
Monte Carlo methods in molecular dynamics.

Tony Lelièvre
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T. Lelièvre, ECODOQUI, November 2008 – p. 1



Outline

1 Free energy and metastability,

2 Constrained dynamics,
2.1 Thermodynamic integration,
2.2 Constrained SDEs,
2.3 Non-equilibrium dynamics,

3 Adaptive methods,
3.2 Adaptive methods: algorithms,
3.2 Adaptive methods: convergence,
3.3 Multiple replicas implementations,
3.4 Application to Bayesian statistics.
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1 Free energy and metastability

We consider a molecular system with N particles with
position (x1, ...,xN ) = x ∈ R

3N interacting through the
potential V (x1, ...,xN ).
In the NVT ensemble, one wants to sample the
Boltzmann-Gibbs probability measure:

dµ(x) = Z−1 exp(−βV (x)) dx,

where Z =
∫

exp(−βV (x)) dx is the partition function
and β = (kBT )−1 is proportional to the inverse of the
temperature.

Aim: compute “macroscopic quantities” like the
likelihood of molecular conformations, reaction
rates, ...
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1 Free energy and metastability

Typically, V is a sum of potentials modelling interaction
between two particles, three particles and four
particles:

V =
∑

i<j

V1(xi,xj) +
∑

i<j<k

V2(xi,xj ,xk) +
∑

i<j<k<l

V3(xi,xj ,xk,xl).

For example, V1(xi,xj) = VLJ (|xi − xj |) where

VLJ(r) = 4
((

σ
r

)12 −
(
σ
r

)6) is the Lennard-Jones

potential.
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1 Free energy and metastability

Examples of quantities of interest:
• specific heat

C ∝ 〈V 2〉µ − 〈V 〉2µ
• pressure

P ∝ −〈q · ∇V (q)〉µ
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1 Free energy and metastability

Since this is a high-dimensional problem (N ≫ 1)
Monte Carlo methods are used, typically based on
Markov chains.
For example, to sample µ, one can use Xt solution to
the Stochastic Differential Equation (SDE):

(GD) dXt = −∇V (Xt) dt+
√

2β−1dW t.

(gradient or over-damped Langevin dynamics).
Under suitable assumption, we have the ergodic
property: for µ-a.e. X0,

lim
T→∞

1

T

∫ T

0
φ(Xt)dt =

∫
φ(x)dµ(x).
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1 Free energy and metastability

Probabilistic insert (1): discretization of SDEs.
The discretization of (GD) by the Euler scheme is (for
a fixed timestep ∆t):

Xn+1 = Xn −∇V (Xn) ∆t+
√

2β−1∆tGn

where (Gin)1≤i≤3N,n≥0 are i.i.d. random variables with
law N (0, 1). Indeed,

(W (n+1)∆t − W n∆t)n≥0
L
=

√
∆t(Gn)n≥0.

In practice, a sequence of i.i.d. random variables with
law N (0, 1) may be obtained from a sequence of i.i.d.
random variables with law U((0, 1)) (given by the rand()
function on computers).

T. Lelièvre, ECODOQUI, November 2008 – p. 7



1 Free energy and metastability

Proof (invariant measure): One needs to show that if
the law of X0 is µ, then the law of Xt is also µ. Let us
denote Xx

t the solution to (GD) such that X0 = x. Let
us consider the function u(t,x) solution to:{

∂tu(t,x) = −∇V (x) · ∇u(t,x) + β−1∆u(t,x),

u(0,x) = φ(x)(+ assumptions on decay at infinity),

then, u(t,x) = E(φ(Xx
t )). Thus, the measure µ is

invariant:
d

dt

∫
E(φ(Xx

t ))dµ(x) = Z−1

∫
∂tu(t,x) exp(−βV (x))dx

= Z−1

∫ (
−∇V · ∇u+ β−1∆u

)
exp(−βV )= 0.

Therefore,
∫

E(φ(Xx
t ))dµ(x) =

∫
φ(x)dµ(x).
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1 Free energy and metastability

Probabilistic insert (2): Feynman-Kac formula.
Why u(t,x) = E(φ(Xx

t )) ? For 0 < s < t, we have
(characteristic method):

du(t− s,Xx
s ) = −∂tu(t− s,Xx

s ) ds+ ∇u(t− s,Xx
s ) · dXx

s

+β−1∆u(t− s,Xx
s ) ds,

=
(
− ∂tu(t− s,Xx

s ) −∇V (Xx
s ) · ∇u(t− s,Xx

s )

+ β−1∆u(t− s,Xx
s )
)
ds+

√
2β−1∇u(t− s,Xx

s ) · dW s.

Thus, integrating over s ∈ (0, t) and taking the
expectation:

E(u(0,Xx
t )) − E(u(t,Xx

0 )) =
√

2β−1E

(∫ t

0
∇u(t− s,Xx

s ) · dW s

)

= 0.
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1 Free energy and metastability

Probabilistic insert (3): Itô’s calculus. (in 1d.)

Where does the term ∆u come from ? Starting from
the discretization:

Xn+1 = Xn − V ′(Xn) ∆t+
√

2β−1∆tGn,

we have (for a time-independent function u):
u(Xn+1) = u

(
Xn − V ′(Xn) ∆t+

√
2β−1∆tGn

)
,

= u(Xn) − u′(Xn)V
′(Xn) ∆t+

√
2β−1∆tu′(Xn)Gn

+β−1(Gn)
2u′′(Xn)∆t+ o(∆t).

Thus, summing over n ∈ [0...t/∆t] and taking the limit ∆t→ 0,

u(Xt) = u(X0) −
∫ t

0
V ′(Xs)u

′(Xs) ds+
√

2β−1

∫ t

0
u′(Xs)dWs

+β−1

∫ t

0
u′′(Xs) ds.

T. Lelièvre, ECODOQUI, November 2008 – p. 10



1 Free energy and metastability

In practice, (GD) is discretized in time, and Cesaro
means are computed: limNT→∞

1
NT

∑NT

n=1 φ(Xn).

