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Introduction to CKS



Modeling the biological processes in the cell
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Left figure — a schematic picture of cell, Right figure — Bioengineering

modeling of cellular processes



Traditional chemical reaction dynamics — ODE

> Decaying-dimerizing reaction

k1
S1 — 0,
ko
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k4

S —— Ss,

» Traditional model — ODEs for the concentration (Law of Mass Action)
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ki1, ks, ks, ks are reaction rates.



Reaction rate theory

Vo

Reaction rate theory for the determination of the rate constant k.
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Drawbacks of ODE description

> Deterministic model describes an average behavior and is only valid for
large population
> Species of small population may play important role in biological system

» Examples of stochasticity
A. Arkin et al., Genetics 149 (1998), 1633 — Stochastic variations can
produce probabilistic pathway selection.
M. Elowitz et al., Science 297 (2002), 391 — Gene expression is affected

by both extrinsic and intrinsic noise.



Chemical kinetic system (CKS)

Taking into account the stochasticity in biological chemical reactions, this

opens a new way for modeling and simulation!



Chemical reaction kinetics — stochastic version

» Well-stirred (well-mixed) system of N molecular species {S1,S2,...,Sn}

interacting through M chemical reaction channels {R1, Ra, ..., R}

> State of the system
X, = (X3, X2, X0).

» Each reaction channel R; is characterized by its propensity function a;(x)

and its state change vector

> Here a;(x)dt gives the probability that the system will experience an R;
reaction in the next infinitesimal time dt when the current state X; = x.

z/j"E is the change in the number of \S; molecules caused by one R; reaction.

> We will define the total propensity ao(z) = Zjle aj(x).



Chemical master equation (CME)

» Denote P(z,t|xo,to) the proability distribution of CKS. Then

M
P(z,t +dt|lzo, to) = Y P(x —v;,tlwo,to)a;(@ — v;)dt
j=1

+(1 - Zaj(:v)dt)P(a:, t|lzo, to)

from the Markov property.

> The chemical master equation for the system is

M M
Oy P(a, tlwo, to) = »_ aj(@—v;)P(x—v;,tlzo, to)— Y a;(x) P(, t|zo, o).
j=1 j=1



An example

» Decaying-dimerizing reaction:

Ry : S1—¢

Ry : 251 — Ss

Rs : 251 «— So

Ry : S — S3
Suppose k1 = 1, ks = 10, ks = 1000, k4 = 0.1, then the propensity
functions are given by

1(z1 —

1
5 ),a3:1000-x2, ag =0.1-x2

x
a1:1-a:1, (12:10'
and state change vector

Vl = (_1’070)7 ]/2 = (_27 1’0)’ V3 = (27 _170)7 V4 = (_1707 1)'

Initial state X (0) = (400, 798, 0).



SSA — Gillespie's algorithm

> SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
> Step 1: Sampling the waiting time 7 as an exponentially distributed random
variable (R.V.) with rate ao(X?¢);
> Step 2: Sampling an M point R.V. k with probability
reaction;
> Step 3: Update X1 = X + Vg, then return to Step 1.

a;(X+¢)
ag(X¢)

for the j-th

> |t is an exact simulation which obeys the chemical master equation.

> It is also named BKL algorithm (Bortz-Kalos-Lebowitz) or KMC in

condensed matter physics.



Shortcomings of SSA

> When the population of molecules is very large, the reaction will fire very

frequently, which is quite time consuming.

» When the reaction rate is very large for a reversible reaction, the reactions
will fire back and forth very frequently, but cause very little change of the
state (e.g. +100 — 80 = +20)

251 —> SQ

» How to accelerate the simulation process?



Tau-leaping algorithm

» Proposed by Gillespie, J. Chem. Phys. 115 (2001), 1716.

> Leap Condition: “Require the leap time 7 to be small enough that the
change in the state during [t,t + 7) will be so slight that no propensity
function will suffer an appreciable (i.e., macroscopically non-infinitesimal)

change in its value.”

