e^{-\eta z^2} dz}{\int_0^1 (z^2 - z^4) e^{-\eta z^2} dz} \approx 6.731393.$$
(3)

All solutions are given explicitly by

$$\psi = k \, e^{-\eta (\mathbf{m} \cdot \mathbf{d})^2},$$

where $\mathbf{d} \in \mathbb{S}^2$ is a parameter, $\eta = \eta(\alpha)$ and $k = [4\pi \int_0^1 e^{-\eta z^2} dz]^{-1}$

$$\frac{3e^{-\eta}}{\int_0^1 e^{-\eta z^2} dz} - \left(3 - 2\eta + \frac{4\eta^2}{\alpha}\right) = 0.$$
 (4)

200

School of Mathematical Sciences, Beijing Normal University

0+2 Model and results(continuous)

More precisely,

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Entropy

Theorem

The unique stationary solution to the coupled problem with homogeneous Dirichlet boundary conditions on the velocity is

$$\mathbf{u}_{\infty} = 0$$
 and $\psi_{\infty} \propto exp(-U_{\infty}).$

Theorem

Set (\mathbf{u}, ψ) to the coupled problem in the case homogeneous Dirichlet boundary conditions on the velocity. Then \mathbf{u} converges exponentially fast in the $L_{\mathbf{x}}^2$ norm to $\mathbf{u}_{\infty} = 0$ and the entropy H(t), where $\psi_{\infty} \propto \exp(-U_{\infty})$, converges exponential fast to 0. Therefore, ψ converges exponentially fast in the $L_{\mathbf{x}}^2(L_{\mathbf{m}}^1)$ norm to ψ_{∞} .

Stress

Hui Zhang

Theorem

Consider a solution (\mathbf{u}, ψ) to the coupled problem in the case homogeneous Dirichlet boundary conditions on the velocity. Then we have

$$\|\tau^e - \tau^e_{\infty}\|_{L^1_{\mathbf{x}}} \approx O(e^{-Ct}), \|\tau^s - \tau^s_{\infty}\|_{L^1_{\mathbf{x}}} < \infty, \text{ for a.e. } t > 0.$$

School of Mathematical Sciences, Beijing Normal University

Generalization of the entropy method

Let (\mathbf{u}, ψ) be a solution of time evolution system with the boundary condition $\mathbf{u} = \mathbf{g}(t)$ on $\partial \Omega$. And let $(\mathbf{u}_{\infty}, \psi_{\infty})$ be a solution to the system with the same initial boundary conditions. Set

$$\mathbf{\bar{u}}(t,\mathbf{x}) = \mathbf{u}(t,\mathbf{x}) - \mathbf{u}_{\infty}(\mathbf{x}), \quad \bar{\psi}(t,\mathbf{x},\mathbf{m}) = \psi(t,\mathbf{x},\mathbf{m}) - \psi_{\infty}(\mathbf{x},\mathbf{m}).$$

introduce the following quantities:

$$E = \frac{1}{2} \int_{\Omega} |\mathbf{\bar{u}}|^2 d\mathbf{x},$$

$$H = \int_{\Omega} \int_{\mathbb{S}^2} \psi \ln\left(\frac{\psi}{\psi_{\infty}}\right) d\mathbf{m} d\mathbf{x},$$

$$F = E + \lambda H, \quad \lambda = \frac{1 - \gamma}{ReDe}.$$

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Generalization of the entropy method

$$\frac{dF}{dt} + \frac{\gamma}{Re} \int_{\Omega} |\nabla \bar{\mathbf{u}}|^2 d\mathbf{x} + \frac{\lambda}{De} \int_{\Omega} \int_{\mathbb{S}^2} \psi \left| \mathcal{R} \ln(\frac{\psi}{\psi_{\infty}}) \right|^2 d\mathbf{m} d\mathbf{x} + \lambda \frac{De}{2} \int_{\Omega} \langle (\mathbf{mm} : \nabla \bar{\mathbf{u}})^2 \rangle d\mathbf{x}$$
$$= -I_1 - \lambda I_2 - \lambda I_3 + \lambda I_4 + \lambda I_5 + 3\lambda I_6 - \lambda I_7 + \frac{\lambda}{De} (I_8 + I_9)$$

$$I_{1} = \int_{\Omega} \bar{\mathbf{u}} \cdot \nabla \mathbf{u}_{\infty} \bar{\mathbf{u}} d\mathbf{x}, \quad I_{2} = \int_{\Omega} \int_{\mathbb{S}^{2}} \bar{\mathbf{u}} \psi \cdot \nabla (\ln \psi_{\infty}) \, d\mathbf{m} d\mathbf{x},$$
$$I_{3} = \int_{\Omega} \kappa_{\infty} : (\langle \mathbf{mmmm} \rangle - \langle \mathbf{mmmm} \rangle_{\infty}) : \nabla \bar{\mathbf{u}} \, d\mathbf{x},$$