Remark: Practitioners do not use over-damped
Langevin dynamics but rather Langevin dynamics:
{
dXt = M−1P t dt,

dP t = −∇V (Xt) dt− γM−1P t dt+
√

2γβ−1dW t,

where M is the mass tensor and γ is the friction
coefficient. In the following, we only consider
over-damped Langevin dynamics.
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1 Free energy and metastability

We therefore have a method to compute (an
approximation of)

∫
φ(x)dµ(x), using Xt. But, in

practice, Xt is a metastable process, so that the
convergence of the ergodic limit is very slow.
A bi-dimensional example: X1

t is a slow variable of the
system.

x1

x2

V (x1, x2)
X1
t

t
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1 Free energy and metastability

A more realistic example : (Dellago, Geissler): Influence
of the solvation on a dimer conformation. The
interaction potentials are (J.D. Weeks, D. Chandler et H.C.
Andersen):

VWCA(r) =

{
4ǫ
[(

σ
r

)12 −
(
σ
r

)6]
+ ǫ if r ≤ r0,

0 if r > r0,

VS(r) = h

[
1 − (r − r0 − w)2

w2

]2

,

where ǫ, σ and w are positive constants and r0 = 21/6σ.
VS is a double-well potential.
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1 Free energy and metastability
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Left: compact state (ξ = 0). Right: stretched state (ξ = 1).

A slow variable is ξ(Xt) where ξ(x) = |x1−x2|−r0
2w is a

so-called reaction coordinate.
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1 Free energy and metastability

A “real” example: ions canal in a cell membrane.
(C. Chipot).
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1 Free energy and metastability

We suppose in the following that the slow variable is of
dimension 1 and known: ξ(x), where ξ : R

n → R.

This slow variable contains most of the information
needed in practice so that it would be enough to
compute the law of ξ(X), for X with law µ.
Lemme 1 The image of the measure µ by ξ is
Z−1 exp(−βA(z)) dz, where

A(z) = −β−1 ln

(∫

Σz

e−βV |∇ξ|−1dσΣz

)
= −β−1 lnZΣz

,

where Σz = {x, ξ(x) = z} is a (smooth) submanifold of
R
n, and σΣz

is the Lebesgue measure on Σz.
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1 Free energy and metastability

Co-area formula: Let X be a random variable with law
ψ(x) dx in R

n. Then ξ(X) has law
∫
Σz
ψ |∇ξ|−1 dσΣz

dz,

and the law of X conditioned to a fixed value z of ξ(X)

is dµz = ψ |∇ξ|−1 dσΣz
R

Σz
ψ |∇ξ|−1 dσΣz

.

Indeed, for any bounded functions f and g,

E(f(ξ(X))g(X)) =

∫

Rn

f(ξ(x))g(x)ψ(x) dx,

=

∫

Rp

∫

Σz

f ◦ ξ g ψ |∇ξ|−1dσΣz
dz,

=

∫

Rp

f(z)

∫
Σz
g ψ |∇ξ|−1dσΣz∫

Σz
ψ |∇ξ|−1dσΣz

∫

Σz

ψ |∇ξ|−1dσΣz
dz.
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1 Free energy and metastability

Remarks:

- The measure |∇ξ|−1dσΣz
is sometimes denoted

δξ(x)−z in the literature.

- A is the free energy associated with the reaction
coordinate or collective variable ξ (angle, length, ...).
A is defined up to an additive constant, so that it is
enough to compute free energy differences, or the
derivative of A (the mean force).

- A(z) = −β−1 lnZΣz
and ZΣz

is the partition function
associated with the conditioned probability measures:

µΣz
= Z−1

Σz
e−βV |∇ξ|−1dσΣz

.
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1 Free energy and metastability

Example of a free energy profile (solvation of a dimer)
(Profiles computed using TI)
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The density of the solvent molecules is lower on the
left than on the right. At high density, the compact
state is more likely but (claim of physicists)
spontaneous transitions are less frequent (free energy
barrier) ... to be better understood.
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1 Free energy and metastability

Some direct numerical simulations...

Remark: Free energy is not energy !
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Left: The potential is 0 in the region enclosed by the
curve, and +∞ outside.

Right: Associated free energy profile when the x
coordinate is the reaction coordinate (β = 1).
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1 Free energy and metastability

Examples of methods to compute free energy
differences A(z2) − A(z1):

• Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

• Perturbation methods (Zwanzig) (importance
sampling),

• Out of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

• Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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1 Free energy and metastability

(a) Thermodynamic integration. (b) Perturbation method.

(c) Out of equilibrium dynamics. (d) Adaptive dynamics.
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2 Constrained dynamics

Examples of methods to compute free energy
differences A(z2) − A(z1):

• Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

• Perturbation methods (Zwanzig) (importance
sampling),

• Out of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

• Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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2.1 Thermodynamic integration

Thermodynamic integration is based on two remarks:

(1) The derivative A′(z) can be obtained by sampling
the conditioned probability measure µΣz

(Sprik, Ciccotti,
Kapral, Vanden-Eijnden, E, den Otter, ...)

A′(z) = Z−1
Σz

∫ (∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
exp(−βV )|∇ξ|−1dσΣz

,

= Z−1
Σz

∫ ∇ξ
|∇ξ|2 ·

(
∇Ṽ + β−1H

)
exp(−βṼ )dσΣz

,

=

∫
fdµΣz

,

where Ṽ = V + β−1 ln |∇ξ|, f = ∇V ·∇ξ
|∇ξ|2 − β−1div

(
∇ξ

|∇ξ|2

)

and H = −∇ ·
(

∇ξ
|∇ξ|

)
∇ξ
|∇ξ| is the mean curvature vector.
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2.1 Thermodynamic integration

Proof: (based on the co-area formula)
∫ (∫

exp(−βṼ )dσΣz

)′

φ(z) dz = −
∫ ∫

exp(−βṼ )dσΣz
φ′ dz,

= −
∫ ∫

exp(−βṼ )φ′ ◦ ξ dσΣz
dz,

= −
∫

exp(−βṼ )φ′ ◦ ξ|∇ξ|dx,

= −
∫

exp(−βṼ )∇(φ ◦ ξ) · ∇ξ
|∇ξ|2 |∇ξ|dx,

=

∫
∇ ·
(

exp(−βṼ )
∇ξ
|∇ξ|

)
φ ◦ ξ dx,

=

∫ ∫ (
−β∇Ṽ · ∇ξ

|∇ξ|2 + |∇ξ|−1∇ ·
( ∇ξ
|∇ξ|

))
exp(−βṼ )dσΣz

φ(z) dz.
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2.1 Thermodynamic integration

(2) It is possible to sample the conditioned probability
measure µΣz

= Z−1
Σz

exp(−βṼ )dσΣz
by considering the

following constrained dynamics:

(RCD)

{
dXt = −∇Ṽ (Xt) dt+

√
2β−1dW t + ∇ξ(Xt)dΛt,

dΛt such that ξ(Xt) = z.

