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Introduction to CKS



Modeling the biological processes in the cell

Left figure — a schematic picture of cell, Right figure — Bioengineering

modeling of cellular processes



Traditional chemical reaction dynamics — ODE

I Decaying-dimerizing reaction
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k1

GGGGGGA ∅,

2S1
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I Traditional model — ODEs for the concentration (Law of Mass Action)

dx1

dt
= −k1x1 − k2x

2
1 + k3x2

dx2

dt
= k2x

2
1 − k3x2 − k4x2

dx3

dt
= k4x2

k1, k2, k3, k4 are reaction rates.



Reaction rate theory

V

V

Va

b

s

Reaction rate theory for the determination of the rate constant k.

k ∝ e−
∆V

kBT , ∆V = Vs − Va.



Drawbacks of ODE description

I Deterministic model describes an average behavior and is only valid for

large population

I Species of small population may play important role in biological system

I Examples of stochasticity

A. Arkin et al., Genetics 149 (1998), 1633 — Stochastic variations can

produce probabilistic pathway selection.

M. Elowitz et al., Science 297 (2002), 391 — Gene expression is affected

by both extrinsic and intrinsic noise.



Chemical kinetic system (CKS)

Taking into account the stochasticity in biological chemical reactions, this

opens a new way for modeling and simulation!



Chemical reaction kinetics — stochastic version

I Well-stirred (well-mixed) system of N molecular species {S1, S2, . . . , SN}
interacting through M chemical reaction channels {R1, R2, . . . , RM}.

I State of the system

Xt = (X1
t , X

2
t , . . . , X

N
t ).

I Each reaction channel Rj is characterized by its propensity function aj(x)

and its state change vector

νννj = (ν1
j , ν

2
j , . . . , ν

N
j ).

I Here aj(x)dt gives the probability that the system will experience an Rj

reaction in the next infinitesimal time dt when the current state Xt = x.

νij is the change in the number of Si molecules caused by one Rj reaction.

I We will define the total propensity a0(x) =
PM
j=1 aj(x).



Chemical master equation (CME)

I Denote P (x, t|x0, t0) the proability distribution of CKS. Then

P (x, t+ dt|x0, t0) =
MX
j=1

P (x− νννj , t|x0, t0)aj(x− νννj)dt

+(1−
MX
j=1

aj(x)dt)P (x, t|x0, t0)

from the Markov property.

I The chemical master equation for the system is

∂tP (x, t|x0, t0) =
MX
j=1

aj(x−νννj)P (x−νννj , t|x0, t0)−
MX
j=1

aj(x)P (x, t|x0, t0).



An example

I Decaying-dimerizing reaction:

R1 : S1 −→ φ

R2 : 2S1 −→ S2

R3 : 2S1 ←− S2

R4 : S2 −→ S3

Suppose k1 = 1, k2 = 10, k3 = 1000, k4 = 0.1, then the propensity

functions are given by

a1 = 1 · x1, a2 = 10 · x1(x1 − 1)

2
, a3 = 1000 · x2, a4 = 0.1 · x2

and state change vector

ν1 = (−1, 0, 0), ν2 = (−2, 1, 0), ν3 = (2,−1, 0), ν4 = (−1, 0, 1).

Initial state X(0) = (400, 798, 0).



SSA — Gillespie’s algorithm

I SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)

I Step 1: Sampling the waiting time τ as an exponentially distributed random

variable (R.V.) with rate a0(Xt);

I Step 2: Sampling an M point R.V. k with probability
aj(Xt)

a0(Xt)
for the j-th

reaction;

I Step 3: Update Xt+τ = Xt + νννk, then return to Step 1.

I It is an exact simulation which obeys the chemical master equation.

I It is also named BKL algorithm (Bortz-Kalos-Lebowitz) or KMC in

condensed matter physics.



Shortcomings of SSA

I When the population of molecules is very large, the reaction will fire very

frequently, which is quite time consuming.

I When the reaction rate is very large for a reversible reaction, the reactions

will fire back and forth very frequently, but cause very little change of the

state (e.g. +100− 80 = +20)

2S1 ←→ S2

I How to accelerate the simulation process?



Tau-leaping algorithm

I Proposed by Gillespie, J. Chem. Phys. 115 (2001), 1716.

