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Application: Near-Surface Wind Speed at fine scale

� Prospective: evaluate the wind potential

2006: French wind turbines produced 1 GW / 10 GW in 2010.

� Prediction: forecasting wind at small scale

Integration of wind power inside the French Electric Network

High variability of the near-surface wind

� Numerical Weather Prediction (NWP)

Météo France: 25 km to few km (mesoscale) for short time prediction
(24h, 36h), European Centre for Medium-Range Weather Forecasts
(ECMWF) > 10 km

=⇒ Needs a Downscaling Method.
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The SDM Project: Stochastic Downscaling Method

Aim: propose a new numerical method to improve the wind forecasting at
small scale.

Joint work with

• J.F. Jabir (INRIA): mathematical analysis of Lagrangian
models and their confined version.

• F. Bernardin (CETE), A. Rousseau, C. Chauvin (INRIA &
LJK): development of the numerical method.

• P. Drobinski, T. Salameh (LMD): application to
meteorology and first validations of SDM.

SDM is funded by the French Agency for the Environment
and Energy Management (ADEME).
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Geographical framework

The French part of the Mediterranean basin:
(Languedoc-Roussillon, Provence-Alpes-Côtes d’Azur, Rhône-Alpes)

First region in terms of production,
with a high potential to develop.

Mediterranean climate, mainly
forced by the large scale climatic
conditions, during the winter
(November to Marsh).

Complex association between large
scale and regional scale (10 – 100
km). Important role of orography,
the ground and sea contrast.
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The Numerical Weather Prediction for large scales

We used the numerical model MM5 (mesoscale meteorological solver
developed at NCAR, USA)
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MM5 is run over 3 nested domains with
respective horizontal resolutions of
27 km, 9 km and 3 km.

Coarse, medium and fine domain are
centered at 43.7

◦
N, 4.6

◦
E and cover an

area of 1350× 1350 km2, 738× 738
km2 and 120× 174 km2, respectively.

The 3 on Fig.(c) indicates the position
of the buoy ASIS.
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Our downscaling approach

Our domain: one or several meshes of MM5 in the fine domain.
I The boundary condition: the MM5 velocity

Fluid dynamics represented in a Lagrangian approach
I No more stability condition (CFL)
I Nonlinear McKean Stochastic Differential Equations simulated by a

particle method
I Computational complexity very attractive.

Stochastic Downscaling Method
I Integrate more and more physics inside this model
I A totally new kind of simulation: a lot of open problems (on the model

and on its discretization)
I Introduction of the splitting scheme to integrate the pressure effects.
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Outline

Modeling turbulent flows
I The RANS equations
I The Lagrangian approach

SDM: the model
I The basic Lagrangian model
I The meteorologic closure
I The guidance

SDM: the numerical framework
I The particle in cell method
I The general algorithm
I The splitting scheme

Numerical results
I Numerical convergence
I Meteorologic validation

Mathematical study
I A simplified Lagrangian model
I Spatially confined Lagrangian

model
I The Vlasov-Fokker-Planck

Equation with specular
boundary condition
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Modeling turbulent flows: Statistical approach of turbulent flows

The Reynolds averages (or ensemble averages) are expectations:

〈U 〉(t, x) :=

∫
Ω

U (t, x , ω)dP(ω).

The corresponding Reynolds decomposition of the velocity is

U (t, x , ω) = 〈U 〉(t, x) + u(t, x , ω),

P(t, x , ω) = 〈P〉(t, x) + p(t, x , ω)

The random field u(t, x , ω) is the turbulent part of the velocity.

Incompressible Navier Stokes equation in R3, for the velocity field
(U (1),U (2),U (3)) and the pressure P, with constant mass density ρ

∂tU + (U · ∇)U = ν∆U − 1

ρ
∇P, t > 0, x = (x1, x2, x3) ∈ R3,

∇ ·U = 0, t ≥ 0, x ∈ R3,

U (0, x) = U0(x), x ∈ R3.
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The Reynolds averaged equation for the mean velocity

Assuming Reynolds decomposition, we obtain the unclosed equation
with constant mass density ρ