Moreover, we have dΛt = dΛm
t + dΛf

t, with
dΛm

t = −
√

2β−1 ∇ξ
|∇ξ|2 (Xt) · dW t and

dΛf
t = ∇ξ

|∇ξ|2 ·
(
∇Ṽ + β−1H

)
(Xt) dt = f(Xt) dt so that

A′(z) = lim
T→∞

1

T

∫ T

0
dΛt = lim

T→∞

1

T

∫ T

0
dΛf

t.
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2.1 Thermodynamic integration

The free energy profile is then obtained by
thermodynamic integration:

A(z) − A(0) =

∫ z

0
A′(z) dz ≃

K∑

i=0

ωiA
′(zi).
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2.1 Thermodynamic integration

The rigidly constrained dynamics can also be written:

(RCD) dXt = P (Xt)
(
−∇Ṽ (Xt) dt+

√
2β−1dW t

)
+ β−1H(Xt) dt,

where P (x) is the orthogonal projection operator:

P (x) = Id − n(x) ⊗ n(x),

with n the unit normal vector: n(x) =
∇ξ
|∇ξ|(x).

(RCD) can also be written using the Stratonovitch
product: dXt = −P (Xt)∇Ṽ (Xt) dt+

√
2β−1P (Xt)◦dW t.

It is easy to check that ξ(Xt) = ξ(X0) = z for Xt

solution to (RCD).
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2.1 Thermodynamic integration

Assume z = 0.
µΣ0

is the unique invariant measure with support in Σ0

for (RCD).
Proposition 1 Let Xt be the solution to (RCD) such
that the law of X0 is µΣ0

. Then, for all smooth
function φ and for all time t > 0,

E(φ(Xt)) =

∫
φ(x)dµΣ0

(x).

Proof: Introduce the infinitesimal generator and apply
the divergence theorem on submanifolds :
∀φ ∈ C1(R3N ,R3N ),

∫
div Σ0

(φ) dσΣ0
= −

∫
H · φ dσΣ0

,

where tr .
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2.1 Thermodynamic integration

Discretization: These two schemes are consistent with
(RCD):

(S1)

{
Xn+1 = Xn −∇Ṽ (Xn)∆t+

√
2β−1∆W n + λn∇ξ(Xn+1),

with λn ∈ R such that ξ(Xn+1) = 0,

(S2)

{
Xn+1 = Xn −∇Ṽ (Xn)∆t+

√
2β−1∆W n + λn∇ξ(Xn),

with λn ∈ R such that ξ(Xn+1) = 0,

where ∆W n = W (n+1)∆t − W n∆t. The constraint is
exactly satisfied (important for longtime computations).
The discretization of A′(0) = limT→∞

1
T

∫ T
0 dΛt is:

lim
T→∞

lim
∆t→0

1

T

T/∆t∑

n=1

λn = A′(0).
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2.1 Thermodynamic integration

In practice, the following variance reduction scheme
may be used:

{
Xn+1 = Xn −∇Ṽ (Xn)∆t+

√
2β−1∆W n + λ∇ξ(Xn+1),

with λ ∈ R such that ξ(Xn+1) = 0,

{
X∗ = Xn −∇Ṽ (Xn)∆t−

√
2β−1∆W n + λ∗∇ξ(X∗),

with λ∗ ∈ R such that ξ(X∗) = 0,

and λn = (λ+ λ∗)/2.

The martingale part dΛm
t (i.e. the most fluctuating part)

of the Lagrange multiplier is removed.
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2.1 Thermodynamic integration

An over-simplified illustration: in dimension 2,
V (x) = β−1

2 |x|2 and ξ(x) = x2
1

a2 + x2
2

b2 − 1.

 0
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Measures samples theoretically and numerically (as a

function of the angle θ), with β = 1, a = 2, b = 1, ∆t = 0.01, and 50 000 000 timesteps.
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2.1 Thermodynamic integration

Computation of the mean force: β = 1, a = 2, b = 1. The
exact value is: 0.9868348150. The numerical result
(with ∆t = 0.001, M = 50000) is: [0.940613 ; 1.03204].

The variance reduction method reduces the variance
by a factor 100. The result (with ∆t = 0.001, M = 50000)
is: [0.984019 ; 0.993421].
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2.1 Thermodynamic integration

App. mean force as a function of ∆t and M = T/∆t:

 1e-05
 1e-04

 0.001
 0.01

 0.1 1000
 10000

 100000
 1e+06

 1e+07

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

dt
M

A balance needs to be find between the discretization
error (∆t→ 0) and the convergence in the ergodic limit
(T → ∞).
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2.1 Thermodynamic integration

Using classical technics (Talay-Tubaro like proof), one
can check that the ergodic measure µ∆t

Σ0
sampled by

the Markov chain (Xn) is an approximation of order
one of µΣ0

: for all smooth functions g : Σ0 → R,
∣∣∣∣
∫

Σ0

gdµ∆t
Σ0

−
∫

Σ0

gdµΣ0

∣∣∣∣ ≤ C∆t.
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2.1 Thermodynamic integration

Remarks:
- There are many ways to constrain the dynamics
(GD). We chose one which is simple to discretize. We
may also have used, for example (for z = 0)

dXη
t = −∇V (Xη

t ) dt−
1

2η
∇(ξ2)(Xη

t ) dt+
√

2β−1dW t,

where the constraint is penalized. One can show that
limη→0 X

η
t = Xt (in L∞

t∈[0,T ]
(L2

ω)-norm) where Xt satisfies
(RCD). Notice that we used V and not Ṽ in the
penalized dynamics.
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2.1 Thermodynamic integration

The statistics associated with the dynamics where the
constraints are rigidly imposed and the dynamics
where the constraints are softly imposed through
penalization are different: “a stiff spring 6= a rigid rod”
(van Kampen, Hinch,...).
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2.1 Thermodynamic integration

- TI yields a way to compute
∫
φ(x)dµ(x):∫

φ(x)dµ(x) = Z−1

∫
φ(x)e−βV (x)dx,

= Z−1

∫

z

∫

Σz

φe−βV |∇ξ|−1dσΣz
dz, (co-area formula)

= Z−1

∫

z

∫
Σz
φe−βV |∇ξ|−1dσΣz∫

Σz
e−βV |∇ξ|−1dσΣz

∫

Σz

e−βV |∇ξ|−1dσΣz
dz,

=

(∫

z
e−βA(z) dz

)−1 ∫

z

(∫

Σz

φdµΣz

)
e−βA(z) dz.

with Σz = {x, ξ(x) = z}, A(z) = −β−1 ln
(∫

Σz
e−βV |∇ξ|−1dσΣz

)
and

µΣz
= e−βV |∇ξ|−1dσΣz

/
∫
Σz
e−βV |∇ξ|−1dσΣz

.
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2.2 Constrained SDEs

- For a general SDE (with a non isotropic diffusion),
the following diagram does not commute:

Pcont

Pdisc
Projected discretized process

?