I Leap Condition: “Require the leap time τ to be small enough that the

change in the state during [t, t+ τ) will be so slight that no propensity

function will suffer an appreciable (i.e., macroscopically non-infinitesimal)

change in its value.”

I The number of jumps within a fixed time interval for a Poisson process is

a Poisson R.V.

I Tau-leaping algorithm

Xt+τ ≈Xt +
MX
j=1

νννjP (aj(Xt)τ)

where P (aj(Xt)τ) is a Poisson R.V. with mean and variance aj(Xt)τ .



Tau-leaping algorithm — continued

t
0

t
1

Comparison of the philosophy between tau-leaping and explicit Euler for ODE:

freezing the ”slope“ of a curve if it does not have an appreciable change from

tn to tn+1.



Tau-leaping algorithm — continued

I From tau-leaping to Chemical Langevin Equation

When aj(Xt)τ � 1, P (aj(Xt)τ) ≈ N(aj(Xt)τ, aj(Xt)τ) by Central

Limit Theorem

Xt+τ ≈Xt +
MX
j=1

νννjaj(Xt)τ +
MX
j=1

νννj
p
aj(Xt)τN(0, 1)

which corresponds to CLE

dXt =

MX
j=1

νννjaj(Xt)dt+

MX
j=1

νννj
p
aj(Xt)dW t



Tau-leaping algorithm — continued

I From Chemical Langevin Equation to Reaction Rate Equation

When aj(Xt)τ → +∞, N(aj(Xt)τ, aj(Xt)τ) ≈ aj(Xt)τ by Law of

Large Numbers

Xt+τ ≈Xt +

MX
j=1

νννjaj(Xt)τ

which corresponds to RRE

dXt

dt
=

MX
j=1

νννjaj(Xt)

I Tau-leaping bridges all of the equations in different scales with a seamless

way!



Tau-leaping algorithm — continued

I From Chemical Langevin Equation to Reaction Rate Equation

When aj(Xt)τ → +∞, N(aj(Xt)τ, aj(Xt)τ) ≈ aj(Xt)τ by Law of

Large Numbers

Xt+τ ≈Xt +

MX
j=1

νννjaj(Xt)τ

which corresponds to RRE

dXt

dt
=

MX
j=1

νννjaj(Xt)

I Tau-leaping bridges all of the equations in different scales with a seamless

way!



A comprehensive explanation for CKS

I Comparison with fluid mechanics (upscaling)

SSA −→ Molecular dynamics

↓ ↓
CLE −→ Kinetic theory

↓ ↓
RRE −→ Continuum mechanics



Continued works on tau-leaping and SSA

I More robust stepsize selection for avoiding negative population.

I Overcoming stiffness issue (chemical reaction system is usually stiff).

I Mathematical analysis of tau-leaping algorithm.

I Multiscale system: slow-scale SSA, nested SSA.

I · · · · · ·



Basic motivation

Project plan: Systematic analysis and mathematical
understanding of tau-leaping scheme, constructing more
accurate schemes for CKS.



Part I: Convergence analysis of tau-leaping methods



Existed result

I Only weak convergence for linear propensity functions is obtained

(Rathinam-Petzold-Cao-Gillespie, MMS 4 (2005), 867).

I Local weak consistency estimates for general nonlinear propensity

functions.



Mathematical formulation

I Issue 1: the chemical reaction kinetics is a pure jump process with state

dependent intensity.

I Construct jump process with state dependent intensity from constant

jump intensity process (P. Protter, 1983) — Acceptance rejection method

µ(dt) =

Z A

0

1{0<x≤a0(Xt)}λ(dt× dx).

λ(dt× dx) is the Poisson random measure generated from a constant

jump intensity process. µ(dt) has intensity a0(Xt).

I The SDE form for the CME

dXt =

MX
j=1

Z A

0

νννjcj(x;Xt−)λ(dt× dx),

where

cj(x;Xt) =

(
1, if x ∈ (

Pj−1
i=1 ai(Xt),

Pj
i=1 ai(Xt)],

0, otherwise.
j = 1, 2, . . . ,M.



Tau-leaping is an explicit Euler scheme

I Decomposition

dXt =

MX
j=1

Z A

0

νννjcj(x;Xt−)m(dt× dx)

+
MX
j=1

Z A

0

νννjcj(x;Xt−)(λ−m)(dt× dx)

= P 1 + P 2.