∂t〈U (i)〉+
3∑

j=1

〈U (j)〉∂xj 〈U
(i)〉+

3∑
j=1

∂xj 〈u
(i)u(j)〉 = ν∆〈U (i)〉 − 1

ρ
∂xi 〈P〉,

∇.〈U 〉 = 0, t ≥ 0, x ∈ R3,

〈U 〉(0, x) = 〈U0〉(x), x ∈ R3,

where 〈u(i)u(j)〉 = 〈U (i)U (j)〉 − 〈U (i)〉〈U (j)〉.
Direct modeling of the Reynolds stress by a turbulent viscosity model:

kinetic turbulent energy k(t, x) :=
3∑

i=1

1

2
〈u(i)u(i)〉(t, x)

and
pseudo-dissipation ε(t, x) := ν

3∑
i=1

3∑
j=1

〈∂xj u
(i)∂xj u

(i)〉(t, x).
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The equation for the Reynolds stress (〈u(i)u(j)〉, i , j)

∂t〈u(i)u(j)〉+
(
〈U 〉 · ∇x〈u(i)u(j)〉

)
+

3∑
k=1

∂xk
〈u(i)u(j)u(k)〉

= −1

ρ
〈u(j)∂xi p + u(i)∂xj p〉+ ν

3∑
k=1

∂2
xk
〈u(i)u(j)〉

+ ν

3∑
k=1

〈∂xk
u(i)∂xk

u(j)〉 −
3∑

k=1

(
〈u(i)u(k)〉∂xk

〈U (j)〉+ 〈u(j)u(k)〉∂xk
〈U (i)〉

)
.

Higher order closure : model equation for the Reynolds stress.
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An alternative approach to compute the Reynolds stress

Let fE (t, x ;V ) be the probability density function (PDF) of the random
field U (t, x), then

〈U (i)〉(t, x) =

∫
R3

V (i)fE (t, x ;V )dV ,

〈U (i)U (j)〉(t, x) =

∫
R3

V (i)V (j)fE (t, x ;V )dV .

The closure problem is reported on the PDE satisfied by the probability
density function fE .

In a series of papers (see e.g. Pope 85, ...,Dreben Pope 03), Stephen B.
Pope propose to model the PDF fE with a Lagrangian description of the
flow.
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Fluid particle model family

On a given probability space (Ω,F ,P), consider the state vector
(Xt ,Ut , ψt) satisfying

dXt =Utdt,

dUt =

[
−1

ρ
∇x〈P〉(t,Xt) + ν4x〈U 〉(t,Xt)

]
dt

− G (t,Xt) (Ut − 〈U 〉(t,Xt)) dt +
√

C (t,Xt)ε(t,Xt)dWt ,

dψt =D1(t,Xt , ψt)dt + D2(t,Xt , ψt)dW̃t .(
W , W̃

)
is a 4D-Brownian motion.

Compute de Eulerian fields 〈U (i)〉(t, x), 〈U (i)U (j)〉(t, x).

Determine ε, C , G , D1, D2 by the RANS closure.
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Compute the Reynolds averages 〈U (i)〉 and 〈U (i)U (j)〉
We call fL(t; x ,V , ψ) the probability density function of (Xt ,Ut , ψt).

fL satisfies a closed PDE: the Fokker-Planck equation a associated to the
particle fluid SDE.
Case of incompressible flow with a constant mass density:

fE (t, x ;V , φ) =
fL(t; x ,V , φ)∫

R4

fL(t; x ,V , ψ)dVdψ
,

and for any bounded measurable function F (v),

〈F (U )〉(t, x) = E
(
F (Ut)

/
Xt = x

)
.

In particular,〈
U (i)

〉
(t, x) =

∫
R4

V (i) fL(t; x ,V , φ)∫
R4

fL(t; x ,U, ψ)dUdψ
dVdφ = E

(
U(i)

t

/
Xt = x

)
.
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The underlying RANS Equations

P ((Xt ,Ut , ψt) ∈ dxdvdφ) := fL(t; x , v , φ)dxdvdφ.
Fokker Planck Equation

∂t fL + (v · ∇x fL) =
1

ρ
(∇x〈P〉(t, x) · ∇v fL)

− ν (4x〈U 〉(t, x) · ∇v fL)−∇v · (G (t, x)(〈U 〉(t, x)− v)fL)

+
C (t, x)ε(t, x)

2
4v fL −∇φ · (D1(t, x , φ)fL)

+
1

2
4φ

(
D2(t, x , φ)fL

)
.

