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Motivation

Polymeric fluids

e Polymeric fluids: liquid crystal, egg white, etc....

e Special properties : shear thinning, kayaking, tumbling, phase
transition, defects ...
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Long-time asymptotic t is: like model of polymeric fluids



Model
°

Rodlike models

Kinetic model

m—the orientation of a rodlike particle
1(x, m, t)—the distribution function

o 1
aif +(u-V)p= leTV {[Dymm + D, (1 — mm)] - (V) }
+ 2R (WR) ~ R (mx k- mp), meS,
kgT

R =m X 3%_1: rotational operator D, = ki—’T: rotary diffusivity
1 = Invy + U: the chemical potential
U: the excluded-volume potential

U(x,m, 1) —kBTa// B(x,x',m,m’)y(x', m’ t)dm’dx’.
Q J|m/|=1

1

B(Xv Xlamvm/) = ETX(X_TX/)’m X m/|2

of Mathematical Sciences,




Model

©000000000000
Macroscopic model

Macroscopic model[E & Zhang , Meth. Appl. Anal., 06]

u+(u-Vu+Vp=V-7+F,

V-u=0.
— S e
T = T + T

viscous stress  elastic stress
7 =2n,D + 1&D : (mmmm)
Ns solvent viscosity
D := (rk+ £") = $(Vu+ (Vu)7) strain tensor
—((m x Rp)m) «— the virtual work principle
Fe <W>
(- > enotes averaging with respect to the distribution %, i.e.,

of Mathematical Sciences,




Model

0®00000000000
Macroscopic model

Dimensionless rodlike model

1 —
w+ (u-V)u+Vp = 7 Au+ Iy (D : (mmmm))

Re 2Re
1V F) forx € Q
ReDe g o
V-u=0, forxeQQ.
o 2

TV () = %v (X4 mm) (V)]
_,_éR. (YRu) —R-(mx k-myp), meE S2.

L the charateristic length of the rods
Ly the typical size of the flow region
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Macroscopic model

energy law

the energy law(\ = ;;Dl ):

jt[; /Q ]u[zdx—i—)\E(w)] _ /Q [geWu]z—I—lz;Z((mm:D)z)] dx

3 [ St 1 mm) e R R |,

where E()) is a nonlocal intermolecular potential. Here it is

E(y) = /Q/Im|_lw(X7m, 1) Iny(x,m, 1) + %U(X,m, 1)(x, m, t)dmdx.
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Macroscopic model

questions

e Wellposed analysis [H. Zhang & P.W. Zhang, SIAM J. Math.
Anal. 08]

e Numerical simulation [H.J. Yu & P.W. Zhang, J. Non-Newtonian
Fluid Mech. 07]

e Steady states analysis [H.L. Liu, H. Zhang, P.W. Zhang, G.
Warnecke, P. Constantin, I. Kevrekidis, E.S. Titi, I. Fatkullin, V.
Slastikov, Q. Wang]

e Long time behavior?

£=0,B=|mxm.
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Macroscopic model

stationary system

11—~

ReDev “Too, forx e,

-
(Uoo - VU + Vpoo = Re Aug +
V- -uy, =0, forx € Q,
1 1
(uoo : v)woo - ER : 7zwoo + ER‘ (wooRUoo)
—R - (M X Koo - Moo,

Uso = a/ Im x m’|* 0 (x, m')dm’,
'] =1

Too = TS0 75, Foo = (V)T
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Macroscopic model

Potential

K(m, m’) is a smooth, real valued, symmetric kernel.
e the dipolar potential: K(m,m’) = —am - m’
e Onsager potential: K(m,m’) = o|/m x m’|
e Maier-Saupe potential: K(m, m’) = o/m x m’|?

where « is a parameter that measures the potential intensity.