I We call P 1 the drift term and P 2 is the jump term.

I Explicit Euler scheme — tau-leaping method!

Xn+1 = Xn +

MX
j=1

νννjP(aj(Xn)δtn)



Other tau-leaping schemes

I Implicit tau-leaping: semi-implicit Euler of SDEs

I Stochastic theta methods:

Xn+1 = Xn +

MX
j=1

θνννj
“
aj(Xn+1)− aj(Xn)

”
δtn

+
MX
j=1

νννjP(aj(Xn)δtn).

I Milstein scheme: Not directly imply any implementable scheme! This

motivates us to construct the higher order methods from another way!



Convergence Theorem: Assumptions

Assumption (Bound on Xt)

The number of the elements in ΩX0 (the set of all available states) is finite,

i.e. Xt is in a bounded lattice.

Assumption (Local Lipschitz condition on aj(x))

The function aj(x) is Lipschitz continuous in a bounded domain.



Convergence Theorem

I Theorem (Mean square convergence)

With the assumptions before we have

sup
n≤NT

E|Xn −Xtn |
2 ≤ Cτ,

where τ = maxn δtn. (Strong order 1/2)

I Theorem (Weak convergence)

Under the assumptions, for any continuous function g(x) satisfying exponential

growth condition

|g(x)| ≤ CgB|x|, x ∈ RN and Cg, B > 0.

We have ˛̨̨
Eg(XNT )− Eg(XT )

˛̨̨
≤ Cτ,

where T = tNT , τ = maxn δtn. (Weak order 1)



Part II: RC-tau-leaping algorithm



Basic motivation

I How to construct higher order tau-leaping scheme?

I Some existing attempts:

Midpoint-tau-leaping scheme (Gillespie);

Poisson-Runge-Kutta scheme (Burrage-Tian);

Stochastic Taylor expansion (Platen et al.)



Remark

I Numerical Scheme

ENXn :=
1

N

NX
i=1

Xn,i

I Numerical error

|EXtn − ENXn| ∼ O(δtp) +O

 r
1

N
Var(Xn)

!

Higher order means in the time (Improve p).



Tau-leaping method: Revisited

I A general form for simulations in CKS

Xn+1 = Xn + ν · r∗.

r∗ is a random vector.



Tau-leaping with random corrections (RC-tau-leaping)

I To introduce the correlation, we make decomposition

r∗ = r + r̃

where rj = P(aj(Xn)τ), j = 1, . . . ,M , but the components of r̃ are

dependent, which plays the role of corrections.

I To impove the accuracy, we attack from the analysis of the locally weak

truncation error‚‚‚Ex [(Xn+1 −Xn)p]− Ex [(Xtn+τ −Xtn)p]
‚‚‚ ≤ Cτ q+1.

under the condition Xn = Xtn = x.



Basic idea

I We search for the statistics of r∗ such that it has the higher order local

truncation error, not from the Taylor expansion of the SDEs.

I Proposition

Assume r∗ = r + r̃. r is a vector with M mutually independent components

rj = P(aj(Xn)τ), j = 1, . . . ,M . Given Xn = x, if the components of r̃

satisfy

Ex [Er [r̃j ]] =
τ2

2

MX
k=1

ak(x)ηjk(x) +O(τ3), j = 1, . . . ,M,

then the scheme is of second order consistency for the mean. Here

ηjk(x) = aj(x+ νk)− aj(x).



Adding Poisson corrections

If we choose

r̃j = sgn(λj)Pj (|λj |) ,

we have several choices for λj

1. λj =
τ

2

MX
k=1

rkηjk.

2. λj =
1

2

MX
k=1

rk(rk − 1)

ak
ηjk, assuming ak 6= 0 here.

3. λj =
τ2

2

MX
k=1

akηjk. (Does not depend on rk)



Tau-leaping with Poisson corrections (PRC-tau-leaping)

Algorithm

PRC-tau-leaping.

I Step 1: Given the state Xn at time tn, compute the matrix η(Xn),

determine a leap time τ ;

I Step 2: Generate Poisson R.V.s r∗j = P (µj), where µj is defined as below

µj = ajτ +
τ2

2

MX
k=1

akηjk.

I Step 3: Update time to tn + τ and Xn+1 = Xn + ν · r∗.