• Integrating w.r.t. dvdφ: conservation of mass Equation for
ρ(t, x) =

∫
fL(t; x , v , φ)dvdφ

∂t

∫
fLdvdφ+∇x ·

(∫
vfLdvdφ∫
fLdvdφ

∫
fLdvdφ

)
= 0

∂tρ+∇x · (ρ〈U 〉) = 0.
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The underlying RANS Equations

• Multiplying by vi , integrating w.r.t. dvdφ: RANS Equation

∂t

∫
vi fLdvdφ+

∫
vivj∂xj fLdvdφ

= −1

ρ
∇x〈P(i)〉

∫
fLdvdφ+ ν4x〈U (i)〉

∫
fLdvdφ

⇔

∂t

(
ρ〈U (i)〉

)
+

∑
j

∂xj

(
ρ〈U (i)U (j)〉

)
= −∇x〈P(i)〉+ ν4x〈U (i)〉ρ.

• Multiplying by vivj , integrating w.r.t. dvdφ: model equation on the
Reynolds stress.
⇒ Identification of the Lagrangian model coefficients ε, C , G , D1, D2.
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The Simplified Langevin model (Pope 94)



dXt = Utdt,

dU(i)
t =

[
−1

ρ

∂ 〈P〉
∂xi

(t,Xt)

−
(

1
2 + 3

4C0

) ε(t,Xt)
k(t,Xt)

(
U(i)

t −
〈
U (i)

〉
(t,Xt)

)]
dt

+
√

C0ε(t,Xt)dW
(i)
t , ∀ i ∈ {1, 2, 3}

+ boundary conditions + wall boundary functions.
where ε(t, x) and k(t, x) are supposed to be known. 〈P〉 (t, x) must be
recovered by the Poisson equation

∇2 〈P〉 = −
∂2

〈
U (i)U (j)

〉
∂xi∂xj

which guarantees that the averaged Eulerian velocity is divergence free.
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The Basic model (Dreeben Pope 98)

Include the instantaneous turbulence frequency ω, satisfying

dXt = Utdt,

dU(i)
t =

[
−1

ρ

∂ 〈P〉
∂xi

(t,Xt)

−
(

1
2 + 3

4C0

)
〈ω〉(t,Xt)

(
U(i)

t −
〈
U (i)

〉
(t,Xt)

)]
dt

+
√

C0k(t,Xt)〈ω〉(t,Xt)dW
(i)
t , ∀ i ∈ {1, 2, 3}

dωt = −C3〈ω〉(t,Xt) (ωt − 〈ω〉(t,Xt)) dt − Sω〈ω〉(t,Xt)ωtdt

+

√
2C3C4〈ω〉2(t,Xt)ωtdW

(4)
t .

where

Sω = Cω2 + Cω1
〈u(i)u(j)〉(t, x)

ε(t, x)

∂〈U (i)〉
∂xj

(t, x).

ε(t, x) is recovered by the closure relation 〈ω〉(t, x) =
ε(t, x)

k(t, x)
.
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Outline

Modeling turbulent flows
I The RANS equations
I The Lagrangian approach

SDM: the model (with Bernardin,

Chauvin, Drobinski, Rousseau,

Salameh)

I The basic Lagrangian model
I The meteorologic closure
I The guidance

SDM: the numerical framework
I The particle in cell method
I The general algorithm
I The splitting scheme

Numerical results
I Numerical convergence
I Meteorologic validation

Mathematical study
I A simplified Lagrangian model
I Spatially confined Lagrangian

model
I The Vlasov-Fokker-Planck

Equation with specular
boundary condition
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The SDM model in D

dXt = Utdt,

dU(i)
t =

[
−1

ρ

∂ 〈P〉
∂xi

(t,Xt)

−
(

1
2 + 3

4C0

) ε(t,Xt)
k(t,Xt)

(
U(i)

t −
〈
U (i)

〉
(t,Xt)

)]
dt

+
√

C0ε(t,Xt)dW
(i)
t , ∀ i ∈ {1, 2, 3}

+ boundary conditions on ∂D.

• k(t, x) is computed inside the model.

• 〈P〉 (t, x) must be recovered by the Poisson equation

∇2 〈P〉 = −
∂2

〈
U (i)U (j)

〉
∂xi∂xj

which guarantees that the averaged Eulerian velocity is divergence free.
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The turbulent-kinetic-energy model
Meteorologic Closure in SDM

The components:

The mixing length `m = `m(z)

the turbulent viscosity νT = Ck
`m

k1/2

A model for the dissipation rate: ε(t, x , y , z) = Cε
`m(z)k

3/2(t, x , y , z)

Calibrate the coefficients to include
more and more fine physics

Link with the similarity theory
Figure: Square root of 〈u(i)u(i)〉, for

i = 1, 2, 3 in one cell of D.