Discretized process

Projected continuous process

Continuous process

Discretized projected continuous process

∆t

∆t
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2.2 Constrained SDEs

We are interested in simulating a SDE:

dXt = b(Xt) dt+ σ(Xt)dW t

subject to the constraint

q(Xt) = 0.

Xt ∈ R
n, b : R

n → R
n and σ : R

n → R
n×m (with σσT > 0),

W t is a m-dimensional standard Brownian process
with filtration Ft. The functions b, σ and q are supposed
to be smooth.

In this section, q : R
n → R and we suppose that

∀x ∈ Σ = {x, q(x) = 0}, |∇q|(x) 6= 0.
(In the MD framework, q may be the reaction
coordinate or some molecular constraints.)
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2.2 Constrained SDEs: continuous level

As such, the problem is ill-posed. We want to find a
Ft-adapted process Y t such that:

{
dXt = b(Xt) dt+ σ(Xt)dW t + dY t,

q(Xt) = 0,

where dY t = dAt + St dW t. Additional assumption:

dAt and St dW t are colinear to D(Xt)∇q(Xt) dt,

where D(x) is a n× n symmetric positive matrix.

D(x)∇q(x) is the normal to Σ at point x and can be
given by some additional assumptions on the
constraining term Y t (D’alembert’s principle for
example).
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2.2 Constrained SDEs: continuous level

By Itô’s calculus on the constraint q(Xt) = 0, one then
obtains:

(SDE)





dXt = P (Xt) (b(Xt) dt+ σ(Xt)dW t)

−1

2

(
∇2q : (PσσTPT )

D∇q
||∇q||2D

)
(Xt) dt,

where the projection operator P (x) is:

P (x) = Id − D(x)∇q(x) ⊗∇q(x)

||∇q(x)||2
D(x)

,

and, for any Y ∈ R
n and any SDP matrix S,

||Y ||2S = (Y · SY ).
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2.2 Constrained SDEs: discrete level

Two “natural” schemes:
{

X̃n+1 = Xn + b(Xn)∆t+ σ(Xn)∆W n,

Xn+1 = arg min
{
||X̃n+1 − Y ||2Sn

,Y ∈ R
n, q(Y ) = 0

}
,

where ∆t is the time step, ∆W n = W (n+1)∆t − W n∆t

and Sn is a SDP matrix, Fn∆t-measurable. For
sufficiently small time step, this is well posed and
equivalent to:

(S1)

{
Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆W n + λnS

−1
n ∇q(Xn+1),

where λn ∈ R is such that q(Xn+1) = 0.
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2.2 Constrained SDEs: discrete level

A “more explicit” scheme is then:

(S2)

{
Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆W n + λnS

−1
n ∇q(Xn),

where λn ∈ R is such that q(Xn+1) = 0.

Question: Are (S1) and (S2) consistent with (SDE) for
any q and b ?

Pcont

Pdisc
Projected discretized process

?

Discretized process

Projected continuous process

Continuous process

Discretized projected continuous process

∆t

∆t
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2.2 Constrained SDEs: consistency

Théorème 1

• In the ODE case (σ = 0), (S1) and (S2) are
consistent with (SDE) for any q and b iff D ∝ S−1.

• In the SDE case (σσT > 0),
• (S2) is consistent with (SDE) for any q and b iff
D ∝ S−1.

• (S1) is consistent with (SDE) for any q and b iff
D ∝ S−1

∝ σσT .

Proof: Expansions w.r.t. ∆t and ∆W n.
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2.3 Non-equilibrium dynamics

Let us consider a stochastic process such that
X0 ∼ µΣz(0)

and





dXt = −P (Xt)∇Ṽ (Xt) dt+
√

2β−1P (Xt) ◦ dW t

+∇ξ(Xt)dΛ
ext
t ,

dΛext
t = z′(t)

|∇ξ(Xt)|2
dt,

where z : [0, T ] → [0, 1] is a fixed deterministic evolution
of the reaction coordinate ξ, such that z(0) = 0 and
z(T ) = 1. The idea is to associate to each trajectory Xt

a weight W(t) and to compute free energy differences
by a Feynman-Kac formula:

A(1) − A(0) = −β−1 ln (E (exp(−βW(T )))).
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2.3 Non-equilibrium dynamics

The dynamics can also be written using a Lagrange
multiplier:
{
dXt = −∇Ṽ (Xt) dt+

√
2β−1dW t + ∇ξ(Xt)dΛt,

ξ(Xt) = z(t).

And we have

dΛt = dΛm
t + dΛf

t+dΛ
ext
t ,

where dΛm
t = −

√
2β−1 ∇ξ

|∇ξ|2 (Xt) · dW t , dΛf
t = f(Xt) dt

and dΛext
t = z′(t)

|∇ξ(X t)|2
dt.
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2.3 Non-equilibrium dynamics

Let us introduce the weight

W(t) =

∫ t

0
f(Xs)z

′(s) ds =

∫ t

0
z′(s)dΛf

s

. One can show that:
Théorème 2

A(z(t)) − A(z(0)) = −β−1 ln (E (exp(−βW(t)))).

The proof consists in introducing the semi-group associated with the dynamics

u(s,x) = E

„

exp

„

−β
Z t

s
f(Xs,x

r )z′(r) dr

««

and to show that d
ds

R

u(s, .) exp(−βṼ )dσΣ
z(s)

= 0 using the divergence theorem on

submanifolds.
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2.3 Non-equilibrium dynamics

The discretization is (as before):

(S1)

{
Xn+1 = Xn −∇Ṽ (Xn)∆t+

√
2β−1∆W n + λn∇ξ(Xn+1),

with λn such that ξ(Xn+1) = z(tn+1),

(S2)

{
Xn+1 = Xn −∇Ṽ (Xn)∆t+

√
2β−1∆W n + λn∇ξ(Xn),

with λn such that ξ(Xn+1) = z(tn+1).

To extract λf
n from λn, one can e.g. compute:

λf
n = λn −

z(tn+1) − z(tn)

|∇ξ(Xn)|2
+
√

2β−1
∇ξ
|∇ξ|2 (Xn) · ∆W n.
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2.3 Non-equilibrium dynamics

Another method to compute λf
n consists in:

{
XR

n+1 = Xn −∇Ṽ (Xn)∆t−
√

2β−1∆W n + λRn∇ξ(XR
n+1),

with λRn such that 1
2

(
ξ(XR

n+1) + ξ(Xn+1)
)

= ξ(Xn).

We then have λf
n = 1

2

(
λn + λRn

)
.