Here we can see that the potential depend on the PDF from the
appearances.
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Macroscopic model

Potential relation

1D Onsager potential
K(m,m') = «|sin(0 — 0')|
1D Maier-Saupe potential

K(m,m’) = ofsin(d — 6')

1D Maier-Saupe potential is an approximation of the 1D Onsager
potential since sin?(6 — ¢') = (1 — cos2(6 — ¢')) and
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Macroscopic model

Potential

The intrinsical potential forms are exactly some well-known
functions.

e Example 1: dipolar potential:
Ugpg+U =0
U = ncos(6 — o).
e Example 2: Onsager potential:
U

Upg + U =
f27r e Udo

Uggo + UgUgg + UUyg + Ug = 0.
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Macroscopic model

Potential

e Example 3: Maier-Saupe potential:
Upp + 4U = 2«
o
U= 5 +ncos2(0 — 6p)

e Example 4: Maier-Saupe potential:

R-RU+6U = 4a
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Macroscopic model

Entropy

e A. Arnold et al, Comm. Partial Diff. Equs. 01
e B. Jourdain et al, Arch. Rational Mech. Anal. 06

Denote f(z,v)(v € R"): the distribution function, The physical
entropy (Boltzamann’s H-functional) is

H(f)= [ flnfdv.
Rn

M/ (v): the Maxwellian distribution function, the relative to the
Maxwellian entropy is

f

e(fIM") = | Sy (1)
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Macroscopic model

Entropy

an admissible relative entropy: Let J be either R or Rt := (0, c0).
Let ) € C(J) N C*(J) satisfying the conditions

¥(1) =0,

" >0, ¢"#0 on J,

(1/}///)2 < %wuwlv on J.

Let py € LY(R"), po € LL (R") with [ pydx = [ podx = 1 and
p1/p2 € Jpa(dx)-a.e. Then

ey(p1lp2) = /R Y (Z;) p2(dx)

is called an admissible relative entropy (of p1 with respect to py) with
generating function 1.
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Macroscopic model

Entropy

e Admissible relative entropies «—strictly convex function 1.

h(x) =xInx—(x—1) h(x)=x"—-1—-px—1),p=2

0 05 1 15 2z 25 3 85 ¢ 0 05 1 185 2z 25 & 5 4

e The typical example: the physical relative entropy (1) generated
by xpn(0) =clnoc — o+ 1notby ¢y =olno.
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Macroscopic model

Entropy

o The physical relative entropy e = e, can be written as

e(plpsc) = F(plA)—F(psc|A);  F(plA) = /R (plnp+A(x)p)dx.

A potential

e The relative entropy is continuous: p; — p(as j — 00) in
L% (R", p5)(dx)) with the normalization [ pjdx = [ poodx = 1.

ey (pjlpsc) = ey(plpsc) as j— oo.




0+1 model

0+1 Model and results

27

1
Yy = E[woe + (¥ Up)g), ; »(0,1)do = 1

21
U=a / sin?(0 — 6')y (6, 1)l
0

Theorem

2w 2T
21— wlao)? < ) = $In(-L-)do < H(0)e "
2% Jo 0

: A 1
provided that o* < $L(1 — 51-) — 3.




0+1 model

0+1 Model and results(continuous)

—U, . . . .
Here 9o, = % is a formal expression, which satisfies the
0

steady state equation 0 = gy + (¢YUp)y.

Theorem

(i) a < 4, the only stationary solution s, = 1/27.

e —n™ cos2(6— 0o)

(ii) @ > 4, Yoo = 1 /27 and oo (0) = 7 e g 0o depends on
the initial data, n* is uniquely determined by
cos20 e Cs204h oy
b +ZL o
fOZﬂ' e—"* c0s20 40 [0

[P. Constantin et al 05, I. Fatkullin et al 05, C. Luo et al 05, H.L. Liu
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0+1 model

Proof of results

Y
Yoo

Multiplication by pn = Inp + Uy = ln(w%) and integration

Y = *39 [1#59 In(—) + ¢(U — Uoo)a]

27 2 2
2dt ¥In ( )d9+/ (1n7)9
1 W 1 )
< 2De2/0 W (ln@)g d0+2 A w\(U Usc)o|*df.
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0+1 model

Proof of results(continuous)

T U|(U — Uso)o2d0 < 202 [ In()do),
e The well-known C51szar-Kullback inequality

27 o w
(/ 1) — Yoold®)? <2 [ 4pIn(——)db
0 0 woo
e There exists a constant A; > 0 such that
¥ 2
In < — 4o
0 w (7/100 ) o )\1 w ’

from Theorem 3.4 in [A. Arnold et al , O1].
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0+1 model