Initial condition should satisfy the
guessed physical behavior. (=⇒ k)
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The Guidance with an external velocity field (0.1)
The Downscaling method

Let D be an open set of R3, and a velocity Vext given at ∂D:

dXt = Utdt,

dUt =

[
−1

ρ
∇〈P〉 (t,Xt)

−
(

1
2 + 3

4C0

) ε(t,Xt)
k(t,Xt)

(Ut − 〈U 〉 (t,Xt))

]
dt

+
√

C0ε(t,Xt)dWt

−
∑

0≤s≤t

2Us− ll {Xs∈∂D} +
∑

0≤s≤t

Vext(s,Xs) ll {Xs∈∂D}.

The two last terms should guarantee that

〈U 〉 (t, x) := E
[
Ut

/
Xt = x

]
= Vext(t, x),∀x ∈ ∂D.
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The Guidance with an external velocity field (0.2)
The Downscaling method

Let D be an open set of R3, and a velocity Vext given at ∂D:

dXt = Utdt − Vext(t,Xt) ll {Xs∈∂D}dt,

dUt =

[
−1

ρ
∇〈P〉 (t,Xt)

−
(

1
2 + 3

4C0

) ε(t,Xt)
k(t,Xt)

(Ut − 〈U 〉 (t,Xt))

]
dt

+
√

C0ε(t,Xt)dWt

−
∑

0≤s≤t

2Us− ll {Xs∈∂D} +
∑

0≤s≤t

2Vext(s,Xs) ll {Xs∈∂D}.

The two last terms should guarantee that

〈U 〉 (t, x) := E
[
Ut

/
Xt = x

]
= Vext(t, x),∀x ∈ ∂D.
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Outline

Modeling turbulent flows
I The RANS equations
I The Lagrangian approach

SDM: the model
I The basic Lagrangian model
I The meteorologic closure
I The guidance

SDM: the numerical framework
(with Bernardin, Chauvin, Rousseau)

I The particle in cell method
I The general algorithm
I The splitting scheme

Numerical results
I Numerical convergence
I Meteorologic validation

Mathematical study
I A simplified Lagrangian model
I Spatially confined Lagrangian

model
I The Vlasov-Fokker-Planck

Equation with specular
boundary condition
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The numerical framework: particle method

Our computational domain D,
for example, a given cell of the MM5
solver.

Boundary condition:

∀x ∈ ∂D, 〈U 〉(t, x) = VMM5(t, x)

(MM5 guideline.)
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The numerical framework: particle method

The computational space is divided in
cells of given size.
Particle in cell (P.I.C.) technique to
approximate the Eulerian fields like〈
U (i)

〉
(t, x).

We compute the Eulerian fields (mean
fields) at the center of each sub-cell
only.
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The numerical framework
The Particle in Cell method

We introduce Np particles in D.

G (y , x) = ll {y ∈ C(x)}.
Each cell C contains Npc particles
(constant mass density constraint).

〈F (U )〉 (t, x) '
Np∑
k=1

F
(
Uk,Np

t

) G (Xk,Np
t , x)

Np∑
j=1

G (Xk,Np
t ,Xj ,Np

t )

.

Convergence: Propagation of chaos result.
The external velocity Vext is imposed at the boundaries of D.
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The numerical algorithm

The Np-Particles dynamic: for j = 1, . . . ,Np
dXj ,Np

t = Uj ,Np
t dt,

dU(i),j ,Np
t = −1

ρ

∂ 〈P〉
∂xi

(t,Xj ,Np
t )dt

+DU(t,Xj ,Np
t )dt + BU(t,Xj ,Np

t )dW
(i),j ,Np
t

+MM5 guideline terms at the boundary, ∀ i ∈ {1, 2, 3}.

• The coefficients DU, BU depend on the particles approximations of 〈U 〉,
〈U (i)U (j)〉 and its derivatives.

• −1

ρ

∂ 〈P〉
∂xi

(t,Xj ,Np
t ) ensures that ∇ · 〈U 〉 = 0 and maintains the mass

density constant.

∇2 〈P〉 = −
∂2

〈
U (i)U (j)

〉
∂xi∂xj
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The algorithm
A fractional step method: n∆t −→ (n + 1)∆t (Pope 85)

The Np-Particles dynamic: for j = 1, . . . ,Np, for n∆t ≤ t ≤ (n + 1)∆t,

dX̃j ,Np
t = Ũj ,Np

t dt,

dŨ(i),j ,Np
t = −1

ρ

∂ 〈P〉
∂xi

(t, X̃j ,Np
t )dt

+DŨ(t,X
j ,Np
t )dt + BŨ(t,X

j ,Np
t )dW

(i),j ,Np
t

+MM5 guideline terms at the boundary, ∀ i ∈ {1, 2, 3}

Xj ,Np

n∆t ,U
(i),j ,Np

n∆t given.

