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Fluid Mixtures

Momentum Equation: (weak form)

[ (07,w) = (p,div(w) + u(D(v). D)) + (Te, ) = [ pf.w
Q Q

0
Elastic Energy and Stress: W = W(¢,V¢) and T, = Vo ® av)é\;

Transport of the Internal Variable: (with dissipation v > 0)

o'E@t+v.ch):—7(i;2}E—ﬂy(%)::—div[aw}>

Energy Estimate:

d 2 2 2y _
& | IR +w) + [ (oR +alow/aep) = [ pru



Energy Estimate & Galerkin Approximations
Reformulate the Elastic Stress: div(Te) = ...

[ (97 0)~(p. div(w) (D). D))~ (/)0 V) = [ pfm
Q Q

Transport Equation: (weak form)

ow
/Q(l/’y)dnb T a—ﬂ T (aw) V=0

Energy Estimate:
» Set w = v in the momentum equation

> Set ) = ¢, in the transport equation

d B
dt Q((p/z)’V‘ZJFW)+/Q(/J|D(V)\2+(1/v)lo ) —/pr.v



Evolution Equations
Abstract Equation: u: [0, T] — U, satisfies u(0) = v

ur + A(u) = F(u) in U



Evolution Equations
Abstract Equation: u: [0, T] — U, satisfies u(0) = v
ur + A(u) = F(u) in U
Abstract Weak Statement: U — H — U’

(ug, V) + a(u, v) = (F(u),v) velU

» U is a Banach Space, H is a Hilbert space, U — H
» a: Ux U— Ris coercive, a(u, u) > c,| ullf,
» F:U—-U

Note: The operators may depend explicity upon time.



Evolution Equations
Abstract Equation: u: [0, T] — U, satisfies u(0) = v
ur + A(u) = F(u) in U
Abstract Weak Statement: U — H — U’
(ug, V) + a(u, v) = (F(u), v) veU

Energy Estimate: Set v = u and integrate in time
1 5 t t
S+ [ calllly < ol + [ (Fu). 0

Bounds: u € L*>[0, T; H| N LP[0, T; U]

_ 1/p
Notation: |[ul[rp, ;0] = (foT ()T dt)



Evolution Equations
Abstract Equation: u: [0, T] — U, satisfies u(0) = v
ur + A(u) = F(u) in U
Abstract Weak Statement: U — H — U’
(ug, V) + a(u, v) = (F(u), v) veU

Energy Estimate: Set v = u and integrate in time

1+ [ callully < Flul+ [ (Flu).0

Alternative Estimate: If A= D®, set v = u;

/HWM+¢wu»s¢ww+/kﬂwmow
0 0

Bounds: u; € L2[0, T; H], u € L*=[0, T; U]



Numerical Approximations

Discrete Spaces: Let Uy C U be finite dimensional

Semi-Discrete Galerkin Approximation: up : [0, T] — Uy

(unt, va)H + a(up, vi) = (F(un),ve)  vh € Uy

This is a system of ordinary differential equations.



Numerical Approximations

Discrete Spaces: Let Uy C U be finite dimensional

Semi-Discrete Galerkin Approximation: up : [0, T] — Uy

(une, vi)H + a(up, vin) = (F(un), vin)  vin € Up
This is a system of ordinary differential equations.

Energy Estimate (Stability): Set v, = up

t

1 t
Slene B+ [ callonlly < Slenlln-+ [ (FCen).un).

Alternatively: If A= D®, set v, = up:

/ lunll2, + D(u) < D(uo) + / (F (un). une)
0 0



Numerical Approximations

Discrete Spaces: Let Uy C U be finite dimensional

Semi-Discrete Galerkin Approximation: up : [0, T] — Uy

(une, vi)H + a(up, vin) = (F(un), vin)  vin € Up
This is a system of ordinary differential equations.

Question: What is a “good” time stepping scheme?



Numerical Approximations

Discrete Spaces: Let Uy C U be finite dimensional

Semi-Discrete Galerkin Approximation: up : [0, T] — Uy

(une, vi)H + a(up, vin) = (F(un), vin)  vin € Up
This is a system of ordinary differential equations.

Question: What is a “good” time stepping scheme?
Rule of Thumb
» If stability follows upon setting v = u then use DG
Lowest order DG scheme is implicit Euler
» If stability follows upon setting v = u; then use CG

Lowest order CG scheme is the trapezoid rule



Time Stepping Schemes

Time Partition: 0=t < tl < ... <tN =T

UO [ unfl u_’;’__l
u® \f’?
f } } | | |
-1 £n ‘ ‘ th—l t‘n

CG Time Stepping Scheme DG Time Stepping Scheme



Time Stepping Schemes

Time Partition: 0 = t% < t! <

t}n 1 tn

CG Time Stepping Scheme DG Time Stepping Scheme

CG Scheme: up, € Py[t"L, t"; Uy satisfies up(t7 1) = up(t" 1)

and
tﬂ

tn
/ ((Uhr, vh)H + a(up, Vh)) =/ (F(un), vn)
tn—1 tn—1
for all vy € Py 1[t" L, t"; Uy
Stability: Set vy, = ups € Pp_1[t" 1, t" Up] ...