Proof of results(continuous)

1 ¢)

1d 2
wl(lﬁgd9< Py-%AM—-%ZD&)} VIn()do

2 dt
Here we can see that

. n f‘/} —2pt
mql¢uw)w<mm

provided that

1 1

a +)\1(—f De 575) < -6 <0,

where [ is a arbitrary small positive constant.
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1+1 model

1+1 Model and result

i = o[ + (U] + (8 sin’ )y

Theorem

1 2 — 21
5(/0 [ — oo|dB)* < G(2) = @z)m(i

0 0o

)do < G(0)e™2%

provided that o* < 171(1 — 55-) — B.
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1+1 model

1+1 Model and results(continuous)

- v
Here 1) = W, Voo(0) = Uso + De (5 — 1sin20) is a

formal expression, which satisfies the steady state equation
0 = o + (1Up)g + De (v sin® 0)g

Theorem (G. Warnecke & H. Zhang, 09)

Voo(6) =  [1+ b(6)] e=®)
e (T) dr
a(f) = § +ncos2(6 — 6p) + %ovb(e) = (e — 1);})’7 a(r )‘:’T

NI~

o 2 v
/ c0s2(8 — 60)[1 + b(60)] e @ap + 21 + L gin2gy — 0,
0 a 2«

27
/ sin2(6 — 6o)[1 + b(8)] e=Oaf + 2l cos 26y = 0.
0 (0%

NI~
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1+1 Model and results(continuous)

e a < aj(ag &~ 4.083), there is only one pair of solutions(7, 6y)
e a > ap(ay & 5.125), there is only a pair of solutions (7, fp).

e o) < a < a, there are possible many pairs of solutions (7, 6y),
one/ two/ three.
(n, 60) = (0.1333,0.8374), (0.967, 1.728), (1.0596, 1.935) are
solutions for vDe = 0.01 and o« = 4.5

of Mathematical Sciences, Beijing Normal University

-like model of pol



oupled case in 3D for a given velocity field

Model and results for the decoupled case in 3D

Set x(7,Xp) to be the flow map satisfying

dax(t
X0 ux), x(0) =%,
P(t,m) = (t,x(t,X), m). Then
il
ot
If find a scalar functlon A(m) and B(m ) such that
RA(M) =m X koo -m, RB(M)=m X (kK — Kkoo)-m  (2)

(t,m) = —R Rip+R - [( RU m x £ -m)y),

When ||k — Koo|[re — 0 ast — oo,




The decoupled case in 3D for a given velocity field

Model and results for the decoupled case in 3D(continuous)

Here formally 1), = ¢~ (UectDe4) Je e~ (UsetDe A) iy - For
example, when Ko, 1S symmetric (n; = Koo )(elongational flows),
A= %m-/@oo-m. Thus

D
T/}oo — Uoo+ 5 ‘M- Koo m)/ ef(UooJr{m-noo-m)dm.
s?

But for some cases we can prove such 1, does not exist. e.g.
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The decoupled case in 3D for a given velocity field

solutions at the weak shear flow

[H. Zhang & P.W. Zhang, Physica D, 07]
e Tumbling

¢ Logrolling

o Kayaking
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0+2 Model and results

1
Uy = FeR (Ry + yRU),
U= a/ Im x m’|*y(m’, )dm’,
S2

/ Y(m,t)dm = 1.
s?

Similar result

1 21 27
S0 vclasf <N = [ vy < (0>
2% Jo 0 Yoo
where 15, = f”%usode satisfies
0o ¢

0="R- (R +YRU).
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Motivation el 0+1 mod 1+1 model The decoupled case in 3D for a given velocity field 0+2 model Entropy, stress and convergence to

0+2 Model and results(continuous)

e az

o =

min — — ~ 6.731393. 3)
1 [y (2 —e " dz
All solutions are given explicitly by

W = ke nmdy?

where d € S? is a parameter, 1 = n(a) and k = [47 fol e dg] !

