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@ Motivation and algorithm

@ Examples

@ Homogeneous deformation:
e tensionin 1d

a tension in Aluminum (3d)

@ shear in Aluminum

@ Inhomogeneous deformation:
e Vacancy (Aluminum)
@ nanoindentation (Aluminum)

@ Summary
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Atomistic model of crystalline solids

Molecular Mechanics model of crystalline solids
x; = position of :-th atom at undeformed state

y,; = position of i-th atom at deformed state

Eyy, ..., yn} = Z{Vz(yl,---,yN) + Va1, yYn) +}

N
{y1,.- ., yn} = argmin {Et"t{yl, L YNT Zf(wi)yi}
=1

f(x;) = external force at i-th atom

subject to certain boundary condition
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Difficulty In solving molecular mechanics

@ Total energy is nonconvex w.r.t. position of atoms; Fortunately, we
aim for the physically relevant local minimizer instead of global

minimizer (cf. geometry optimization problem: look for global
minimization configuration)

@ How to find the physically relevant local minimizer efficiently?

@ Larger the atomistic system, more the local minimizer
@ What is a good initial guess for iteration algorithms

a Is there any O(N) algorithm=linear scaling algorithm
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conugate gradient method is not linear scaling

@ Iteration number of conjugate gradient method

)\max max
nit =~ /r|log TOL| = log TOL| = ™2 |50 TOL|

)\min Wmin

x = condition number TOL = error tolerance

wmin = SMallest phonon spectra frequency

wmax = highest phonon spectra frequency; either acoustic or optic

@ For crystalline solids

1/e
1/Lmax
Lumax = largest linear dimensional of the system LY =~ N¢e?

max

log TOL| = N*/4|log TOL|

ni =~

¢ = lattice constant; /N = total number of atoms

@ Other iteration method: e.g., steepest descent method is even
worse
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ICriteria for linear scaling algorithm

@ The iteration number does not increase with the number of atoms
@ The CPU time scales linearly

@ Classic MG is actually a linear scaling method=—-develop a MG
like method for molecular mechanics model

@ Compared with known method

@ Quasincontinuum method: more likes domain decomposition
method; not linear scaling, only sublinear scaling; the same
with HMM

@ Linear scaling method introduced by S. GOEDECKER, F.
LANCON & T. DEUTSCH, PHYS. REV. B 64(2001), 161102:
first molecular mechanics + linear elasticity; no serious test
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. Solve Cauchy-Born elasticity model on the coarsest mesh; e.qg.,
over 2 x 2 x 2in 3d

. Interpolate solution on coarser mesh to finer mesh and solve
Cauchy-Born continuum model or linearized model with this initial
guess

@ CB elasticity for inhomogeneous deformation
@ Linearized model of CB elasticity (homogeneous deformation)

. Using the CB elasticity solution as initial guess, solve atomistic
model by conjugate gradient method or other iteration methods

. All the linear systems are solved by Boomer AMG in Hypre:
https://computation.linl.gov/casc/linear_ssolvers/sis_hypre.html
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Continuum model of solids

u : 2 — R3, displacement field

I(u) = / (W(Vu(w)) - f(:z:)u(:z:)) dae

(2

W = stored energy density f = external force

minimizing I(w) in suitable space subject to certain boundary condi-

tion

Multigrid Method —



Cauchy-Born rule: simple lattice

o L y:X+AX L o
L L > o L

@ W /(A) =energy of unit cell at the deformed configuration:
uniformly deformed by A

@ Example: 1d simple lattice with LJ potential

¢*(6)
¢(12)

¢ = Riemann-zeta function

Wes(4) = 22 (114 A[7'2 = 2]1 + A]7°)
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Molecular mechanics for tension in 1d

1d chain with Lennard-Jones potential
1. Q=10,1]

2. Initial guess is the undeformed state
r,=0G—1)r"i=1,--- N —1, xny = Nr*+96

3. Boundary condition: ghost-atoms (2nd neighbor interaction)

* 1 *
To =1 —T —N5 TNi1 = TN+ T —I—m5
4. lteration strategy: Newton method with line search: S.C.
EISENSTAT & H.F. WALKER, SIAM J. Sci. CoMPUT. 17(1996),

16-32
5. Parameter must be modified during the whole iteration process
neighbors ‘ 1st ‘ 2nd ‘ 3rd ‘ Ath ‘ theoretic
5. | .0105 | .0108 | .0109 | .0109 | .1086
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Our method