> The number of jumps within a fixed time interval for a Poisson process is
a Poisson R.V.

> Tau-leaping algorithm

M
Xipr = X + EVjP(aj(Xt)T)

j=1

where P(a;(X¢)7) is a Poisson R.V. with mean and variance a;(X)7.



Tau-leaping algorithm — continued

S booocoooocoooooooo
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Comparison of the philosophy between tau-leaping and explicit Euler for ODE:
freezing the "slope” of a curve if it does not have an appreciable change from

tn to tn+1.



Tau-leaping algorithm — continued

» From tau-leaping to Chemical Langevin Equation
When a;(X¢)T > 1, P(a;(X+)7) = N(a;(X¢)7,a;(X+)7) by Central
Limit Theorem

M

M
Xipr m Xo+ Y via;(X)m+ Y v;3/a;(X)TN(0,1)
j=1

j=1

which corresponds to CLE

M M
dX, = via;(X)dt + > vi/a;(X.)dW,
j=1 j=1



Tau-leaping algorithm — continued

» From Chemical Langevin Equation to Reaction Rate Equation
When a;(X )T — +o0, N(a;(X¢)7,a;(X:)T) =~ aj(X+¢)7 by Law of

Large Numbers
M

Xt+7- ~ Xt —+ Zl/]'aj(Xt)T

j=1

which corresponds to RRE

M

ax

=2 _viai(Xy)
=1



Tau-leaping algorithm — continued

» From Chemical Langevin Equation to Reaction Rate Equation
When a;(X )T — +o0, N(a;(X¢)7,a;(X:)T) =~ aj(X+¢)7 by Law of

Large Numbers

M
Xt+7- ~ Xt —+ Zl/]'aj(Xt)T

Jj=1
which corresponds to RRE
M
dX
dtt = ;”jaj(Xt)

» Tau-leaping bridges all of the equations in different scales with a seamless

way!



A comprehensive explanation for CKS

» Comparison with fluid mechanics (upscaling)

SSA —  Molecular dynamics

! 1
CLE — Kinetic theory
! 1

RRE — Continuum mechanics



Continued works on tau-leaping and SSA

> More robust stepsize selection for avoiding negative population.

» Overcoming stiffness issue (chemical reaction system is usually stiff).

v

Mathematical analysis of tau-leaping algorithm.

\4

Multiscale system: slow-scale SSA, nested SSA.



Basic motivation

Project plan: Systematic analysis and mathematical
understanding of tau-leaping scheme, constructing more
accurate schemes for CKS.



Part I: Convergence analysis of tau-leaping methods



Existed result

» Only weak convergence for linear propensity functions is obtained
(Rathinam-Petzold-Cao-Gillespie, MMS 4 (2005), 867).
> Local weak consistency estimates for general nonlinear propensity

functions.



Mathematical formulation

> Issue 1: the chemical reaction kinetics is a pure jump process with state

dependent intensity.

» Construct jump process with state dependent intensity from constant

jump intensity process (P. Protter, 1983) — Acceptance rejection method

A
p(dt) = / 1{o<z<ag(x ) A(dt x dx).
0

A(dt x dx) is the Poisson random measure generated from a constant

jump intensity process. u(dt) has intensity ao(X¢).

» The SDE form for the CME
M A
dX, = Z/ vici(w; X, )A(dt % da),
=170

where

0, otherwise.

_(x;Xt)_{ 1, fze(XiTla(Xe), Y0, ai(X0)), AL



Tau-leaping is an explicit Euler scheme

» Decomposition

M A
dX: = Z/ vici(xz; X¢—)m(dt X dx)
=170

M A

+ Z/ vici(z; X )X —m)(dt x dz)
j=170

= P;+ Po.

» We call P; the drift term and P2 is the jump term.

» Explicit Euler scheme — tau-leaping method!