The weight is then approximated by
{

W0 = 0,

Wn+1 = Wn + z(tn+1)−z(tn)
tn+1−tn

λf
n,

and a (biased) estimator of the free energy difference

A(z(T )) −A(z(0)) is −β−1 ln
(

1
M

∑M
m=1 exp

(
−βWm

T/∆t

))
.
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2.3 Non-equilibrium dynamics

In practice, the efficieny of this numerical method is
not clearly demonstrated. If the transition is too fast,
the variance of the estimator is very large. If the
transition is slow, we are back to thermodynamic
integration...

T. Lelièvre, ECODOQUI, November 2008 – p. 51



3 Adaptive methods

Examples of methods to compute free energy
differences A(z2) − A(z1):

• Thermodynamic integration (Kirkwood)
(homogeneous Markov process),

• Perturbation methods (Zwanzig) (importance
sampling),

• Out of equilibrium dynamics (Jarzynski)
(non-homogeneous Markov process),

• Adaptive methods (ABF, metadynamics)
(non-homogeneous and non-linear Markov
process).
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3 Adaptive methods

The principle of adaptive methods is to modify the
potential seen by the particles in function of there
history in order to:

• efficiently explore the free energy surface,
• compute free energy profiles.

The time dependent potential is of the form

Vt(x) = V (x) −At(ξ(x))

where At is an approximation of A computed by using
the history of the configurations of the systems
conditioned at a given value of the reaction coordinate.

References: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello,
Wang, Landau,...
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3.1 Adaptive methods: algorithms

How to update At ? Assume for the moment that the
process is instantaneously at equilibrium
ψ = ψeq

∝ exp(−βVt)(x) dx = exp(−β(V − At ◦ ξ))(x) dx.
Recall the definition of free energy:

A(z) = −β−1 ln

(∫

Σz

e−βV |∇ξ|−1dσΣz

)
= −β−1 lnZΣz ,

and associated mean force:

A′(z) =

∫ (∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
e−βV |∇ξ|−1dσΣz

∫
e−βV |∇ξ|−1dσΣz

=

∫
fdµΣz .

For adaptive dynamics, we replace V by Vt in these
formulas, to get observed free energy or mean force.
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3.1 Adaptive methods: algorithms

Two basic methods : estimate the free energy or the
mean force at time t.
Observed free energy :

−β−1 ln

(∫

Σz

e−βVt|∇ξ|−1dσΣz

)
= (A− At),

Observed mean force :
∫ (∇Vt · ∇ξ

|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
e−βVt|∇ξ|−1dσΣz

∫
e−βVt|∇ξ|−1dσΣz

= (A′ − A′
t).

Idea: use these expressions to update At (resp. A′
t) in

such a way that limt→∞A′
t = A′.
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3.1 Adaptive methods: algorithms

Two basic methods : estimate the free energy or the
mean force at time t.
Observed free energy :

τ
∂At
∂t

= − β−1 ln

(∫

Σz

e−βVt|∇ξ|−1dσΣz

)
= (A−At),

Observed mean force :

τ
∂A′

t

∂t
=

∫ (∇Vt · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
e−βVt|∇ξ|−1dσΣz

∫
e−βVt|∇ξ|−1dσΣz

= (A′ − A′
t).

Idea: use these expressions to update At (resp. A′
t) in

such a way that limt→∞A′
t = A′.
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3.1 Adaptive methods: algorithms

Now, Xt is not instantaneously at equilibrium... We
use the previous argument as a guideline to build
updating methods (ψeq is replaced by ψ):

(ABP)
∂At
∂t

(z) = −1

τ
β−1 ln

∫
ψ|∇ξ|−1dσΣz

,

(ABF)
∂A′

t

∂t
(z) =

1

τ

(∫
f ψ|∇ξ|−1dσΣz∫
ψ|∇ξ|−1dσΣz

− A′
t(z)

)
,

(where ′ denotes a derivative with respect to z).

Remark: Since ψ 6= ψeq (no equilibrium), ABP 6= ABF.
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3.1 Adaptive methods: algorithms

Consistency of the method : the stationary state yields
the mean force. Indeed, if the system reaches a
stationary state

(ψt(x), At(z)),−→ (ψ∞(x), A∞(z)),

then
ψ∞ = Z−1 exp(−β(V − A∞ ◦ ξ))

and we have:
• for (ABP), 0 = −β−1 ln

∫
ψ∞|∇ξ|−1dσΣz

,

• for (ABF), 0 =
R

f ψ∞|∇ξ|−1dσΣz
R

ψ∞|∇ξ|−1dσΣz
− A′

∞(z),

and thus, in both cases, (up to an additive constant),

A∞ = A.
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3.1 Adaptive methods: algorithms

More generally, one can consider for Ft and Gt (such
that Gt(0) = 0) two increasing functions :

(ABP)
∂At
∂t

(z) = Ft

(
−β−1 ln

∫
ψt|∇ξ|−1dσΣz

)
,

The biasing potential is increased (resp. decreased)
where the observed free energy is high (resp. low).

(ABF)
∂A′

t

∂t
(z) = Gt

(∫
f ψt|∇ξ|−1dσΣz∫
ψt|∇ξ|−1dσΣz

−A′
t(z)

)
,

The biasing force is increased (resp. decreased)
where the observed mean force is positive (resp.
negative).
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3.1 Adaptive methods: algorithms

A typical adaptive dynamics is thus (ABF):




dXt = −∇(V −At ◦ ξ)(Xt) dt+
√

2β−1dW t,

∂A′
t

∂t
(z) =

1

τ

(
E (f(Xt)|ξ(Xt) = z) − A′

t(z)
)
.

In terms of the pdf ψ, we have:




∂tψ = div
(
∇(V −At ◦ ξ)ψ + β−1∇ψ

)
,

∂A′
t

∂t
(z) =

1

τ

(∫
f ψ|∇ξ|−1dσΣz∫
ψ|∇ξ|−1dσΣz

− A′
t(z)

)
.
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3.1 Adaptive methods: algorithms

The principle of metadynamics is to extend the
configuration space to (x, z) ∈ R

n+1 and to consider
the meta-potential

V k(x, z) = V (x) + k(z − ξ(x))2.

Then, one chooses (x, z) 7→ z as a reaction coordinate.

In this case, Ak(z) = −β−1 ln
( R

exp(−βV k(x,z)) dx
R

exp(−βV k(x,z)) dx dz

)
.