Correction of the particles positions X̃j ,Np

(n+1)∆t −→ Xj ,Np

(n+1)∆t , in order

to maintain the (discrete) uniform distribution.

Correction of the particles velocities Ũj ,Np

(n+1)∆t −→ Uj ,Np

(n+1)∆t

such that ∇.〈U (n+1)〉 = 0.
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The constant mass density constraint

The density of particles has to be constant in each cell
I Acts on {X k

n }1≤k≤Np (+)
I An optimal transport problem

Npc = 2.

+: particles after advancement

∆: particles after density uni-

formization.

Aim: Minimize the number of crossed cells

Impacts on the statistics
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Solve the optimal transportation problem

• Move the particles, such that the corresponding distribution becomes
uniform.
• Minimize the global amount of displacement.
The density ρ(x) is an Eulerian quantity approximated thanks to the
nearest grid point formula

ρ(xi ) =
#{particles in Ci}

Npc
, Npc =

Np

#{cells}
Can be viewed as a discretization of an optimal continuous transport
problem (see e.g. Brenier 03):
Find a transport map φ : D → D, satisfying ∀A ⊂ D∫

φ−1(A)
ρ(x)dx =

∫
A
ρ0(x)dx

minimizing the L2-cost

K (φ) =

∫
D
|x − φ(x)|2dx .

M. Bossy (INRIA) Stochastic Downscaling Method (SDM) ENPC, January 5-9th 2009 30 /



Solve the optimal transportation problem

Well-known problem, having a well-known solution (see Benamou Brenier
2000 and ref. herein): φ is unique and given by

φ = ll D −∇γ

with γ satisfying the Monge Ampère equation

ρ(x) = det


1− ∂2γ

∂x2
1

− ∂2γ
∂x1∂x2

− ∂2γ
∂x1∂x3

− ∂2γ
∂x1∂x2

1− ∂2γ
∂x2

2
− ∂2γ

∂x2∂x3

− ∂2γ
∂x∂x3

− ∂2γ
∂x2∂x3

1− ∂2γ
∂x2

3


• Numerical discretization: difficult

• Explicite solution in dimension one.
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Solve the discrete optimal transportation problem

Classical assignment problem in network optimization.

The auction algorithm and its ε-scaling improvement.
(Bertsekas 98)

Worse case complexity: O(N3log(N))
Averaged complexity in SDM: O(N2).
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The triangular 1D optimal transport

Suppose D = (0, 1). The optimal transport is then entirely determined by
the transfer condition:

∀ x ∈ D, φ(x) =

∫ x

0
ρ(y)dy ,

• The 1D discrete optimal
transport problem is easy to
solve.

• Solve the 3D case as a
collection of 1D cases in the
three directions.

• See Chauvin etal 08, for a
comparision of the various
methods for solving the OTP
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Correction of the particles velocities
The divergence-free constraint

Ũj ,Np

n∆t −→ Uj ,Np

n∆t . The new velocity field 〈U 〉n must be divergence
free.

Classically obtained by solving a Poisson equation:{
∆P = − 1

∆t∇ · 〈Ũ 〉n, x ∈ D,
∂P
∂n

∣∣∣
∂D

= 0,

and update the velocity field thanks to:

〈U 〉n∆t = 〈Ũ 〉n∆t + ∆t∇P.

Uj ,Np

n∆t = Ũj ,Np

n∆t + ∆t∇P(Xj ,Np

n∆t)

This insures the free divergence of 〈U 〉n∆t .

BUT the velocity field has to fulfill:

∀x ∈ ∂D, 〈U 〉n∆t(t, x) = VMM5(t, x)

=⇒ A specific projection procedure?
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Outline

Modeling turbulent flows
I The RANS equations
I The Lagrangian approach

SDM: the model
I The basic Lagrangian model
I The meteorologic closure
I The guidance

SDM: the numerical framework
I The particle in cell method
I The general algorithm
I The splitting scheme

Numerical results (with Bernardin,

Chauvin, Drobinski, Rousseau,

Salameh)

I Numerical convergence
I Meteorologic validation

Mathematical study
I A simplified Lagrangian model
I Spatially confined Lagrangian

model
I The Vlasov-Fokker-Planck

Equation with specular
boundary condition
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Numerical Experiments: Application to Wind Refinement
in a Realistic Case
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The MM5 model is run for 3 days
between March 23rd and 25th, 1998
over the 3 nested domains with 3 with
respective horizontal resolutions of 27, 9
and 3 km.

