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Introduction

Motivation

The aim of molecular dynamics simulations is to understand the

relationships between the macroscopic properties of a molecular

system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the

microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V' which associates to a
configuration (x1, ..., xy) = x € R3Natom an energy
V(X1,...; XN, )- T he dimension d = 3N,40m is large (a few
hundred thousand to millions).
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Adaptive biasing techniques

Empirical force field

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

VZZVl(Xf,Xj)+ Z \/Q(X,',Xj,xk)—l- Z V3(x,-7xj,xk7x/).

i<j i<j<k i<j<k<l
° T E=1,0 =1 _—
|
For example, ' “‘
Vilxi,x;) = Vu(lxi — x;)) <
where b 6 s \
Vil =ae ()= ())is
the Lennard-Jones potential. ° \\ o
. N
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Dynamics

Newton equations of motion:

dX; = M-1P,dt
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

dX;=M"1P,dt
dPt = —VV(Xt) dt_,ny].Pt dt + \/2’76_1th

where v > 0. Langevin dynamics is ergodic wrt
u(dx) ® Z,;l exp ( 6” ) dp with
dp = Z texp(—BV(x)) dx

where Z = [ exp(—[V/(x)) dx is the partition function and
B = (kg T)~! is proportional to the inverse of the temperature.



Introduction
Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

dX;=M"1P,dt
dPt = —VV(Xt) dt_,ny].Pt dt + \/2’76_1th

where v > 0. Langevin dynamics is ergodic wrt
u(dx) ® Z,;l exp ( 6” ) dp with
dp = Z texp(—BV(x)) dx

where Z = [ exp(—[V/(x)) dx is the partition function and
B = (kg T)~! is proportional to the inverse of the temperature.

In the following, we focus on the overdamped Langevin (or
gradient) dynamics

dXt - *VV(Xt) dt + \V 25*1th,

which is also ergodic wrt .
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Macroscopic quantities of interest

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt 1 of some
observables): stress, heat capacity, free energy,...

)
BueX) = [ elonldx) = 7 [ oxo)de

Rd
(i) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates, ...

1 M

~ > F((XT)ez0).

m=1

E(F((Xt)t>0))

Difficulties: (i) high-dimensional problem (N > 1); (ii) X; is a
metastable process and p is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture

4000 6000
Iterations

8000 10000

o 2000 4000 6000 8000 10000
Iterations

— o Slow convergence of trajectorial averages
e Transitions between metastable states are rare events
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A toy model for solvation

Influence of the solvation on a dimer conformation [peliago, Geissler].

e e S
e =
e © °
S e

e © ° e

Compact state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance

between the two monomers.

Stretched state.
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

Figure: Low energy conformations of the Lennard-Jones cluster.

—— simulation
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Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 107155
Dissociation time = 0.5s

Challenge: bridge the gap between timescales
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Outline

Outline of this part:
1. Definition of the free energy associated to a reaction
coordinate.
2. Thermodynamics integration: A free energy computation
method based on stochastic processes with constraints.
3. Adaptive biasing techniques: Free energy computation
methods based on biased stochastic processes.

Mathematical tools: delta measure and co-area formula, Entropy
techniques and Logarithmic Sobolev Inequalities.

Underlying question: how to properly define and quantify
metastability ? Various answers: (i) rate of convergence to
equilibrium; (ii) exit time from metastable states; (iii) decorrelation
time; (iv) asymptotic variance of estimators.
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Reaction coordinate and free energy

AAiE) (keal'mol)
o

5A)
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Reaction coordinate

We suppose in the following that we know a slow variable of
dimension 1: £(X;), where £ : R — T is a so-called reaction
coordinate.

This reaction coordinate will be used to efficiently sample the
canonical measure using two techniques: (i) constrained dynamics
(thermodynamic integration) or (ii) biased dynamics (adaptive
importance sampling technique).

Free energy will play a central role.

For example, in the 2D simple examples: £(x,y) = x.