Conditions for second order tau-leaping for mean and covariance

I Proposition

For a numerical method with the form above, if the R.V.s {r∗j } are mutually

independent, then in general it cannot be second order consistent for the

covariance of X.

I With the above lemma and similar idea, we can prove that the Midpoint

(Gillespie) and PRK (Burrage and Tian) can not be second order for

covariance!



Second order tau-leaping for mean and covariance

Proposition

Assume that we have a numerical scheme Xn+1 = Xn + ν · r∗, where

r∗ = r + r̃. r is a vector with M mutually independent components

rj = P(aj(Xn)τ), j = 1, . . . ,M . Given Xn = x, if the components of r̃

satisfy

1. Ex [Er [r̃j ]] =
τ2

2

MX
k=1

akηjk +O(τ3);

2. for j 6= k, Ex [Er [r̃j r̃k]] = O(τ3);

3. for j 6= k, Ex [rjEr [r̃k]] =
τ2

2
ajηkj +O(τ3);

4. Ex

ˆ
Er

ˆ
r̃2j
˜˜

+ 2Ex [rjEr [r̃j ]] =
τ2

2

MX
k=1

akηjk + τ2ajηjj +O(τ3),

then the scheme is second order consistent for both mean and covariance.



Tau-leaping with Gaussian corrections (GRC-tau-leaping)

I Conditioned on r, if random vector r̃ has mutually independent

components with mean Er[r̃j ] and variance Varr[r̃j ]

Er[r̃j ] =
τ

2

MX
k=1

rkηjk +
τ

2

X
ηjk<0

„
ak
aj
rj − τak

«
ηjk,

Varr[r̃j ] =
τ2

2

MX
k=1

ak|ηjk| ≥ 0,

then the scheme is weakly second order consistent for both mean and

covariance.

I Introducing non-integer number of states and reactions. How to

understand? (Similar considerations in quantum mechanics: Schrödinger’s

cat)



Tau-leaping with Gaussian corrections (GRC-tau-leaping)

Algorithm

GRC-tau-leaping (version 1).

I Step 1: Given the state Xn at time tn, compute the matrix η(Xn), determine a

leap time τ ;

I Step 2: Generate the random vector r whose components are mutually

independent Poisson R.V.s rj = P (aj(Xn)τ);

I Step 3: Conditioned on r, generate random vector r̃, whose components are

mutually independent Gaussian R.V.s with mean Er [r̃j ] and variance Varr [r̃j ] as

below

Er [r̃j ] =
τ

2

MX
k=1

rkηjk +
τ

2

X
ηjk<0

„
ak

aj
rj − τak

«
ηjk,

Varr [r̃j ] =
τ2

2

MX
k=1

ak|ηjk| ≥ 0,

I Step 4: Update time to tn + τ and Xn+1 = Xn + ν · (r + r̃).



Test examples

I System 1: S → ∅

I System 2: S → 2S

I System 3: Michaelis-Menten system

S1 + S2
k1−→ S3

S3
k2−→ S1 + S2

S3
k3−→ S2 + S4.



Test examples

System 4: A more complex system

Reaction Propensity Rate constant

1. EA → EA +A a1 = c1[EA] c1 = 150

2. EB → EB +B a2 = c3[EB ] c2 = 150

3. EA +B → EAB a3 = c3[EA][B] c3 = 0.001

4. EAB → EA +B a4 = c4[EAB] c4 = 6

5. EAB +B → EAB2 a5 = c5[EAB][B] c5 = 0.001

6. EAB2 → EAB +B a6 = c6[EAB2] c6 = 6

7. A→ ∅ a7 = c7[A] c7 = 5

8. EB +A→ EBA a8 = c8[EB ][A] c8 = 0.001

9. EBA→ EB +A a9 = c9[EBA] c9 = 6

10. EBA+A→ EBA2 a10 = c10[EBA][A] c10 = 0.001

11. EBA2 → EBA+A a11 = c11[EBA2] c11 = 6

12. B → ∅ a12 = c12[B] c12 = 5

Table: List of reactions and propensity functions for system 4.



Numerical results
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(a)Log-log plot of the absolute error of the mean.
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(b)Log-log plot of the absolute error of the

variance.