Notice that
∫

exp(−βV k(x, z)) dx∫
exp(−βV k(x, z)) dx dz

=

∫
exp(−βV (x))exp(−βk(z−ξ(x))2)√

π/(kβ)
dx

∫
exp(−βV (x)) dx

,

−→
k→∞

∫
exp(−βV )|∇ξ|−1dσΣz∫

exp(−βV (x)) dx
,

and thus Ak −→
k→∞

A (up to an additive constant).
T. Lelièvre, ECODOQUI, November 2008 – p. 60



3.1 Adaptive methods: algorithms

Four possible combinations:
dA′

t

dt

dAt
dt

V ABF ABP
V k M-ABF M-ABP

In practice, to compute
∫
ψt|∇ξ|−1dσΣz

, or
R

f(x)ψt|∇ξ|
−1dσΣz

R

ψt|∇ξ|−1dσΣz
, one can use empirical means or

longtime averaging, and various regularizations:

• in time, for example (ABF): A′
t(z) =

κτ∗
R

f ψ.|∇ξ|
−1dσΣz

κτ∗
R

ψ.|∇ξ|−1dσΣz
,

where κτ = 1t≥0 exp(−t/τ).
• in space: replace |∇ξ|−1dσΣz

by δǫ(ξ(x) − z).
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3.2 Adaptive methods: convergence

Recall: the gradient dynamics

(GD) dXt = −∇V (Xt) dt+
√

2β−1dW t

is metastable, and thus the ergodic limit is difficult to
reach.
Is the adaptive method (ABF and τ = 0)





dXt = −∇(V −At ◦ ξ)(Xt) dt+
√

2β−1dW t,

A′
t(z) = E (f(Xt)|ξ(Xt) = z) .

better ?
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3.2 Adaptive methods: convergence

How to quantify the bad behaviour of (GD) ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. “Decorrelation time”.

4. Rate of convergence of the law of Xt to µ.

In the following we use the fourth criterium.

T. Lelièvre, ECODOQUI, November 2008 – p. 63



3.2 Adaptive methods: convergence

The PDE point of view: convergence of the pdf ψ(t,x)

of Xt to ψ∞(x) = Z−1e−βV (x). ψ satisfies the
Fokker-Planck equation

∂tψ = div (∇V ψ + β−1∇ψ),

which can be rewritten as ∂tψ = div
(
ψ∞∇

(
ψ
ψ∞

))
.

Let us introduce the entropy

E(t) = H(ψ(t, ·)|ψ∞) =

∫
ln

(
ψ

ψ∞

)
ψ.

We have (Csiszár-Kullback inequality):

‖ψ(t, ·) − ψ∞‖L1 ≤
√

2E(t).
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3.2 Adaptive methods: convergence

dE

dt
=

∫
ln

(
ψ

ψ∞

)
∂tψ,

=

∫
ln

(
ψ

ψ∞

)
div

(
ψ∞∇

(
ψ

ψ∞

))
,

= −
∫ ∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ =: −I(ψ(t, ·)|ψ∞).

If V is such that the following Logarithmic Sobolev
inequality (LSI(R)) holds: ∀ψ pdf,

H(ψ|ψ∞) ≤ 1

2R
I(ψ|ψ∞)

then E(t) ≤ C exp(−2Rt) and thus ψ converges to ψ∞

exponentially fast with rate R.

Metastability ⇐⇒ small R
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3.2 Adaptive methods: convergence

We use the same technics on the adaptive dynamics:




dXt = −∇
(
V − At ◦ ξ

)
(Xt) dt+

√
2β−1 dWt,

A′
t(z) = E

(
f(Xt)

∣∣∣ξ(Xt) = z
)
.

Or, in terms of the pdf ψ(t,x) of Xt:




∂tψ = div
(
∇(V − At ◦ ξ)ψ + β−1∇ψ

)
,

A′
t(z) =

∫
fψ|∇ξ|−1 dσΣz∫
ψ|∇ξ|−1 dσΣz

.

Recall f = ∇V ·∇ξ
|∇ξ|2 − β−1div

(
∇ξ

|∇ξ|2

)
.
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3.2 Adaptive methods: convergence

Theorem: Suppose

(H1) ergodicity of the microscopic variables: the
conditioned probability measures µΣz

satisfy a
logarithmic Sobolev inequality LSI(ρ),

(H2) bounded coupling: ‖∇Σz
f‖L∞ <∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫
ψ|∇ξ|−1 dσΣz

to
ψ∞, at the macroscopic level,

• the constant ρ of LSI at the microscopic level.
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3.2 Adaptive methods: convergence

To simplify the problem, let us consider the case n = 2,
the configuration space is T × R, and ξ(x, y) = x.
In this case, the dynamics writes:

{
dXt = −∇(V −At ◦ ξ)(Xt) dt+

√
2β−1 dWt,

A′
t(x) := dAt

dx = E

(
∂xV (Xt)

∣∣∣ξ(Xt) = x
)
.

Or, in terms of the pdf ψ(t,x) of Xt:




∂tψ = div
(
∇V ψ + β−1∇ψ

)
− ∂x(A

′
tψ),

A′
t(x) =

∫
∂xV (x, y)ψ(t, x, y) dy∫

ψ(t, x, y) dy
.
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3.2 Adaptive methods: convergence

Our aims are:
• to show that the metastable features of Xx

t have
been eliminated,

• to show that A′
t(x) =

R

∂xV (x,y)ψ(t,x,y) dy
R

ψ(t,x,y) dy
converges to

A′(x) =
R

∂xV (x,y) exp(−βV )(x,y) dy
R

exp(−βV )(x,y) dy
.

Ingredient 1: It is easy to check that
ψ(t, x) =

∫
ψ(t, x, y) dy satisfies a closed PDE

∂tψ = β−1∂x,xψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with
exponential speed C exp(−4π2β−1t).
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3.2 Adaptive methods: convergence

For the proof of convergence, we use relative

entropies H(µ|ν) =
∫

ln
(
dµ
dν

)
dµ to measure the

distance to equilibrium ψ∞ = Z−1 exp(−β(V − A ◦ ξ)).

the total entropy E(t) = H(ψ(t, .)|ψ∞),

the macroscopic entropy EM (t) = H(ψ(t, .)|ψ∞),

and the microscopic entropy

Em(t) =

∫
H

(
ψ(t, x, .)

ψ(t, x)

∣∣∣ψ∞(x, .)

ψ∞(x)

)
ψ(t, x) dx.

Ingredient 2: Notice that E = EM + Em. We know that
EM goes to zero: it remains to consider Em.
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3.2 Adaptive methods: convergence

Ingredient 3: We have (algebraïc miracle)

∂tEm = ∂tE − ∂tEM

≤ −β−1

∫∫ ∣∣∣∣∂y ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ −
∫
∂x ln

(
ψ

ψ∞

)
ψ(A′

t − A′).