Free energy

Free energy
Let us introduce two probability measures associated to p and &:
e The image of the measure i by &:

&upt (dz) = exp(—PA(2)) dz

where the free energy A is defined by:

Alz)=—-B""In (/z( )eﬁv%(x)z(dX)),

with ¥(z) = {x, &(x) = z} is a (smooth) submanifold of RY,
and 5§(X)_z(dx) dz = dx.
e The probability measure 1 conditioned to £(x) = z:

exp(—BV(x)) 0¢(x)—,(dx
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Free energy (2d case)

In the simple case £(x, y) = x, we have:
e The image of the measure i by &:

&upt (dx) = exp(—BA(x)) dx

where the free energy A is defined by:

A(x) = =7 LIn ( / eBV(mdy)
()

and X(x) = {(x,y), y € R}.
e The probability measure p conditioned to &(x,y) = x:

_ exp(=BV(x,y))dy
P ) = oAk




Free energy

The delta measure and the co-area formula

e The measure d¢(x)—, is defined by: for all test functions
¢:T—Randy:RY - R,

/ 0 E(x)(x) dx = / gp(z)( D(x) ey (dx)> dz.
R4 T ¥ (z)

e The measure d¢(x)—, can be understood using a regularization
procedure: for any test function ¢ : R — R,

L s o) = fimy [ 00 (e00) ) v

where lime_,0 6¢ = ¢ (Dirac mass at zero).
 The measure d¢(x)—; is related to the Lebesgue measure on
Y (z) through:
O¢(x)—z = |VE[ M dos ().
This is the co-area formula. We thus have:
A(z)=—B""In (fz(z) e_BV’vﬂ_ldUZ(z))
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Free energy: Remarks

A is the free energy associated with the reaction coordinate or
collective variable ¢ (angle, length, ...). The aim of many
molecular dynamic simulations is to compute A.

A is defined up to an additive constant, so that it is enough to
compute free energy differences, or the derivative of A (the
mean force).

A(z) = =71 In Zs(,) and Zs(,) is the partition function
associated With the conditioned probability measures:
Py (z) = z(z X “AVIVE T dos ().

If U= / VZ):(Z) 55(x),z(dx) and
(z)

Sz_kB/z(z)ln< S )€ —/3‘/) Zsye YV be(x)—2(dx), then
A= U— TS (since B~ = kgT).
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Free energy on a simple example

What is free energy 7 The simple example of the solvation of a

d|mer. (Profiles computed using thermodynamic integration.)

Free energy difference A F(z)
Free energy difference A F(z)

o 01 02 03 04 05 06 07 08 09 1 (] 01 02 03 04 05 06 07 08 09 1
Parameter z Parameter z

The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density. Related question: interpretation of the free energy barrier in terms of

dynamics ?
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Free energy calculation techniques

There are many free energy calculation techniques:

>

(a) Thermodynamic integration.

(C) Non equilibrium dynamics. (d) Adaptive dynamics.
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Thermodynamic integration

2
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Ingredient 1: the mean force

Thermodynamic integration is based on two ingredients:

Ingredient 1: The derivative A’(z) can be obtained by sampling the
conditional probability measure yi5(,) (Sprik, Ciccotti, Kapral,
Vanden-Eijnden, E, den Otter, ...)

| VV.-Vg g V¢§ BV o1
A(Z)_Z):(Z)/z(z)< e () ) v e

= f sz z
/Z(Z) (2)

where f = V&/avf — B ldiv (\vaP)' Another equivalent

expression:

Al(z) = Zg, /
=@ J5 )

where V =V + 3 1In|V¢ and H= -V - (%) % is the mean
curvature vector.

v ~ -
!V§|2 . (VV + 6_1H> exp(—BV)dos ;)
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Ingredient 1: the mean force
In the simple case {(x, y) = x, remember that

A(x) = =B tIn < / e‘BV(X’Y)dy>,
()

so that

/ AV e PVLa) gy
_ JE)

Al(x)
- 676V(x,y) dy

- / 8X %4 dNZ(x) .
>(x)



Thermodynamic integration

Ingredient 1: the mean force

: f y exp(—BV)3¢(x) - (dx)
Proof in the general case : A'(z) = —f~ T &2 exp( BV)Jg(i = RCE)

and

/</>:(z exp(—V)¢(x)-z(d )>/¢(z) dz
/ /z(z exp(—V)0¢(x)-2(dx)¢' dz
_/T/Z(z) exp(—BV) o § b¢(x)—2(dx) dz

— /]Rd exp(—BV)¢ o &dx = /Rd exp(—8V)V(pof) - | £|2
— g o
/ V- <exp( BV) ]V§|2> pofdx

//Z(z ( vr\éflz€ v (|vv§£\2)> exp(—5V)de(x)-z(dx)d(z) d



Thermodynamic integration

Ingredient 2: constrained dynamics

Ingredient 2: It is possible to sample the conditioned probability
measure iy (;) = Zg(lz) exp(—BV)dos , by considering the
following rigidly constrained dynamics:

(RCD) dX:=—VV(X;)dt + /28 1dW, + VE(X)dA;
dA; such that {(X;) = z

The Lagrange mu|t|p||er wrltes dA; = dAP + dAL with
d\P = —/23-1 |V§|2 -dW; and
AL = (vv + B 1H) (X:)dt = F(X,)dt




Thermodynamic integration

Ingredient 2: constrained dynamics

Equivalently, the rigidly constrained dynamics writes:
(RCD)  dX, = P(X() (~VV(X¢) dt + /257 1dW, ) + 5~ H(X,) di
where P(x) is the orthogonal projection operator on T, (X(£(x))):

P(x) = Id — n(x) ® n(x),

V¢

—(x).

we )

(RCD) can also be written using the Stratonovitch product:
dX: = —P(X:)VV(X:)dt + /2671P(X:) o dWo.

One can check that £(X¢) is constant if X satisfies (RCD).

with n the unit normal vector: n(x) =
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Ingredient 2: constrained dynamics

[G. Ciccotti, TL, E. Vanden-Einjden, 2008] Assume wlg that z = 0. The
probability 1ix (o) is the unique invariant measure with support in
¥.(0) for (RCD).

Proposition: Let X be the solution to (RCD) such that the law of
Xo is p1x(0). Then, for all smooth function ¢ and for all time t > 0,

t)) = /¢dM2(0)

Proof: Introduce the infinitesimal generator and apply the divergence theorem on
submanifolds : V¢ € C*(R9,RY),

/lezo) )dO’z /H ¢)d0’z

where div £y (¢) = tr(PV ).
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Thermodynamic integration

Using the two ingredients above, A'(z) = lim7_o + fOT f(X¢) dt,
where X satisfies (RCD) and £(Xo) = z. The free energy profile is
then obtained by thermodynamic integration:

5 K
A(z) — A(0) = /0 A(z)dz ~ Zw;A'(z,-).
i=0

Notice that there is actually no need to compute f in practice since
the mean force can be obtained by averaging the Lagrange

multipliers:
/ 17 1 /7 ¢
A = |lim = dA; = lim = dA
(Z) TE;noo T/O t Tinoo T/O ¢
since dAr = dAP + dAL, with dAY = —/2871 S5 (X) - AW,

and dAf = f(X;) dt.
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Discretization of (RCD)
The two following schemes are consistent with (RCD):

(1) X1 = Xn— VV(X,)At + /268" 1AW,, + N\, VE(X 11 1),
with A\, € R such that {(X,4+1) =0,

(52) Xni1 = Xn— VV(X,)At + /287 LAW, + X\, VE(X ),
with A\, € R such that {(X,4+1) =0,

where AW, = W, 1)ar — Wpat. The constraint is exactly
satisfied (important for longtime computations). An approximation

of A(0) = lim7_00 £ [i dA, is:

T/At
lim |im = Z An=A(0
Tooo At—0 T



Thermodynamic integration

Error analysis

[Faou, TL, Mathematics of Computation, 2010] Using classical techniques
(Talay-Tubaro like proof), one can check that the ergodic measure
ué(to) sampled by the Markov chain (X,)n>0 is an approximation of
order one of jis(y: for all smooth functions g : ¥(0) — R,

/ gdu%{o)—/ g dus(o)| < CAt.
£(0) £(0)
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Rigidly and softly constrained dynamics

Another way to constrain the overdamped Langevin dynamics to
Y(0) is to add a constraining potential (soft constraint):

1
dX7 = -VV(X])dt - %vg?)(x;?) dt + /26~ 1dW,

One can show that lim, 0 X7 = X¢ (n L2Zj0,7y(L2 )norm) where X
satisfies (RCD). Notice that we used V and not V in the softly
constrained dynamics.

The statistics associated with the dynamics where the constraints
are rigidly imposed and the dynamics where the constraints are
softly imposed are different: “a stiff spring # a rigid rod” (van
Kampen, Hinch,...).