The initial and boundary conditions are
taken from the ECMWF (European
Centre for Medium Range Weather
Forecast) reanalyses.

Diamond represents the location of the
buoy ASIS.
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Numerical results
SDM Validation

Calibrate the coefficients Cε, `m on a simple model.
I No terrain elevation.

Test made on 6× 6× 6 cells, with T = 25 h.

I V
(1)
MM5 ∼ −1m/s,

V
(2)
MM5 ∼ −8m/s,

V
(3)
MM5 ∼ 0.0005m/s.

I ∆t = 1s

I Run ∼ 8 h for
Npc = 800.

I Standard deviation σ
independent of Npc .

I Small spin-up.
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Numerical results

Comparison of MM5 at several scales, the buoy, and SDM in the cell containing

the buoy.
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Numerical results

Comparison of MM5 at several scales, the buoy, and SDM in the cell containing

the buoy.
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Outline

Modeling turbulent flows
I The RANS equations
I The Lagrangian approach

SDM: the model
I The basic Lagrangian model
I The meteorologic closure
I The guidance

SDM: the numerical framework
I The particle in cell method
I The general algorithm
I The splitting scheme

Numerical results
I Numerical convergence
I Meteorologic validation

Mathematical study (with Jabir)

I A simplified Lagrangian model
I Spatially confined Lagrangian

model
I The Vlasov-Fokker-Planck

Equation with specular
boundary condition
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Mathematical study of a simplified Langevin model

2d dimensional SDE in the phase space (position, velocity):{
dXt = Utdt,
dUt = E

[
b(u,Ut)

/
Xt

] ∣∣
u=Ut

dt + σ(t,Xt ,Ut)dWt , t ∈ [0,T ].

Nonlinear drift term in the sense of McKean.
Related works:
Sznitman (86): Propagation of chaos for the Burgers Equation:

Xt = X0 + Wt + 2

∫ t

0
u(s,Xs)ds

u(t, x)dx is the law of Xt .

Dermoune (03): Conditional propag. of chaos for pressurless gas Eq.

Xt = X0 + Wt +

∫ t

0
E[v(X0)

/
Xs ]ds.

Here: local interaction in the d first variables (x1, . . . , xd). Hypoelliptic
Fokker-Plank equation. We need a Propagation of chaos result.
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Mathematical study of a simplified Langevin model

If b : R2d → Rd is bounded, by the Girsanov theorem, any weak solution
(Xt ,Ut , t ∈ [0,T ]) has a strictly positive density (ρt(x , u), t ∈ [0,T ]),

and E
[
b(u,Ut)

/
Xt = x

]
= B[x , u; ρt ].

where B[x , u; γ] =


∫

Rd b(u, v)γ(x , v)dv∫
Rd γ(x , v)dv

, if

∫
Rd

γ(x , v)dv 6= 0,

0, elsewhere


Xt = X0 +

∫ t
0 Usds,

Ut = U0 +
∫ t
0 B [Xs ,Us ; ρs ] ds +

∫ t
0 σ(s,Xs ,Us) dWs ,

P((Xt ,Ut) ∈ dxdu) = ρt(x , u)dxdu, t ∈ [0,T ],
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Mathematical study of a simplified Langevin model

σ is bounded and strongly elliptic: for a := σσ∗, there exists λ > 0
s.t. for all t ∈ (0,T ], x , u, v ∈ Rd ,

|v |2

λ
≤

d∑
i ,j=1

a(i ,j)(t, x , u)vivj ≤ λ |v |2 .

For all 1 ≤ i , j ≤ d , σ(i ,j)(t, x , u) is B-Hölder continuous.

