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› (Non-rigorous) derivation of a Boltzmann equation from
a particle model

› Mathematical results about Boltzmann equation
› Comparison of Boltzmann equation and particle model

(numerical study)
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The particle model is inspired by the scatterer model
Lai-Sang Young and I developed, but with 1-dimensional
dynamics
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Discrete Space (Finite Number of Cells)
A varying number of particles of mass m and
N equidistant scatterers of mass M in a row.

The scattering rules for the momenta in 1D are elastic
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The scatterers have finite mass M but they do NOT move
The particles move in direction of sign of momenta
They are injected (and leave) at the ends of the chain

The ‘‘inertial’’ mass of the scatterers is infinite. . .
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We want to find time-stationary distributions when particles
are injected from outside (out of equilibrium)

This will be done for a Boltzmann equation which is an
approximation to the particle problem

To derive the Boltzmann equation, assume independence
of probability distributions

At the end, check the quality of this approximation
(numerically)
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We arrange space in N cells (of length L each) and for
each cell we have probability distributions:

FL;i;in(p): probability that particles with momentum p > 0
enter cell #i from the left (per second)
. . .
gi(q): probability that the i-th scatterer has momentum

q 2 IR (R g = 1)

Important remark: (1D!!!) Expected time to stay in cell is
F(p)=jpj ) Expected number of particles in cell is infinite
(when F(0) =/ 0)
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The equations describing free-flight and scattering are of
the form (omitting index of cell)

g(q̃) = 1
I ZIR dp g(q) F(p)

where F = FL;in + FR;in and I = RIR F ı particle flux

What comes out of the cell?

FL;out(̃p) = Zq : p̃ <0
dq g(q) F(p)

FR;out(̃p) = Zq : p̃ >0
dq g(q) F(p)

And the cells are coupled by FL;i;in = FR;i`1;out
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Continuum Limit
N ! B, i=N = x 2 [0; 1], scattering probability 1=N. After
some gymnastics, using things like

FL;i;in(p) ` FR;i;out(p) = FL;i;in(p) ` FL;i+1;in(p) ı N @xF(p; x)

one gets the Boltzmann equations

m@tF(t; p; x) + p@xF(t; p; x) =jpj Z dq
“

F(t; p̃; x)g(t; q̃ ; x) ` F(t; p; x)g(t; q ; x)
”

@tg(t; q ; x) = Z dp
“

F(t; p̃; x)g(t; q̃ ; x) ` F(t; p; x)g(t; q ; x)
”

The closure assumptions are hidden in the independence
of the F and g at different x (as well as in the product
structure)
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The stationary equation x 2 [0; 1]

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

0 = Z dp
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

Remark:

F(p; x) = Ie
`D(p`ma)2

; g(q ; x) = e
`D(m=M)(q`Ma)2

are solutions for all D > 0, I > 0, and a 2 IR
Want R dq g = 1 (but not necessarily R dp F = 1)
I omit the normalizing square roots
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We would like to ‘‘bifurcate’’ from these equilibrium solutions
by imposing F(p; x = 0) for p > 0 and F(p; x = 1) for p < 0
That is: We want to impose nonequilibrium INCOMING fluxes

Main result :
This problem has solutions

Several difficulties make the result less general than
Pierre and I expected (but perhaps there are better
tricks)

Continue with m = 1
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We write F(p;0) = exp(`p2) ´ v(p) and define

C =
˘

v : v(p) – 0; v 6== 0;Z jdv(p)j + Z e
`p2

jv(p)j < B

and 0 < lim
p! +̀ B

Z ´ v(p) < 1
¯

with Z =
p

K
‹R dp F(p;0)

This is a convex Banach cone ensuring that
› v has limits (and is positive, F is a rate...)
› F(p;0) is not Gaussian, since we require

limp! +̀ B

F(p) ep
2 R e`s

2
ds

R F(s)ds
< 1

› In the cone, the ‘‘temperatures’’ (but not the distributions!)
must be the same for p > 0 and p < 0

› The variation norm R jdv(p)j accounts for discontinuity
of F at p = 0
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Main Result : For any v˜ in the interior of the cone
C and for all initial conditions v(´; x = 0) near v˜ the
Boltzmann equation has a (unique) solution in C for x 2

[0; x0] with x0 > 0. The map v(´; x = 0) 7! v(x0) is a
diffeomorphism

Consequence : In the image of the neighborhood, I can
choose v(p; x0) for p < 0. In other words, within the limits
of applicability of the main result, I can choose
v(p>0; x=0) and v(p<0; x0), that is, I can prescribe the
incoming (slightly different) momentum and particle flux
profiles (at the ends x = 0, x = x0) and obtain a unique
non-equilibrium steady state
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Remarks about the proof - which hopefully explains why
we take these ‘‘funny’’ conditions on the cone

› It is not obvious that the density of F(x; ´) remains a
positive function

› The Boltzmann equation has two parts, for F with a
space derivative, for g it is simpler. So we solve first
for g(x; ´), given F(x; ´), and then integrate to find F