Thermodynamic integration

Back to the sampling of

Tl yields a way to compute [ ¢dp:

/qﬁdu:Z_l/ pe PV dx
Rd ]Rd

= Z_l/ ) ¢e_BV55(X)_Z(dx)

(z de PV, (dx
=z1 fz ) s ( )/ 5§(x) (dX) dz
T Jrin € P Oc—2(9%) Jr(e)

-1
= </ eiﬁA(Z) dZ) / (/ (ZSd/’LZ(z)) efﬁA(Z) dz
T T \JE(z)

where, we recall, ¥(z) = {x, {(x) = z},
A(z) = —B7In (fz(z)e_ﬁvdg(x)_z(dx» and
fs(z) = € PVex)—2(dx)/ fz(z)ef'BV(Sg(x)—z(dX)-
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Generalization to Langevin dynamics

Interests: (i) Newton's equations of motion are more “natural”;
(i) leads to numerical schemes which sample the constrained
measure without time discretization error; (iii) seems to be more
robust wrt the timestep choice.
dg; = M~1p; dt
dp; = =V V(qt) dt — yM ™1 py dt + /2957 1dW; 4+ VE(qe) dA
£(qr) = z.

The probability measure sampled by this dynamics is
[iT+5 () (dgdp) = Z ™ exp(—BH(q, p))o1+5(2)(dqdp)

where H(q,p) = V(q) + 30" M~ *p.



Thermodynamic integration

Generalization to Langevin dynamics

The marginal of i7+5(,)(dgdp) in g writes:

1 1
V(s = Z (=5 V(q))os(,)(dq) # = &P(=5V(4))d¢(qg)-2(dq)-

Thus, the “free energy” which is naturally computed by this
dynamics is

AM(z) = =571 In (/z(z) exp(—BV(q))J)I{/’(Z)(dq)> .

The original free energy may be recovered from the relation: for
Gy = VET M-IV,

Az) - AM(z) = =B~ In ( /z ( )det(cM)—l/zdyg(z)> |
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Generalization to Langevin dynamics

Moreover, one can check that:

. 1 T _ M/Z
lim /0 dAe = (AM)(2).

Tooo T

Discretization: A natural numerical scheme is obtained by a
splitting technique:

e 1/2 midpoint Euler on the fluctuation-dissipation part,

e 1 Verlet step on the Hamiltonian part (RATTLE scheme) and

e 1/2 midpoint Euler on the fluctuation-dissipation part.
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Generalization to Langevin dynamics

n n At _ n n At n ny \n
p+1/4:p _TVM 1(p +p +1/4)_|_ /TUG —|—V§(q ))\ +1/4’
vg(qn)TM71Pn+1/4 — 0’

n n At n ny \n
priE = p = SEVV(G") + VE(@) X,
qn+1 — qn +At M—l pn-%—1/27
(") =z,

n At n n n
pn+3/4 =p +1/2 7v\/(q +1) + Vf(q +1)A +3/4,
vg(qn+1)TM71pn+3/4 — 07
At | At
pn+1 — pn+3/4 M (pn+3/4 + pn+1) + 7 p Gn+1/2
+v§( n+1) n+17
vg(qn+1) M 1 n+1 0’

and lim7_ o0 limas_o & 7 ZT/M (x\"+1/2 + )\"+3/4) = (A" (2).
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Generalization to Langevin dynamics

Using the symmetry of the Verlet step, it is easy to add a
Metropolization step to the previous numerical scheme, thus
removing the time discretization error. Indeed, the proposal
(g",p") = (g™, —p™*1) is symmetric, so that the Metropolis
Hastings acceptance ratio is simply

exp(—B(H(q™*, p™1) — H(q", p")))-

For this modified scheme, one can prove that

1 T/At
: : - n+1/2 n+3/4\ _ M/
LNLE=DY <>\ A ) (AMY(2).

At—0 T—o0
n=1
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Generalization to Langevin dynamics

By choosing M = Atvy/4 = 1d, this leads to an original sampling
scheme in the configuration space (generalized Hybrid Monte Carlo
scheme).

Notice that it is not clear how to use such a Metropolization step
for the dynamics (RCD) since the proposal kernel is not symmetric,
and does not admit any simple analytical expression.

Algorithm: Let us introduce Ra; which is such that, if
(g",p") € T*L(z), and |p"|?> < Ra:, one step of the RATTLE

scheme is well deﬁned (i.e. there exists a unique solution to the constrained problem).