M
X1 =Xn+ Y v;P(a;(Xn)dtn)

Jj=1



Other tau-leaping schemes

> Implicit tau-leaping: semi-implicit Euler of SDEs

» Stochastic theta methods:

M
Xn1 = X.+ Z@l/j (aj(-XnJrl) = aj(Xn))5tn
j=1

o $urwienn

> Milstein scheme: Not directly imply any implementable scheme! This

motivates us to construct the higher order methods from another way!



Convergence Theorem: Assumptions

Assumption (Bound on X)

The number of the elements in Qx, (the set of all available states) is finite,

i.e. X¢ is in a bounded lattice.

Assumption (Local Lipschitz condition on a;(x))

The function aj(x) is Lipschitz continuous in a bounded domain.



Convergence Theorem

» Theorem (Mean square convergence)

With the assumptions before we have

sup E|X, — th|2 <Cr,

n<Nrp
where T = maxy, dty,. (Strong order 1/2)

» Theorem (Weak convergence)

Under the assumptions, for any continuous function g(x) satisfying exponential

growth condition
lg(xz)| < CyB"™!, e RY and C,, B > 0.

We have
Eg(X ny) —Eg(XT)| < CrT,

where T = tn,, T = maxy, 0t,. (Weak order 1)



Part Il: RC-tau-leaping algorithm



Basic motivation

» How to construct higher order tau-leaping scheme?

» Some existing attempts:
Midpoint-tau-leaping scheme (Gillespie);
Poisson-Runge-Kutta scheme (Burrage-Tian);

Stochastic Taylor expansion (Platen et al.)



Remark

» Numerical Scheme

» Numerical error

IEX,, — EN X,| ~ O(6t*) + O < }VVar(Xn)>

Higher order means in the time (Improve p).



Tau-leaping method: Revisited

> A general form for simulations in CKS
Xn+1 = Xn + v "I‘*.

r* is a random vector.



Tau-leaping with random corrections (RC-tau-leaping)

» To introduce the correlation, we make decomposition

* =

r =r+r
where r; = P(a;(Xn)7),5 =1,..., M, but the components of 7 are
dependent, which plays the role of corrections.

» To impove the accuracy, we attack from the analysis of the locally weak

truncation error

HEw [(Xn-H - Xn)p] — Ee [(th+7 - th)p}

‘ < Critt.

under the condition X, = X, = z.



Basic idea

> We search for the statistics of " such that it has the higher order local

truncation error, not from the Taylor expansion of the SDEs.

» Proposition
Assume r* =1 + 7. r is a vector with M mutually independent components
rj =Pla;j(Xn)T),7=1,...,M. Given X, = x, if the components of
satisfy

2 M
Ew[ " Zak nJA +O( ) ]:1]\17

then the scheme is of second order consistency for the mean. Here

njx(x) = aj(x +vi) — a;(z).



Adding Poisson corrections

If we choose
75 = sgn(A;)P; (I1As1) »

we have several choices for \;

M
r
1. )\j == Z’f‘kﬂjk
2.0
1 & (re —
2.\ = 5 Z k Ujkx assuming ay # 0 here.

M
3.0 = % Zakn]k (Does not depend on 1)
=1



Tau-leaping with Poisson corrections (PRC-tau-leaping)

Algorithm
PRC-tau-leaping.
> Step 1: Given the state X, at time t,, compute the matrix n(X ),
determine a leap time T;
> Step 2: Generate Poisson R.V.s r; = P (j1;), where 15 is defined as below

2 M
-
Mi =0T+ o E aknjk-
k=1

» Step 3: Update time tot, +7 and X1 =X, +v-77.



Conditions for second order tau-leaping for mean and covariance

» Proposition
For a numerical method with the form above, if the R.V.s {r}} are mutually
independent, then in general it cannot be second order consistent for the
covariance of X .
> With the above lemma and similar idea, we can prove that the Midpoint
(Gillespie) and PRK (Burrage and Tian) can not be second order for

covariance!