Theorem

Let b ∈ Cb(R2d ,Rd), let (X0,U0) s.t. EP
[
‖X0‖Rd + ‖U0‖2

Rd

]
< +∞. On

the previous hypotheses on the velocity diffusion coefficient σ, the system
has a unique weak solution.
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The smoothed system in the space variables

{
Xε

t = X0 +
∫ t
0 Uε

s ds,

Uε
t = U0 +

∫ t
0 Bε [Xε

s ,U
ε
s ; ρ

ε
s ]ds +

∫ t
0 σ(s,Xs ,Us) dWs ,

where Law(Xε
t ,U

ε
t ) = ρε

t (x , u)dxdu, and for every non–negative γ in
L1(R2d),

Bε [x , u; γ] =

∫
R2d b(v , u)φε(x − y)γ(y , v) dy dv∫

R2d φε(x − y)γ(y , v) dy dv + ε
,

for a given regularization φε of the Dirac mass in Rd in C 1
c (Rd).

dXε
t = Uε

tdt,

dUε
t =

E [b(v ,Uε
t )φε(x −Xε

t )]
∣∣∣
x=Xε

t ,v=Uε
t

E [φε(x −Xε
t )]

∣∣∣
x=Xε

t

+ε
dt +

∫ t

0
σ(s,Xε

s ,U
ε
s) dWs ,

t ∈ [0,T ].
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Existence of the smoothed system
On (Ω,F , (Ft ; t ∈ [0,T ]) ,Q),(
W i

t ; t ∈ [0,T ] ; i ∈ N
)

independent Brownian motions in Rd ,
{(Xi

0,U
i
0); i ∈ N} i.i.d, independent of the Brownian family, such that

Q
(
(X1

0,U
1
0) ∈ dx du

)
= ρ0(x , u) dx du.


Xi ,ε,N

t = Xi
0 +

∫ t
0 Ui ,ε,N

s ds,

Ui ,ε,N
t = Ui

0 +

∫ t

0

∑N
j=1, j 6=ib(Ui ,ε,N

s ,Uj ,ε,N
s )φε(X

i ,ε,N
s −Xj ,ε,N

s )∑N
j=1, j 6=i

(
φε(X

i ,ε,N
s −Xj ,ε,N

s ) + ε
) ds + W i

t ,

i = 1, . . . ,N.

The sequence {πN = Law
(

1
N

∑N
i=1 δ{Xi,ε,N ,Ui,ε,N ,W i}

)
,N ∈ N} is tight

on P(C ([0,T ]; R3d)).
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Spatially Confined Langevin model in D ⊂ Rd

Impact problem with stochastic forcing.
(Deterministic motions, see e.g. Schatzman 98 , Ballard 01).

Homogeneous Dirichlet condition for the impact problem:


Xt = X0 +

∫ t
0 Usds,

Ut = U0 +
∫ t
0 〈b(Xs ,Us)〉 ds + Wt

−
∑

0≤s≤t

2 (Us− · n(Xs)) n(Xs) ll {Xs∈∂D}

must satisfy the averaged no-permeability condition: ∀x ∈ ∂D,

〈U · n〉(t, x) = E
[
Ut · n(Xt))

/
Xt = x

]
= 0.
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Sufficient condition for the averaged no-permeability

Lemma

Assume that γ(ρ) satisfies the following properties:

i) γ(ρ)(t, x , u) = γ(ρ)(t, x , u − 2(u · nD(x))nD(x)),

dt ⊗ dσD ⊗ du, a.e.

ii)

∫
Rd

|(v · nD(x))|γ(ρ)(t, x , v) dv < +∞, dt ⊗ dσD, a.e.

iii)

∫
Rd

γ(ρ)(t, x , v) dv > 0, dt ⊗ dσD, a.e.

Then the averaged no-permeability holds.
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Confined Langevin model in D = Rd−1 × R+

Theorem

b : R2d → Rd bounded Lipschitz, (X0,U0) s.t. E[‖X0‖2 + ‖U0‖4] < +∞.
ρ0 has its support in D.

There exists a filtered probability space (Ω,F , (Ft ; t ∈ [0,T ]),P, (Wt))
and Ft–adapted process, (X,U) valued in
C ([0,T ]; Rd−1 × R+)×D([0,T ]; Rd) s.t.

Xt = X0 +
∫ t
0 Usds,

Ut = U0 +
∫ t
0 E

[
b(u,Us)

/
Xs

] ∣∣
u=Us

ds + Wt

−
∑

0<s≤t

2 (Us− · nD(Xs)) nD(Xs) ll {Xs∈∂D}

and the sequence {τn; n ∈ N} defined by

τ0 = inf{t ≥ 0;Xd
t = 0}, τn = inf{t > τn−1;Xd

t = 0}

is well defined and grows to infinity.
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The Vlasov-Fokker-Planck Equation

Theorem

The joint law of (Xt ,Ut) has a density ρ(t, x , v), which is the unique weak
solution of the following Vlasov-Fokker-Planck Equation with specular
boundary condition:



∂ρ

∂t
+ v · ∇xρ+

([∫
R2 b(v , u)ρ(t, x , u)du∫

R2 ρ(t, x , u)du

]
· ∇vρ

)
=

1

2
∆vρ,

(t, x , v) ∈ (0,T )×D × Rd ,
ρ(0, x , v) = ρ0(x , v) given, (x , v) ∈ D × Rd ,

ρ(t, x , v) = ρ(t, x , v − 2(v · nD(x))nD(x)),
(t, v) ∈ (0,T )× Rd , x ∈ ∂D.