Then the GHMC scheme writes (M = Aty /4 = 1d):
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Generalization to Langevin dynamics

Consider an initial configuration ¢q° € £(z). Iterate on n >0,

1. Sample a random vector in the tangent space T,»¥(z) (V&(g")" p” = 0):
p" =8 P(d")G",
where (G")n>0 are i.i.d. standard random Gaussian variables, and
1 .
compute the energy E" = §|p"|2 + V(q") of the configuration (¢", p");

2. If |p"]® > Ra:, set E™ = 400 and go to (3); otherwise perform one
integration step of the RATTLE scheme:

P2 = = BETV(g") + V(e 2,
G = g" + At p™2,

€@ =z,

5n+1 _ pn+1/2 _ % Vv(anJrl) + V§(anﬂ))\nﬂ7
Vet = 0;
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Generalization to Langevin dynamics

3. If |p"* > Rae, set E™! = +00; otherwise compute the energy

E™ = Z|p" P + V(@"™) of the new phase-space configuration.

1
5l
Accept the proposal and set ¢"*! = g™ with probability

min (exp(—B(E'H'1 — E™), 1):

otherwise, reject and set ¢"™' = g".

It can be checked that the probability measure

1
V)%z) =7 exp(—BV(q))UQ”(z)(dq)

is invariant for the Markov Chain (g")n>0.
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Adaptive biasing techniques
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Adaptive biasing techniques

We suppose again that we know a slow variable of dimension 1:
£(X¢), where € : RY — T is a so-called reaction coordinate.

This reaction coordinate will be used to bias the dynamics

(adaptive importance sampling technique), using the free energy A
associated with the reaction coordination &.

For example, in the 2D simple examples: £(x,y) = x.
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” £ the potential V — Ao £ is less rugged than V. Indeed, by
construction &, exp(—p(V — Ao &)) = 1.

Problem: A is unknown ! ldea: use a time dependent potential of
the form

Vi(x) = V(x) — A(£(x))

where A; is an approximation at time t of A, given the
configurations visited so far.

Hopes:
e build a dynamics which goes quickly to equilibrium,

e compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)

0 2000 4000 6000 8000 10000
Iterations

] 2000 4000 6000 8000 10000
lterations

A 2D example of a free energy biased trajectory: energetic barrier.
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Free energy biased dynamics (2/2)

4000 6000 8000 10000
Iterations

free energy
°

“o 2000 4000 6000 8000 10000

-3 -2 -1 0 1 2 3 .
X Iterations

A 2D example of a free energy biased trajectory: entropic barrier.
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Updating strategies
How to update A; 7 Two methods depending on wether A}
(Adaptive Biasing Force) or A; (Adaptive Biasing Potential) is
approximated.
To avoid geometry problem, an extended configurational space
(x,z) € R™1! may be considered, together with the meta-potential:

VE(x,z) = V(x) + k(z — &(x))?

Choosing (x, z) — z as a reaction coordinate, the associated free
energy Ak is C|Ose to A (in the limit kK — oo, up to an additive constant).

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations [TL, M. Rousset, G. Stoltz, J Chem Phys, 2007]:

Al A;
V | ABF Wang-Landau
vk metadynamics
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The ABF method

For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

vV.vE ( 43 >> av
VV.VE oy 5 .
/z(z>< ver 7 W \wep) )¢ Cem—X)
/ e " Og()=(dx)
¥(z)

— [ fdus = EFOOIE) = 2).
¥(2)

Al(z) =

The mean force A’(z) is the average of f with respect to ji5 ().
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The ABF method

In the simple case {(x, y) = x, remember that

Au)z—ﬂﬂn</}m“ﬂﬂw)7

/ OV e PV gy
A/(X) — Z(X)
/ 676V(X,y) dy

>(x)
— [ oV dusq

Notice that actually, whatever A; is,

/ fe_B(V_AtOE) 5£(x)_z(dx)
(z)

/ e BV=A0E) 5 1 (dx)
¥(z)

so that

Al(z) =
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The ABF method

Thus, we would like to simulate:

{ dX:=—V(V — Ao &)(X,) dt + /238 1dW,,
Al(z) = Eu (f(X)E(X) = 2)

but A is unknown...
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The ABF method
The ABF dynamics is then:

{ dX;=—V(V = Ar0 &)(X,) dt + /26~ 1d W,
A/t(z) =E(f(X:)|[§(Xt) = 2).
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The ABF method
The ABF dynamics is then:

{dXt:—V(V—Atog ¢)dt + /28 1dW,,
Ai(z) = E(f(X1)|E(Xe) = 2).

The associated (nonlinear) Fokker-Planck equation writes:
Orp = div (V(V — A o &)y + 71VY) ,
/f@[)ég(x _ (dx)

A(z) =
/¢5g(x) z dx)

where X; ~ 9(t, x) dx.
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The ABF method
The ABF dynamics is then:

{dXt:—V(V—Atog ¢)dt + /28 1dW,,
Ai(z) = E(f(X1)|E(Xe) = 2).