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Generalization of the entropy method

$$\begin{split} I_4 &= \int_{\Omega} \langle (\mathbf{m} \times \mathcal{R}(U - U_{\infty})) \mathbf{m} \rangle : \nabla \bar{\mathbf{u}} \, d\mathbf{x}, \\ I_5 &= \int_{\Omega} \int_{\mathbb{S}^2} (\mathbf{m} \times \mathcal{R}U_{\infty}) \mathbf{m} \bar{\psi} : \nabla \bar{\mathbf{u}} \, d\mathbf{x}, \\ I_6 &= \int_{\Omega} \langle \mathbf{m} \mathbf{m} \rangle_{\infty} : \nabla \bar{\mathbf{u}} \, d\mathbf{x}, \\ I_7 &= \int_{\Omega} \int_{\mathbb{S}^2} (\mathbf{m} \times (\kappa - \kappa_{\infty}) \cdot \mathbf{m}) \psi \cdot \mathcal{R}(\ln \psi_{\infty}) d\mathbf{m} d\mathbf{x}, \\ I_8 &= \int_{\Omega} \int_{\mathbb{S}^2} \psi \left[\mathcal{R} \cdot \mathcal{R}(U - U_{\infty}) \right] d\mathbf{m} d\mathbf{x}, \\ I_9 &= \int_{\Omega} \int_{\mathbb{S}^2} \psi \left[+ \mathcal{R}(U - U_{\infty}) \cdot \mathcal{R}(\ln \psi_{\infty}) \right] d\mathbf{m} d\mathbf{x}. \end{split}$$

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Generalization of the entropy method

When \mathbf{u}_{∞} is homogeneous flow, i.e., with a constant $\nabla \mathbf{u}_{\infty}$. Precisely, we assume that the boundary conditions on \mathbf{u} are such that a homogeneous flow $\mathbf{u}_{\infty}(\mathbf{x}) = M\mathbf{x}$.

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Generalization of the entropy method

M is antisymmetric

$$\begin{aligned} \mathbf{u} &\to \mathbf{u}_{\infty} \quad \text{in} \quad L^2_{\mathbf{x}}, \\ \psi &\to \psi_{\infty} \quad \text{in} \quad L^2_{\mathbf{x}}(L^1_{\mathbf{m}}) \end{aligned}$$

provided that

$$\begin{split} &\frac{\gamma}{Re} - (2\alpha + 1) - \| (\int_{\mathbb{S}^2} \psi_0^2 d\mathbf{m})^{\frac{1}{2}} \|_{L^{\infty}} > a_1 > 0, \\ &\frac{1}{C_{SLI}} \frac{\lambda}{De} - \left[3\alpha + 2\alpha \| (\int_{\mathbb{S}^2} \psi_0^2 d\mathbf{m})^{\frac{1}{2}} \|_{L^{\infty}} \right] > a_2 > 0 \end{split}$$

where C_{SLI} is from the Sobolev logarithmic inequality:

$$\int_{\Omega}\int_{\mathbb{S}^2}\phi\ln(\frac{\phi}{\psi_{\infty}})d\mathbf{m}d\mathbf{x}\leq C_{SLI}\int_{\Omega}\int_{\mathbb{S}^2}\phi\left|\mathcal{R}\ln(\frac{\phi}{\psi_{\infty}})\right|^2d\mathbf{m}d\mathbf{x}.$$

School of Mathematical Sciences, Beijing Normal University

Long-time asymptotic behaviour of a multiscale rod-like model of polymeric fluids

Generalization of the entropy method

M is symmetric(e.g. elongational flow)

$$\begin{array}{ll} \mathbf{u} \to \mathbf{u}_{\infty} & \text{in} \quad L^2_{\mathbf{x}}, \\ \psi \to \psi_{\infty} & \text{in} \quad L^2_{\mathbf{x}}(L^1_{\mathbf{m}}) \end{array}$$

provided that

$$\begin{split} &\frac{\gamma}{Re} - (2\alpha + 1) - \| (\int_{\mathbb{S}^2} \psi_0^2 d\mathbf{m})^{\frac{1}{2}} \|_{L^{\infty}} - \| M \|_{L^{\infty}} > a_3 > 0, \\ &\frac{1}{C_{SLI}} \frac{\lambda}{De} - \left[3\alpha + 2\alpha \| (\int_{\mathbb{S}^2} \psi_0^2 d\mathbf{m})^{\frac{1}{2}} \|_{L^{\infty}} - \| M \|_{L^{\infty}} \right] > a_4 > 0. \end{split}$$

Hui Zhang

School of Mathematical Sciences, Beijing Normal University

Conclusion

Hui Zhang

- long time asymptotic behavior of the rodlike model in various cases 0 + 1, 1 + 1, 0 + 2 and the given flow case.
- long time asymptotic behavior of entropy and stress for homogenous Dirichlet boundary condition.
- long time asymptotic behavior of the solution for non-homogenous Dirichlet boundary condition.