1. 4th neighbor interaction; Lennard-Jones potential; Newton method
without line search for both continuum model and atomistic model

2. atom N = 1024; MeshH :1/2 = 1/256

0.25

+ Our method
s EXACT

0.2r

0.15f

stress

0.1f

0.05f;

6C=0. 1086

\
0 0.1 0.2 0.3 0.4 0.5
strain

Red curve=Molecular Mechanics with elastic state as initial guess
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iteration number on different levels

strain(%) | <213 | <7.19 | <934 | <10.31 | <10.72 | <10.86
H=1/2 4 5 6 7 8 9
H=1/4 1 1 1 1 1
H=1/16 1 1 1 1 1 1
H=1/64 1 1 1 1 1 1
H =1/256 1 1 1 1 1 1
N = 1024 1 1 1 1 1 1

Total Iteration Number (compared with iteration number on atomistic
scale)

4 16
< 1 % 1 %
TIN<9> 551 T 1% Toaa 71 % 1021
64 9256
1 1 1
T 02 T 10 T

<2

Multigrid Method —



Linear scaling

The elastic state=§ < 9.

N | 1024 | 4096 | 16384 | 65536
TIN| <2 | <2 | <2 | <2 |
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Correct local minimizer or not
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Fig. 2: Local minimizer or not; £, = —8.4984; £, = —15.4575; En =
—15.5492 = energy of initial state
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@ Lattice=face-centered cubic (FCC)

@ Potential=Embedded-atom method (EAM)

2 CTARES Wy

= Z fj(r;;) = electron density of ith atom
J#1
¢ = pairwise interaction potential

U; = glue function

F. ERCOLESSI & J.B. ADAMS, EUROPHYS. LETT. 26 (1994), 583-588
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Tension in [111] direction

@ zraxis=[112|, yaxis=[110], =z axis=[111]

@ Boundary condition: z, y= periodic boundary condition, z=tension,
thesameas 1 —d

@ Solver: Newton-Raphson method for CB elasticity with line search

@ Conjugate gradient (Fletcher-Reeves) method for molecular
mechanics with line search (bisection method)
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Stress strain curve for tension
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@ Time-Size curve
% = | past square solution
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(a) Stress-strain curve (b) loglog plot for time vs. system size

@® Linear scaling by our method
Point C=Elasticity instability

/\ Linear scaling is lost

mesh =2 x 2 x 2 — 32 x 32 x 32
+# of atom = 1,572, 864

PP P PP
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Linear scaling

0 < .08=elastic state

@ TIN: total iteration number of Newton method

@ TCG: total iteration number of conjugate gradient method

N | 3072 | 24576 | 196608 | 1572864
TIN | <2 | <2 <9 <9
TCG | <2 | <2 <9 <9
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Shear in [112] direction
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@ Time-Size curve
~ = | past square solution
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(C) Stress-strain curve (d) loglog plot for time vs. system size

® Linear scaling

L] Linear scaling is lost

mesh =2 x 2 x 2 —=— 32 x 32 x 32
# of atom = 1, 572, 864

e P PP
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Inhomegeneats deformation: vacancy under tension

@ Set-up
@ simulation domain=158 x 91.2 x 223.5
@ # of atom=196608
@ tension § = 2.235

@ mesh=2 x 2 x2=— 16 x 16 x 16

@ Linear scaling is lost:

mesh coarsest otherlevels atomistic scale
Ilter. Num. 17 1 14

Table. 1: Iter. num. on different meshes & atomic scale
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| ocalization

0.05

z coordinate difference between LQC and MM

-0.05

0.04¢
0.03¢
0.02f
0.01f

e Atom
® Vacancy|

-0.01¢
-0.021
-0.03¢
-0.041
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z coordinate of initial configuration

250

Fig. 3: Difference between LQC and MM in z direction under tension

Error is localized !!!
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Remedy: local correction

@ Choose a box (2 around vacancy as simulation domain

@ Use yg as the initial guess and carry out molecular simulation
inside the box until to a given tolerance y.,,

@ Using
Ycs if D\
Yeorr it 2

y:

as initial guess for molecular simulation

10*
@ Time-Size curve
= |_east square solution

10°}

computing time(s)(log scale)

2

10

10° 10° 10°
system size(log scale)
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INRGMOGENEoUS deformation: nanoindentation

raxis=[111]  yaxis=[112]  z axis=[110]
Ghost atoms setting: the same as tension in 3d