Time Stepping Schemes

Time Partition: 0=t < tl < ... <tN =T

uo un—1 u_':__l
Ug \fl?
Il
‘ th—l £n ‘ ‘ th—l gn

CG Time Stepping Scheme DG Time Stepping Scheme

DG Scheme: up, € Py[t"L, t"; Uy

/t:nl ((Uht, Vi)H + a(up, Vh)) +([u" v Yy = /ttnl<F(uh)7 Vi)

for all v, € Py[t"1, t"; Up)
m

Notation: Jump term [u] = u — u”



DG Time Stepping Scheme

DG Scheme: up, € Py[t"L, t"; Uy

/tntnl <(uht’vh)H+a(uh’vh)) + (" 1] P 1)H :/t 1<F(Uh),Vh>

for all v, € Py[t"1, t"; Up)
Energy Estimate (Stability): Set v, = up

n—1 "

1 1 1 t
2HU"H%:+22[U’"]%/+/O Callupllf) < EH °||/2L/+/O (F(un), up)

m=0

Note: For ¢ > 1 bounds in L*°[0, T; H] are not automatic.

< , F).
max [[u”ls < C(L.F)



DG Time Stepping Scheme

DG Scheme: up, € Py[t"L, t"; Uy

/t:"l ((Uht,Vh)H+a(Uh,Vh))+([ " v 1)H:/t 1<F(Uh),Vh>

for all v, € Py[t"1, t"; Up)

Energy Estimate (Stability): Set v, = up

1 1= 1 £
ACAIEEDY [U’"]iﬂrfo callunllfy < 5l Olliﬂr/0 (F(un), un)
m=0

Convergence:

» Lax Equivalence Theorem: A (linear) numerical scheme
converges if and only if it is stable and consistent.

» For nonlinear problems compactness is required to guarantee
convergence of the nonlinear terms!



Compactness of Solutions

Theorem: (Lions-Aubin) Let By, B and By be Banach spaces
satisfying By <~ B — B; where the first inclusion is compact. If
0<T<oo,1<p,qg<oo, and

W = W(0,T)={ue LP[0, T; By | ur€ L0, T;Bil},

then the inclusion W < LP[0, T; B] is compact.



Compactness of Solutions

Theorem: (Lions-Aubin) Let By, B and By be Banach spaces
satisfying By <~ B — B; where the first inclusion is compact. If
0<T<oo,1<p,qg<oo, and

W =W(0,T)={uc P[0, T:Bo] | ue€ L0, T: B},
then the inclusion W < LP[0, T; B] is compact.

Typical Application: Set U — H — U’
» For parabolic problems U < H is typically compact
» The energy estimate bounds u in LP[0, T; U]

» To estimate the time derivative, write

/OT(ut, v) = /0T<F(u), v) — a(u, v)

Bounds on u and growth conditions on F(.) and a(.,.) are
used to bound wu; in L9[0, T; U']



Compactness of Solutions

Theorem: (Lions-Aubin) Let By, B and By be Banach spaces
satisfying By <~ B — B; where the first inclusion is compact. If
0<T<oo,1<p,qg<oo, and

W = W(0,T)={ue P[0, T:Bo] | ue€ L0, T: B},
then the inclusion W < LP[0, T; B] is compact.

Problem: DG solutions are discontinuous so up; ¢ L9[0, T, By



Compactness of Discrete Solutions

Theorem: (njw) Let H be a Hilbert space, U a Banach space and
U < H < U’ be dense compact embeddings. Fix { > 0 to be an

integer, and 1 < p,q < oo. Let h > 0 be a (mesh) parameter and

for each h let {t,’;},’-\io be a uniform partition of [0, T] and U, C U

be a subspace. Assume that

1. For each h > 0, uh| n g EPg[t L th Up] and

/::(Uht,vh)H‘f'([ v l)H:/th (Fhs Vh),

n—1
h

for each v, € Py[t"L, t"; Up).
2. {upth=0 C LP[O, T; U] is bounded.
3. {Fh}n=0 C L9[0, T; U}] is bounded.



Compactness of Discrete Solutions

Theorem: (njw) Let H be a Hilbert space, U a Banach space and
U < H < U’ be dense compact embeddings. Fix { > 0 to be an
integer, and 1 < p,q < oo. Let h > 0 be a (mesh) parameter and
for each h let {t,’;},’-\io be a uniform partition of [0, T] and U, C U
be a subspace. Assume that ...

Then,
1. If p>1 then {up}n~o C L"[0, T; H] is compact for
1< r<2p.