Using
(H1) the conditioned probability measures ψ∞(x,y)

ψ∞(x)
dy

satisfy a logarithmic Sobolev inequality LSI(ρ), then

−β−1

∫∫ ∣∣∣∣∂y ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ ≤ −2ρβ−1Em.
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3.2 Adaptive methods: convergence

(H1) also implies a Talagrand inequality (Ingredient 4):
∣∣A′

t(x) − A′(x)
∣∣

=

∣∣∣∣
∫
∂xV (x, y)

ψ(t, x, y)∫
ψ(t, x, y) dy

dy −
∫
∂xV (x, y)

ψ∞(x, y)∫
ψ∞(x, y) dy

dy

∣∣∣∣ ,

≤ ‖∂x,yV ‖L∞

∫ ∣∣y − y′
∣∣πt,x(dy, dy′),

≤ ‖∂x,yV ‖L∞

√
2

ρ
H

(
ψ(t, x, .)

ψ(t, x)

∣∣∣ψ∞(x, .)

ψ∞(x)

)
,

where πt,x is any coupling measure:
Z

(f(y) + g(y′))πt,x(dy, dy′) =

Z

f(y)
ψ(t, x, y)

R

ψ(t, x, y) dy
dy +

Z

g(y′)
ψ∞(x, y′)

R

ψ∞(x, y) dy
dy′.

This requires (H2) ∂x,yV ∈ L∞.
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3.2 Adaptive methods: convergence

Thus, we have

−
∫
∂x ln

(
ψ

ψ∞

)
ψ(A′

t − A′) ≤
√∫

|A′
t −A′|2 ψ

√∫ ∣∣∣∣∂x ln

(
ψ

ψ∞

)∣∣∣∣
2

ψ

≤ ‖∂x,yV ‖L∞

√
2

ρ
EmC exp(−4π2β−1t).

We have proved that

∂tEm ≤ −2ρβ−1Em + ‖∂x,yV ‖L∞

√
2

ρ
EmC exp(−4π2β−1t),

and this yields
√
Em(t) ≤ C exp(−β−1 min(ρ, 4π2)t).
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3.2 Adaptive methods: convergence

Then, the mean force A′
t observed at time t converges

to the mean force A′ in the following sense:
∫

|A′
t −A′|2(z)ψ(t, z) dz ≤ C exp(−2β−1 min(ρ, 4π2)t),

and thus, ∃t∗, C∗ > 0, ∀t ≥ t∗,

‖A′
t −A′‖L2 ≤ C∗ exp(−β−1 min(ρ, 4π2)t).
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3.2 Adaptive methods: convergence

These arguments can be generalized to prove the
theorem in the following frameworks:

• ξ : R
n → T (with a slight modification of the

dynamics),
• ξ : R

n → R (with a slight modification of the
dynamics and a constraining potential on ξ(x)),

• ξ : R
n → T

m or ξ : R
n → R

m under an additional
orthogonality assumption: ∇ξi · ∇ξj = 0 for i 6= j,

• ξ : R
n → T

m or ξ : R
n → R

m with the original ABF
dynamics, without orthogonality condition, if the
coupling is small enough.
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3.2 Adaptive methods: convergence

The case ξ : R
n → R: the convergence result holds for

the following adaptive dynamics:

dXt = −∇
(
V−β−1 ln(|∇ξ|−2)−At ◦ ξ+Π ◦ ξ

)
(Xt)|∇ξ|−2(Xt) dt

+
√

2β−1|∇ξ|−1(Xt) dWt,

A′
t(z) = E

((∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
(Xt)

∣∣∣ξ(Xt) = z

)
.

The blue terms are naturally required to obtain a
closed parabolic PDE on ψ(t, z) =

∫
Σz

|∇ξ|−1ψ(t, .)dσΣz
:

∂tψ = ∂z(Π
′ ψ + β−1∂zψ).

The green term is required for ψ to converge to a
stationary state.
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3.2 Adaptive methods: convergence

Side result: The techniques of proof can be used to
prove the following result (generalization of a result by
F. Otto and M. Reznikoff):

For a measure µ and a function ξ, assume
• LSI for the conditioned measures µ(·|ξ(x) = z),
• LSI for the marginal µ(dz),
• bounded coupling (‖∇Σz

f‖L∞ <∞),

then the measure µ satisfies a LSI.
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3.3 Multiple replicas implementations

In these adaptive methods, an implementation using
many replicas (a system of interacting particles) is
natural to compute the conditional expectations by
empirical means.

The numerical method is thus very easy to parallelize,
with a small amount of information to pass from one
node to the other.

One additional interest: A selection mechanism may
be added to duplicate “innovative particles” and kill
“redundant particles”.
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3.3 Multiple replicas implementations

Numerical analysis of the particle system

Theorem: We suppose that the configuration space is
T
d, V is smooth, and ξ(x) = x1. We consider the

following particle approximation:

dXt,n,N =

 

−∇V (Xt,n,N ) +

PN
m=1 φ

α
ǫ (X1

t,n,N −X1
t,m,N )∂1V (Xt,m,N )

PN
m=1 φ

α
ǫ (X1

t,n,N −X1
t,m,N )

e1

!

dt+
√

2dWn
t

where φαǫ = α + ǫ−1φ(ǫ−1·). Then we have

Z T

0

‚

‚

‚

‚

‚

PN
m=1 φ

α
ǫ (· −X1

t,m,N )∂1V (Xt,m,N )
PN

m=1 φ
α
ǫ (· −X1

t,m,N )
−A′

t

‚

‚

‚

‚

‚

L∞

T

dt

= O

0

@

√
α+ ǫ1/4 +

exp
“

K
αǫ2

”

α2ǫ3

1
√
N

1

A .

T. Lelièvre, ECODOQUI, November 2008 – p. 79



3.3 Multiple replicas implementations

The selection mechanism

On the ABF dynamics, a selection mechanism can
enhance the diffusion at the “macroscopic“ level.





∂tψ = div
(
|∇ξ|−2

(
∇(V − At ◦ ξ)ψ + β−1∇ψ

))
+Wψ ◦ ξ ψ,

A′
t(z) =

∫

Σz

(∇V · ∇ξ
|∇ξ|2 − β−1div

( ∇ξ
|∇ξ|2

))
|∇ξ|−1ψ(t, .)dσΣz

×
(∫

Σz

|∇ξ|−1ψ(t, .)dσΣz

)−1

.

Then, we have: ∂tψ = β−1∂z,zψ+Wψ ψ.
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3.3 Multiple replicas implementations

How to choose W? A typical choice :

Wψ = c
∂z,zψ

ψso that

∂tψ = (β−1+c)∂z,zψ.

The rate of convergence of ψ to ψ∞, at the
“macroscopic“ level, is thus enhanced.