Fig. 4: system size= 220A x 40A x 46A;indentor width= 14A
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Schematic figure: Left, the finest mesh of LQC,; Right, atoms(in red) in

each element(in blue)
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Load-displacement curve

System contains 24576 = 32 x 8 x 16 x 6 Al atoms

Indentation Force(eV/AZ)
©c o o o o o o o O
- N w ESN ol » ~ o (o) =

0 0.5 1 1.5 2 2.5 3
Indentation depth(A)
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Configurations A & B

s
&

Fig. 5: Dislocation appears under the indentor
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Configurations C & D

R,

el A

Fig. 6: Dislocation appears under the indentor
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Configurations E & F

a>t &'l

Fig. 7: Dislocation appears under the indentor
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Results

@ Dislocation (B) comes in before the load-displacement curve
decreases(d¢)

@ Plasticity cannot be judged by load-displacement curve

Although the system is small, above results are conforming with with

@ Numerical result: number of atom= 2.5 x 10'!: (J. KNAP AND M.
ORTIZ, PHYS. REV. LETT. 90 (2003) , 226102)

@ Experiment result: (A.M. MINOR, S.A. SYED ASIF , Z.W. SHAN,
E.A. STACH, E. CYRANKOWSKI, T.J. WYROBEK & O.L. WARREN,
NATURE MATERIALS 5 (2006), 697-702))
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lteration numbers

Total Newton iteration numbers < 2
TCG: Total CG iteration numbers on atomic scale

displacement(A) ‘ < dc ‘ > dc
TCG | 46 ~85 | 113 ~ 188

@ Before d-, TCG increases slowly and No jump for TCG
@ After d¢, jump for TCG

Q Plasticity comes in after d¢?
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Two stabllity regions

Define
F:={AcR™ | det(l+A) >0}

Elasticity stiffness tensor C(A) = D*W¢g(A)

Or(A):={Aecz | CA@qfaiq = A>T}
Os(A1,45): = {AE€ZR | wa(A k) > M|k| & wo(A, k) > As/e}

k € 1st Brillouin zone=foundamental domain
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itheoretical resultfE—M, ARMA, 07]

f0 € 0, and p > d,3K, R s.t. forany || f||z» < K, 3|ucg of the
continuum problem s.t. ||ucg||w2» < R, and ucg is a W > —local
minimizer

f0 e 0, and p > d, 3K s.t. forany f € WO»(2;R%) and || f||r» < K,
then the atomistic model has a local minimizer {y¢} that satisfies

|y — Ycs |a < Ce

where ycg = {ycg}; = ¢, +ucs(x;), e = lattice constant, and || - || iS

a discrete H! norm
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Summary of Our method

@ In elastic regime
a Physically reasonable configuration
a Insensitive to parameters of nonlinear iteration method
@ Linear scaling of the computing complexity
@ Linear scaling is recovered if local correction is added
(Vacancy)
@ Out of this regime
@ Physical reasonable result (nanoindentation)
@ unphysical configuration (tension)
@ Linear scaling is lost (tension, nanoindentation)
@ An efficient way to find physically relevant local minimizer; Hidden

mechanism: automatically bypass many unphysically local
minimizer
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@ Drawbacks of the algorithm:
a Inefficient for inhomogeneous deformation
o Adaptive FEM is required in solving Cauchy-Born elasticity

@ More realistic applications are needed: e.g., other
nanoindentation simulation; dislocation/fracture (Maradudin,

Tewary)

@ Theoretically understand of this alg., e.g.,
@ Mechanism for bypassing local minimizer

@ Rigorous prove the algorithm is linear scaling, at least for
homogeneous deformation; vacancy is much harder
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Extension and perspective

@ Wider implementation: lattice equations in many other fields
@ Repetitive structure in solid mechanics (A.K. Noor)

Power grid (Babuska, Sauter)

Protein folding lattice model (Thumas, 1995)

Ising model

Quantum chromodynamics (lattice QCD)

PP P PP

Integer programming problem in operations research
@ Lattice-based cryptography and communication theory

@ Difficulty
a Do all the aforementioned problems concern local minima

@ Does there exists an efficient macroscopic model as CB
elasticity in crystalline solids (e.g., finite difference
homogenization for linear lattice equation)

L Multigrid Method — p.:
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