2. IF1<1/p+1/q<2and SN |[[u"]|? is bounded
independently of h then {up}n~o C L"[0, T; H] is compact for
1<r<2/1/p+1/q—1).



Mixtures of Immiscible Fluids

@ (1)

Weak Statement of the NS Equations and Interface Condition

/Q{(Vt—i-(V.V)V,W)—(p,diV(W)) + V(D(V),D(W))}

+ / 'yHn.W_/f.W
S5(t) Q

Incompressibility Condition: / div(v)g =0
Q




Phase Field Approximations

_ N, =1
= F(9)

I 9
Phase Field Approximation: S(t) = {x € Q | ¢(x) = 0}
Formal Asymptotics: Let F(¢) = (1/2)(¢? — 1)? then

/Q (1/e)(ehd— (1/F @) w~2 [

S(t)

/ (eA¢ — (1/€)F'(¢))Vo.w ~ (4/3)/ Hn.w
Q

5(t)



Regularized Equations

Momentum Equation
/Q {(vt + (v.V)v,w) — (p,div(w)) + v(D(v), D(w))
+7 (eAp — (1/€)F'(¢), Vo.w) } = /Q fw.

Convection Equation: ¢y + v.V¢p =0



Regularized Equations

Momentum Equation
/Q {(vt + (v.V)v,w) — (p,div(w)) + v(D(v), D(w))
+v (g — (1/€)F'(¢), V. w) } - /Q fw.

Convection Equation: ¢: + v.V¢ = eA¢ — (1/€)F'(¢)



Regularized Equations

Momentum Equation
/Q {(vt + (v.V)v,w) — (p,div(w)) + v(D(v), D(w))
oy (e + v.V o, Vw) } — /Q Fw.

Convection Equation: ¢: + v.V¢ = eA¢ — (1/€)F'(¢)



Regularized Equations

Momentum Equation
/Q {(vt + (v.V)v,w) — (p, div(w)) + v(D(v), D(w))
+7 (¢t + v.Vo,Vo.w) } = /Q f.w.

/Q(ﬁbt +v.Vd) + eVo. Vi + (1/e)F' () =0



Regularized Equations

Energy Estimate
» Set w = v in the momentum equation

» and ¢ = ¢ in the phase equation

G [{arm + v (@2ver + a/ore) }
+ [ 2@ vVoP DW= [ (F.0)

Formal Asymptotics

> [ DIV + (1/)F(0) = (4/3)A
2 2
> [0 vvoy = [ (eao— @aF @) = [ @/3IH

Maximum Principle: |¢(t,x)| <1



Regularized Equations

Energy Estimate
» Set w = v in the momentum equation

» and ¢ = ¢; in the phase equation

% Q{(Iv\2/2) + 7((6/2)]V(/5\2+(1/6)F(¢))}
2 2 = V).
+ /Q'V(czﬁtJrv.Vqﬁ) +v|D(v)| _/Q(,g )

Theorem: (njw) “Numerical approximations using
» DG approximations of the regularized momentum equations
» CG approximations of the regularized convection equation

converge”

Liquid Crystals: The Ericksen-Leslie equations for nematic liquid
crystals have this structure.



Extensions

Unbounded Operators: U, C W — U < H — W’
> a(u,u) > cllullf,
> [a(u, v)| < Cllullullv]iw
> {lIFallLago, ;w1 h>0
> Assume P": H — U} satisfies || Pyul|lw < Cllullw

Then DG solutions are compact into LP[0, T; H] N L"[0, T; W’] for
1<r <o



Extensions

Unbounded Operators: U, C W — U < H — W’

> a(u,u) > cllullf

> la(u, V)| < Cllulullv]w

> {lIFallLago, ;w1 h>0

> Assume P": H — U} satisfies || Pyul|lw < Cllullw
Then DG solutions are compact into LP[0, T; H] N L"[0, T; W’] for
1<r <o

Example: Oldroyd-B Fluid: T, € L>®[0, T; L}(Q)]
[ (03 w) + 1(D). D)) = [ (oF.w) = (T, Tw)
Q Q

Then w — (To, Vw) € L1[0, T; WE(Q)']

Up € WES(Q) € HY(Q) = L2(Q) — W2 (Q) .



Extensions

Unbounded Operators: U, C W — U < H — W’
> a(u,u) > cllullf,
> [a(u, v)| < Cllullullv]iw
> {lIFallLago, ;w1 h>0
> Assume P": H — U} satisfies || Pyul|lw < Cllullw

Then DG solutions are compact into LP[0, T; H] N L"[0, T; W’] for
1<r <o

Adaptive Meshing:
- U, C U
» Assume P" : H — U} satisfies ||u — P{u|ln < Ch|lully
» h/7 is bounded

Then DG solutions are compact into LP[0, T; H]