τ tau-leaping midpoint PRC GRC

0.8 -152.03 (NaN) 3.84 (NaN) 4.15 (NaN) 4.17 (NaN)

0.4 -74.72 (2.03) 0.70 ( 5.49 ) 1.01 ( 4.11 ) 1.01 (4.13)

0.2 -37.14 (2.01) -0.15 (-4.67) 0.17 ( 5.94 ) 0.25 (4.04)

0.1 -18.56 (2.00) -0.36 ( 0.42 ) -0.04 (-4.25) 0.06 (4.17)
(c)Data used in (a): the error of the mean.

τ tau-leaping midpoint PRC GRC

0.8 148.30 (NaN) 191.70 (NaN) 191.60 (NaN) 1.29 (NaN)

0.4 71.89 (2.06) 94.03 (2.04) 93.28 (2.05) 0.47 ( 2.74 )

0.2 38.36 (1.87) 49.88 (1.89) 50.20 (1.86) -0.44 (-1.07)

0.1 20.03 (1.92) 25.21 (1.98) 24.97 (2.01) -0.20 ( 2.20 )
(d)Data used in (b): the error of the variance.

FIG. 1: (System 1) Comparison of the absolute errors of sample mean and variance of X

at t = 10.4, with sample size equals to 108. The data used in the plots is listed in the

tables, where we kept the sign of the errors. The number in the brackets is the increasing

ratio of the error when the stepsize is doubled. For the mean: the tau-leaping method of

first order accuracy. The PRC-tau-leaping and GRC-tau-leaping both are of second order

accuracy. The behavior of the midpoint method is less regular than the other three, as we

can see from the third column in table (c). For the variance: (b) and (d) shows the first

three methods all have first order accuracy. For the GRC-tau-leaping, the error is strongly

affected by statistical fluctuation, especially when stepsize is small.
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Figure: The estimated mean and variance for the example 1



Numerical results
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(a)Log-log plot of the absolute error of the

mean.
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(b)Log-log plot of the absolute error of the

variance.

τ tau-leaping midpoint PRC GRC

3.2 -138.099 (NaN) -15.074 (NaN) -14.640 (NaN) -14.634 (NaN)

1.6 -79.125 (1.745) -4.780 (3.153) -4.150 (3.528) -4.171 (3.509)

0.8 -43.816 (1.806) -1.892 (2.526) -1.160 (3.578) -1.165 (3.579)

0.4 -22.699 (1.930) -1.120 (1.690) -0.300 (3.867) -0.303 (3.851)

0.2 -11.562 (1.963) -0.901 (1.243) -0.090 (3.333) -0.069 (4.411)

0.1 -5.830 (1.983) -0.807 (1.117) -0.020 (4.500) -0.016 (4.183)
(c)Data used in (a): the error of the mean.

τ tau-leaping midpoint PRC GRC

3.2 -939.632 (NaN) -592.069 (NaN) -591.310 (NaN) -170.086 (NaN)

1.6 -582.306 (1.614) -312.914 (1.892) -311.940 (1.896) -47.846 (3.555)

0.8 -336.894 (1.728) -164.700 (1.900) -162.080 (1.925) -13.645 (3.506)

0.4 -180.311 (1.868) -84.503 (1.949) -82.850 (1.956) -3.348 (4.075)

0.2 -92.724 (1.945) -43.492 (1.943) -41.000 (2.021) -0.574 (5.837)

0.1 -47.564 (1.949) -23.118 (1.881) -20.640 (1.986) -0.346 (1.657)
(d)Data used in (b): the error of the variance.

FIG. 3: (System 2) Comparison of the absolute errors of X at t = 10.4. The sample size is

108. The meaning of the data is similar with those in Fig. 1. For the mean: the tau-leaping

method shows first order accuracy. The PRC-tau-leaping and GRC-tau-leaping both show

second order accuracy. Still there is no clear order of accuracy for the midpoint method. For

the variance: the first three methods all show first order accuracy. The GRC-tau-leaping

clearly shows second order accuracy.
34

Figure: The estimated mean and variance for the example 2



Numerical results
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(a)Log-log plot of the absolute error of the mean of

X1.

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

time step

ab
so

ul
ut

e 
er

ro
r

 

 

tauleap
MP
PRC
GRC
GRC2

Variance

(b)Log-log plot of the absolute error of the

variance of X1.