Numerically, it amounts to associate a weight

wn,N (t) = exp

(∫ t

0
Wψ(ξ(Xs,n,N )) ds

)

to the n-th replica trajectory, and to make weighted
means to compute A′

t.
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3.3 Multiple replicas implementations

We use an histogram to discretize ψ and thus

Wψ(z) ≃ c
ψ(z + δz) − 2ψ(z) + ψ(z − δz)

ψ(z)δz2

≃ 3c

ψ(z)δz2

(
ψ(z + δz) + ψ(z) + ψ(z − δz)

3
− ψ(z)

)

Weights of particles in locally under-explored regions
are increased.

An adequate selection process can then be
implemented, using these weights (like in genetic
algorithm).

This should help to efficiently detect and take
advantage of rare events.
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3.3 Multiple replicas implementations

Tests on the numerical example (Dellago, Geissler):
Influence of the solvation on a dimer conformation.
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Left: compact state (ξ = 0). Right: stretched state (ξ = 1).
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3.3 Multiple replicas implementations

Free energy profile with parallel ABF obtained at t =
0.1, with 2000 replicas.

1.2 1.4 1.6 1.8 2.0 2.2 2.4

−60

−40

−20

0

20

40

60

Bond length

M
ea

n 
fo

rc
e

Red: with selection (c = 10); Blue: without selection
Dashed lines: 95 % confidence interval. T. Lelièvre, ECODOQUI, November 2008 – p. 84



3.3 Multiple replicas implementations

Proportion of replicas which have crossed the free
energy barrier.
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Black: without selection; Blue: c=2; Green: c=5;
Red: c=10.
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3.3 Multiple replicas implementations

Another numerical experiment: ergodic averaging or
empirical means ?

Compare:
• one replica and ergodic averaging with exponential

memory kernel:

A′
t(z) =

∫ t
0 exp(−(t− s)/τ)f(Xs)δξ(Xs)−z ds∫ t

0 exp(−(t− s)/τ)δξ(Xs)−z ds

• with many (10 000) replicas and empirical means
to compute A′

t(z).
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3.3 Multiple replicas implementations

Numerical experiments on a toy example (2d): the
bi-channel case (hopefully representative of the case
when a “bad” reaction coordinate has been chosen).

Reaction coodinate: ξ(x, y) = x.
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3.3 Multiple replicas implementations

Left: many replicas. Right: one replica. Top: error (log
scale). Bottom: (mean) position of the particles.
Works in progress:

• the case of ergodic averaging with τ = ∞,
• Rate of convergence for many particles.
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3.4 Application to Bayesian statistics

• Hidalgo stamp problem: the thickness of
Ndata = 485 stamps are measured, and the
corresponding histogram is approximated by a
mixture of N Gaussians:

f(y |x) =
N∑

i=1

qi

√
vi
2π

exp
(
−vi

2
(y − µi)

2
)
,

• parameters describing the mixture
(qN = 1 −∑N−1

i=1 qi):
x = (q1, . . . , qN−1, µ1, . . . , µN , v1, . . . , vN ) ∈
SN−1 × [µmin, µmax]

N × [vmin,+∞) ⊂ R
3N−1, where

SN−1 =
{

(q1, . . . , qN−1)
∣∣∣ 0 ≤ qi ≤ 1,

∑N−1
i=1 qi ≤ 1

}
.

T. Lelièvre, ECODOQUI, November 2008 – p. 89



3.4 Application to Bayesian statistics

• the likelihood of observing the data
{yi, 1 ≤ i ≤ Ndata} is

Π(y |x) =
Ndata∏

d=1

f(yd |x).

• potential V = Vprior + Vlikelihood such that the
probability of a given configuration is proportional
to exp(−V ) where Vprior(x) =

∑N
i=1

1
2µ

2
i + a ln vi +

b
vi

with a = 0.9 and b = 10−5, while the likelihood part is

Vlikelihood(x) =

Ndata∑

d=1

ln

[
N∑

i=1

qi
√
vi exp

(
−vi

2
(yd − µi)

2
)]

.
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3.4 Application to Bayesian statistics

Objective: sample the posterior distribution
(distribution of the parameters given the observations).

This is a metastable measure.

Idea: use ABF together with a Metropolis Hasting
algorithm, using ξ(x) = q1 as a reaction coordinate. We
use fixed gaussian proposals T (x, x′).
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3.4 Application to Bayesian statistics

Algorithm: Metropolis Hasting-ABF.
Iterate on n ≥ 0

1. Update the biasing potential by computing and then integrating
(An+1)′.

2. Propose a move from xn to yn+1 according to T (xn, yn+1);

3. Acceptance rate

αn = min

(
πAn+1(yn+1) T (yn+1, xn)

πAn+1(xn) T (xn, yn+1)
, 1

)
,

where the biased probability is πAn+1(x) ∝ π(x) exp(An+1(ξ(x)));

4. Draw a random variable Un uniformly distributed in [0, 1]

(Un ∼ U [0, 1]);

(a) if Un ≤ αn, accept the move and set xn+1 = yn+1;

(b) if Un > αn, reject the move and set xn+1 = xn.
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3.4 Application to Bayesian statistics

Some results for N = 3.
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Left: Evolution of the weights q1 (reaction coordinate,
blue) and q2.

Right: Evolution of the averages µ1, µ2 and µ3.
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3.4 Application to Bayesian statistics

Convergence for the bias.
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3.4 Application to Bayesian statistics

Comparison of the mixture with the datas, after
minimization of the configurations with lowest
energies.
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Conclusion

SDEs with constraints:
• The discretization of the projected dynamics may

be different from the projection of the discretized
dynamics,

• Constraining the dynamics with “rigid bonds” is
different from constraining the dynamics with
“springs”,

• The mean force can be computed by averaging the
Lagrange multipliers associated with the
constraints,

• The free energy differences can be obtained by
non-equilibrium stochastic dynamics.
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Conclusion

We proposed a unified formulation of adaptive
methods using conditional distributions.

Theoretically, this allows a proof of convergence in the
longtime limit for a certain class of algorithm (ABF-like
algorithms). The rate of convergence is related to the
logarithmic Sobolev inequality constant of the
conditioned Boltzmann-Gibbs probability measures at
fixed values of the reaction coordinate.

Numerically, the conditional distributions are naturally
approximated by empirical means on many replicas.
We have shown how a selection mechanism on the
replicas can speed up the computation.
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Conclusion

These techniques can be seen as adaptive
importance sampling methods. They may be applied
more generally to the sampling of metastable
potentials, as soon as some knowledge of the
directions of metastability is assumed.

Work in progress: Metropolis Hasting for measures on
submanifolds, constrained Langevin equations,
generalized adaptive importance sampling methods,
effective dynamics and free energy...
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