The sufficient condition for the averaged no-permeability is fulfilled.

M. Bossy (INRIA) Stochastic Downscaling Method (SDM) ENPC, January 5-9th 2009 49 /



The confined Brownian motion primitive in the half line

Starting from (X0,U0) with X0 > 0, and a (Bt) Brownian motion in R,

Yt = X0 +

∫ t

0
Vsds, Vt = U0 + Bt .

Set Xt = |Yt |,
Ut = VtSt+ , with St := sign(Yt).

Lemma

If ρ0 has its support in R× (0,+∞)× R, then St jumps a countable
number of times and Ut solves

Ut = U0 + Wt − 2
∑

0<s≤t

Us− ll {Xs=0}, P.a.s.

where Wt is a Brownian motion.

( Lachal 97: Passage time of the Brownian motion primitive at 0)
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And for other domains ?

Theorem

D a smooth bounded domain in Rd .
b : R2d → Rd bounded.
Weak existence (in L2

(
(0,T )×D;H1(π,Rd)

)
) and uniqueness of the

Vlasov-Fokker-Planck Equation with specular boundary condition:



∂ρ

∂t
+ v · ∇xρ+

([∫
Rd b(v , u)ρ(t, x , u)du∫

Rd ρ(t, x , u)du

]
· ∇vρ

)
=

1

2
∆vρ,

(t, x , v) ∈ (0,T )×D × Rd ,
ρ(0, x , v) = ρ0(x , v), (x , v) ∈ D × Rd ,
ρ(t, x , v) = ρ(t, x , v − 2(v · nD(x))nD(x)),

(t, v) ∈ (0,T )× Rd , x ∈ ∂D.

Propagation of initial Maxwellian bounds for the sub- and super- solutions.
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Euler scheme for linear confined models, D = R+

 Xt = X0 +
∫ t
0 Usds,

Ut = U0 +
∫ t
0 b(Us)ds + Wt −

∑
0<s≤t

2Us− ll {Xs=0}.

Euler scheme: ∆t > 0 and K ∈ N s.t. T = K∆t; tk := k∆t, 1 ≤ k ≤ K ,

(X̄tk , Ūtk ) given, compute (X̄tk+1
, Ūtk+1

) :

if X̄tk + ∆tŪtk ≥ 0 then X̄tk+1
= X̄tk + ∆tŪtk

Ūtk+1
= Ūtk + ∆tb(Ūtk ) + (Wtk+1

−Wtk ).

else τk = tk + X̄tk/Ūtk .
X̄tk+1

= −(tk+1 − τk)Ūtk

Ūtk+1
= −Ūtk − (τk − tk)b(Ūtk )︸ ︷︷ ︸

−Ūτk

+(tk+1 − τk)b(−Ūtk ) + (Wtk+1
−Wtk ).
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Weak convergence of the Euler scheme

Lemma

If b(u) = −cu then h(t, x , u) have bounded spatial derivatives up to the
order 4 and ∣∣Ef (XT )− Ef (X̄T )

∣∣ ≤ C∆t

for f in Cb(R).

Where

h(t, x , u) = E
(
f (X t,x ,u

T )
)

solves the following PDE in [0,T ]× R+ × R :


∂h

∂t
+ u∇xh + b(u)∇uh +

1

2
∆uh = 0,

h(t, 0, u) = h(t, 0,−u),
h(T , x , u) = f (x).
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Concluding remarks

Stochastic Downscaling Method: next step

More physics! (terrain elevation, temperature...)

Numerical analysis

Validation of the splitting algorithm for Lagrangian models.

Numerical analysis of the PIC method.

On Lagrangian models

Confined Brownian primitive in a domain with a forcing

Divergence free Lagrangian model (work in progress with J.
Fontbona).

Regularity and upper-bounds for the solution of a linear backward
PDE with specular boundary condition.
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