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)
”

g(q ; x) =
R dp F(̃p; x)g(q̃ ; x)

R dp F(p; x)

We view the second equation as a fixed point problem. Solve, and
substitute into the first equation and integrate. The difficult part is
the second equation. To study it fix the integral of F to 1
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Since x is a spectator in the g-equation, we consider
instead

g(q) = R dp F(̃p)g(q̃)

N.B. p̃ = `Mp + (1 ` M )q
q̃ = (1 + Mp) + Mq

This is a convolution operator, and we use spectral
properties. The cone C guarantees that the r.h.s. is
( for F 2 int C ) a quasi-compact operator with isolated
largest eigenvalue (equal to 1)

Conjecture: the essential spectral radius ends at the
larger of the 2 limits of v(p):
the numerical spectrum is fM

n
g
B
n=0
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Let P == m
M = 1`M

1+M and g(q) = exp(`Pq2)u(q) and define

k uk 1 = Z dq e
`Pq2

ju(q)j

and

k uk ˜ = k uk 1 + Z jdu(q)j :

The main estimate is then for any v 2 C:

There exist a “ < 1 and an R > 0 (both depend on v
continuously) such that the convolution operator
K v , g 7! R dpF(̃p)g(q̃)
satisfies for any k uk ˜ < B the bound

Z jdK v(u)j » “ Z jduj + Rk uk 1

Souvenirs de Lasota-Yorke détails pour amateurs en privé
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Why can’t we have D =/ D’?

F(p;0) =

(

exp(`Dp2); p > 0
exp(`D’p2); p < 0

The problem is that convolution mixes contributions from
positive and negative p. The reflection by the scatterer
exchanges temperature information between the positive
to the negative momentum side

This makes us lose compactness, and we don’t know how to show existence

and uniqueness of g without some information. Numerics shows it is much

better. . . why?
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The discontinuity of F at p = 0 is a realistic phenomenon
and is the reason why we consider the variation norm

R jdv(p)j instead of R dp jv’(p)j.
With such norms the compactness of convolution is well
known (one gains a derivative) and in fact the probability
densities are smooth in p and q except at p = 0

17: Paris Jan 2009



Numerical study
Compare the Boltzmann model to the particle model from
which it is derived
› One does not need the cone C
› The role of x0 should become clear
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Reconsider

@xF(p; x) =E sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

0 = Z dp
“

F(̃p; x)g(q̃ ; x) ` F(p; x)g(q ; x)
”

This Boltzmann limit was obtained by assuming in the
particle model that

particles interact (in 1 cell) with probability E=N and cross
the cell without collision with probability 1 ` E=N

As N ! B, the cross-section of the scatterers is assumed
to be E=N.

Like the Grad limit: The number of scatterers increases with N
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Boltzmann simulations

@xF(p; x) =sign(p)Z dq
“

F(̃p; x)g(q̃ ; x) ` F(p; x)
”

g(q ; x) =
R dp F(̃p; x)g(q̃ ; x)

R dp F(p; x)

We discretize the space of p and q and integrate from
x = 0 to x = 1. The second equation is an eigenvalue
problem with unknown eigenfunction g = gF(´;x)
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Substitute the g:

@xF(p; x) =sign(p)Z dq
“

F(̃p; x) ´ gF(´;x)(q̃ ; x) ` F(p; x)
”

Take as initial condition

F0(p;0) =

(

I exp(`Dp2) ; p > 0
I’exp(`D’p2) ; p < 0

and see if F(p; x = 1) for p < 0 is the desired incoming

Gaussian I’exp(`D’p2). Iteratively correct F0 ! F1 !

poor man’s inverting the diffeomorphism of the Theorem (shooting)
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Particle simulations: TL = 3TR, jL = jR Will take E = 1.
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This is typical for non-normalizable measures. The number
of particles is proportional to F(p)=jpj which is non-integrable
in 1 dimension.

Similar to tangents in 1-d maps: Collet-Ferrero; Annales de l’Institut Henri
Poincaré (A) Physique théorique, 52 (1990), p. 283-301
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Return to Equilibrium (Correlation Functions)
One can ask in this model how the system reacts to local
perturbations. For example: take equilibrium steady state
and put a large number of particles in the center of the
system (with Maxwell distribution)
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In fact, the particle number density H in the large N limit
is governed by the telegraph equation (neglecting the
momentum exchange with the discs)

“

@
2
t + CE@t ` @

2
x

”

H(x; t) = 0

The solution can be explicitly written in terms of Bessel
functions and one obtains a leading edge which moves
with finite speed and is exponentially decaying, superposed
with a diffusive term
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Conclusion
Back to Boltzmann: We found the solution by iterating
the initial distribution until the other end was what we
wanted. F0 ! F1 ! ´ ´ ´

Interesting problem: What if in this problem Fn(p;0) ceases
to be positive after n iterations when p < 0?

Cannot extract arbitrary energy profiles for p < 0 at
x = 0 by injecting something at x = 1. (This is why we had
x0 in the theorem)

QUESTION: What ARE the possible exit distributions?
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