Second order tau-leaping for mean and covariance

Proposition

Assume that we have a numerical scheme X 11 = X, +v -r", where
r* =7r 4+ 7. v is a vector with M mutually independent components

r; =P(a;j(Xn)7),j=1,...,M. Given X, = x, if the components of T
satisfy

2 M
= _ T 3\ .
L Eo [E- [5]] = 5 ;akmk +0(77);
2. forj # k, By [Er [F;74]] = O(T?);
2

. for j # k, Eg [rE, [fr] = %ajnkj +0(%);

w

2 M
- - T
4. Eo [Er [7]] +2Ba 1B (7)) = 5 D axnge + 7 agng; + O,
k=1
then the scheme is second order consistent for both mean and covariance.



Tau-leaping with Gaussian corrections (GRC-tau-leaping)

» Conditioned on 7, if random vector 7 has mutually independent

components with mean E.[7;] and variance Var,[7;]

M
E. [7] %ZTWM + % > (%Tj - Tak> Mk
k=1 0k <0 J
5 M
Var,[f;] = % > aklnikl >0,
k=1

then the scheme is weakly second order consistent for both mean and
covariance.

» Introducing non-integer number of states and reactions. How to

understand? (Similar considerations in quantum mechanics: Schrédinger’s
cat)



Tau-leaping with Gaussian corrections (GRC-tau-leaping)

Algorithm
GRC-tau-leaping (version 1).
> Step 1: Given the state X, at time t,, compute the matrix (X ), determine a
leap time T;
» Step 2: Generate the random vector r whose components are mutually

independent Poisson R.V.sr; = P (a;(Xn)T);

> Step 3: Conditioned on r, generate random vector 7, whose components are

mutually independent Gaussian R.V.s with mean E..[;] and variance Var,[7;] as

below
M
Er[7] = g D remgk + % > (%Tj = Tak) Njks
k=1 Nk <0 7
L2 M
Vare[fj] = — > alnixl >0,
k=1

> Step 4: Update time to t, + 7 and X1 = Xn +v-(r+7).



Test examples

» System 1: S — ()
> System 2: S — 25

> System 3: Michaelis-Menten system

S1+ 52 J, Ss
S3 LR S1+ 52
S3 & So + Sy.



Test examples

System 4: A more complex system

Reaction Propensity Rate constant
1. Ex— Eaps+ A a1=cl[ A} c1 = 150
2. Ep - Ep+ B a2 = c3[Ep] co = 150
3. EAs+ B — ExB asz = [EAHB] c3 = 0.001
4, EaB — FEAs+ B a4 = c4[E 4B ce =6
5. EaB+ B — ExB> as = [E ][ } cs = 0.001
6. EsB: — EaB+ B ag = C [EABQ] cg =
7. A—0 a7 = [A] cr =5
8. Ep+A— EgA ag = ¢ [ M ] cg = 0.001
9. EpA— Egp+ A ag = c9[EpA] co =
10. EpA+ A — EgAs ajp = ClO[EBAMA} c1o = 0.001
11. EBAQ —>EBA+A ail :Cll[EBAQ] c11 =6
12. B—0 a2 = c12([B] c12 =5

Table: List of reactions and propensity functions for system 4.



Numerical results
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Figure: The estimated mean and variance for the example 1



Numerical results

absolute error
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Figure: The estimated mean and variance for the example 2



Numerical results
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Figure: The estimated mean and variance for the example 3



Numerical results

absolute error
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Summary



Summary

> The convergence analysis of tau-leaping methods based on its SDE form is

performed, which will be fruitful for the future research.

» A second order scheme (in time) for both the mean and covariance is
constructed. So far it is the most accurate scheme for CKS with sound

mathematical background.

» More systematic studies on RC-tau-leaping and the higher order methods

are in progressing......



Thank you!