τ tau-leaping midpoint PRC GRC1 GRC2

0.8 -29.35 (NaN) 0.26 (NaN) 7.66 (NaN) 7.73 (NaN) 7.67 (NaN)

0.4 -12.45 (2.36) 0.90 (0.29) 1.83 (4.19) 1.88 (4.11) 1.81 (4.24)

0.2 -5.71 (2.18) 0.40 (2.25) 0.43 (4.26) 0.40 (4.70) 0.38 (4.76)

0.1 -2.74 (2.08) 0.21 (1.90) 0.12 (3.58) 0.10 (4.00) 0.09 (4.22)
(c)Data used in (a): the error of the mean of X1.

τ tau-leaping midpoint PRC GRC1 GRC2

0.8 61.99 (NaN) 168.66 (NaN) 168.44 (NaN) 124.62 (NaN) 39.47 (NaN)

0.4 38.53 (1.61) 89.16 (1.89) 88.88 (1.90) 26.71 (4.67) 9.12 (4.33)

0.2 16.63 (2.32) 37.98 (2.35) 38.51 (2.31) 5.67 (4.71) 2.18 (4.18)

0.1 8.95 (1.86) 16.91 (2.25) 19.74 (1.95) 2.97 (1.91) 0.48 (4.54)
(d)Data used in (b): the error of the variance of X1.

FIG. 5: (System 3, X1) Absolute errors of sample mean and variance of X1 in system 3 at

t = 6 with sample size 106. The sample mean and variance of 106 simulations using the SSA

is considered as the exact value. For this system the GRC2 is different from GRC1. For the

mean, the tau-leaping method shows first order accuracy while the three RC-tau-leaping

methods show second order accuracy. There is no clear order relation for the midpoint-tau-

leaping method. For the variance, it shows first order accuracy for tau-leaping, midpoint

and PRC, while second order accuracy for GRC1 and GRC2. GRC2 is clearly more accurate

than GRC1.
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Figure: The estimated mean and variance for the example 3



Numerical results
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(a)Log-log plot of the absolute error of the mean of

X1.
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(b)Log-log plot of the absolute error of the

variance of X1.

τ tau-leaping midpoint PRC GRC1 GRC2

0.04 -137.42 (NaN) 9.01 (NaN) 33.55 (NaN) 48.02 (NaN) 39.14 (NaN)

0.02 -57.88 (2.37) 5.52 (1.63) 8.02 (4.18) 12.91 (3.72) 11.57 ( 3.38 )

0.01 -22.99 (2.52) 2.85 (1.94) 7.58 (1.06) 4.29 (3.01) 2.44 ( 4.74 )

0.005 -11.79 (1.95) 5.16 (0.55) 2.50 (3.03) 1.58 (2.72) 0.04 (61.00)
(c)Data used in (a): the error of the mean of X1.

τ tau-leaping midpoint PRC GRC1 GRC2

0.04 -481902.97(NaN) -79168.90(NaN) -41920.25(NaN) 392130.51(NaN) 124655.17(NaN)

0.02 -239708.57( 2.01) -49304.18( 1.61) -52396.39( 0.80) 103463.86( 3.79 ) 30397.63 ( 4.10 )

0.01 -123456.45( 1.94) -30703.45( 1.61) -26553.29( 1.97) 19967.65 ( 5.18 ) 13283.21 ( 2.29 )

0.005 -67855.77 (1.82) -14223.73( 2.16) -11196.76( 2.37) -5785.42 (-3.45) -3896.82 (-3.41)
(d)Data used in (b): the error of the variance of X1.

FIG. 9: (System 4, X1) Absolute errors of sample mean and variance of X1 at t = 3 with

sample size 106. The mean and variance sampled from the SSA is considered as the exact

value. For the mean, in (a), the slopes for all the methods look close, but we can see the

difference from the ratio listed in table (c). It shows that the order of accuracy of the mean

for GRC1 and GRC2 is still nearly 2. It is similar for the variance.
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Figure: The estimated mean and variance for the example 4



Summary



Summary

I The convergence analysis of tau-leaping methods based on its SDE form is

performed, which will be fruitful for the future research.

I A second order scheme (in time) for both the mean and covariance is

constructed. So far it is the most accurate scheme for CKS with sound

mathematical background.

I More systematic studies on RC-tau-leaping and the higher order methods

are in progressing......



Thank you!