3e " 4n?
1—<3—217+Z>:0. 4)
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0+2 Model and results(continuous)

More precisely,

e 0<a<a*yy=1/4r.

o a=a* 1= 1/4rand ) = k; e_m(“"d)z,m < 0.

o a* < a <75 1y =1/4mand 1 = kje W p. <0 (i=1,2).
=175, = 1/4r and oy = ky e (™D’ p <0,
o a>75 1= 1/4n,




Motivation Model 0+1 model 1+1 model The decoupled case in 3D for a give

city field 0+2 model Entropy, s

Theorem

The unique stationary solution to the coupled problem with
homogeneous Dirichlet boundary conditions on the velocity is

Uoo =0 and oo x exp(—Uso).

Theorem

Set (u, 1)) to the coupled problem in the case homogeneous Dirichlet
boundary conditions on the velocity. Then u converges exponentially
fast in the L2 norm to U, = 0 and the entropy H(t), where

Yoo ¢ exp(—Uxy), converges exponential fast to 0. Therefore, 1
converges exponentially fast in the L2(L)) norm to 1.




Entropy, stress and convergence to

Theorem

Consider a solution (u, ) to the coupled problem in the case
homogeneous Dirichlet boundary conditions on the velocity. Then we
have

76 — Toolly = O(e™ ), ||7° — ollLy < 00, fora.e t > 0.




Generalization of the entropy method

Let (u, 7)) be a solution of time evolution system with the boundary
condition u = g(7) on Q. And let (u., ¥~ ) be a solution to the
system with the same initial boundary conditions.

Set

ii(,x) = u(r,x) —uso(x), P(r,x,m) = 1(t,X,m) — Yo (X, m).

introduce the following quantities:

1
E= / |a|%dx,
2 Ja

-like model of pol



Generalization of the entropy method

2
dmdx

dF  ~ _ A (0
D
A /Q (mm : Vii)?) dx

= —I) — A — M5+ My + M5+ 3Mg — A\7 + Di(lg +1Io)
e

I :/ﬁ-Vuooﬁdx, 12:// 1Y - V(Ints) dmdx,
Q QJs

L= /Qnoo . ((mmmm) — (mmmm)) : Vu dx,
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Generalization of the entropy method

L= /Q((m « R(U = Uno))m) : Vi dx,
Is = / (m x RUs )My : Vil dx,
QJs?
Is = /( m) : Vi dx,
/ (m X (K — Koo) - M) - R(In )0 )dmdx,
S2
Iy = /Q BIR - R(U — Un)] dmds,

Io = / W R(U — Uss) - R(Inthas)] dmdx.
QJs?

School of Mathematical Sciences, Beijing Normal University
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Generalization of the entropy method

When u, is homogeneous flow, i.e., with a constant Vu.,. Precisely,
we assume that the boundary conditions on u are such that a
homogeneous flow uy,(x) = Mx.




Generalization of the entropy method

M is antisymmetric
u—u, in L2
Y=o in Li(Ly
provided that
b
Re
1

A i
— = —|3a+2 jdm)2 ||z | > a2 >0
e~ o 20l viam)s| >

where Cgsz; is from the Sobolev logarithmic inequality:

¢ K
/Q szqsln(@boo)dmdxgCSLI/§2/§2¢‘RIH(¢OO)

of Mathematical Sciences, Beijing Normal University

2a+1) — ||(/ ’l/)gdm)%HLoo >ap; >0,
S2

2
dmdx.
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Generalization of the entropy method

M is symmetric(e.g. elongational flow)

u— Uy In Li,

¥ — oo in  LA(L))

provided that
0ot —u/w Hlew — M= > a3 > 0,
LA 130420 / GRdm)} [ — M= | > a5 > 0
_ 8] (8 oo — %) a .
CSLIDe s? 0 L L 4
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Conclusion

¢ long time asymptotic behavior of the rodlike model in various
cases 0+ 1,1+ 1, 0 + 2 and the given flow case.

¢ long time asymptotic behavior of entropy and stress for
homogenous Dirichlet boundary condition.

¢ long time asymptotic behavior of the solution for
non-homogenous Dirichlet boundary condition.
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