The associated (nonlinear) Fokker-Planck equation writes:
Orp = div (V(V — A o &)y + 71VY) ,
/fi/)(ig(x _ (dx)

/¢5g(x) z dx)

Ai(z) =

where X; ~ 9(t, x) dx.

Questions: Does A} converge to A’ 7 What did we gain compared
to the original gradient dynamics 7
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Back to the 2D example

1e+08

/
1e+07

1e+06 4

100000 ‘

10000

1000 |- o
100 £
e ™

10

Average exit time

BF o
/ standard e
0 10 20 30 40 50

1

15 i 15
1 W 1

05 0.5

x 0 x 0
0.5 0.5

1 1

1.5 -15

0 2000 4000 6000 8000 10000 0 500 1000 1500 2000 2500
Iterations Iterations

The ABF trajectory (right: zoom on the first 2500 iterations)
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Back to the toy example for solvation

e o © - . =
& = & S
S e ¢ s ©
= o © o e e
e © < & = S

Compact state. Stretched state.

The reaction coordinate £ is the distance between the two
monomers. — simulation
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Longtime convergence and entropy (1/3)

Recall the original gradient dynamics:
dQ: = —VV(Q;) dt + /26~ 1dW,.
The associated (linear) Fokker-Planck equation writes:
Orp =div (VVo+B71Ve).

where Q; ~ ¢(t,q) dq.

The metastable behaviour of Q; is related to the multimodality of

1, which can be quantified through the rate of convergence of ¢ to
co = z7! exp(—BV).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

v = B div (gboov <¢¢>) .

Let us introduce the entropy:

E(t) = H(o(t. o) = [ In (Qj;) .

We have (Csiszar-Kullback inequality):

[6(t;) = Poollir < V2E(2).



Introduction Free energy Thermodynamic integration Adaptive biasing techniques

Longtime convergence and entropy (3/3)

L <¢i> o
e (el
= [[om(2) S = BM0( o).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: V¢ pdf,

H(6160) < 5 (610-0)

then E(t) < E(0) exp(—2371Rt) and thus ¢ converges to ¢
exponentially fast with rate 371R.

Metastability <= small R
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Efficiency of thermodynamic integration

With thermodynamic integration, the conditional measures jix ;)
are sampled rather than the original Gibbs measure p. The
long-time behaviour of the constrained dynamics (RCD) will be
essentially limited by the LSI contant p(z) of the conditional
measures fi5 () (to be compared with the LSI constant R of the
original measure ). For well-chosen &, p(z) > R, which explains
the efficiency of the whole procedure.
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Convergence of ABF (1/4)

A ConVergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]. Reca“ the
ABF Fokker-Planck equation:

Orp = div (V(V — A o &)y + 71VY) ,
' _ S Y2 (dx)

At(Z) - fwdg(x)fz(dx) ’
Suppose:
(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures yi5 () satisfy a LSI(p),
(H2) Bounded coupling: HVZ(z)fHLoo < 00,
then

|A; = A'll 2 < Cexp(=B" min(p, r)t).

The rate of convergence is limited by:
e the rate r of convergence of ¥ = fwég(x)_z(dx) t0 Yoo,
e the LSI constant p (the real limitation).
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Convergence of ABF (2/4)

In summary:
e Original gradient dynamics: exp(—3~1Rt) where R is the LSI
constant for y;
e ABF dynamics: exp(—3~!pt) where p is the LS| constant for
the conditioned probability measures pi5 ().

If € is well chosen, p > R: the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal 9(t, z) = [ 1(t, x) 6¢(x)—-(dx) satisfies a closed
PDE:
O = B0z on T,

and thus, v converges towards 1o, = 1, with exponential speed
C exp(—4n2B71t). (Here, r = 472).
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Convergence of ABF (3/4)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009].
E=Ey+ E,

where
The total entropy is E = H(¢|¢),

The macroscopic entropy is Epy = H(¥|1s0),

The microscopic entropy is
En = [ H(6CIE0x) = 2) e lelx) = ) T(z)

We already know that Ep; goes to zero: it remains only to consider
En...
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Other results based on this set of assumptions:

Free energy

Thermodynamic integration

Convergence of ABF (4/4)

e (7L JFa 2008] LS| for the cond. meas. My (z)
+ LSI for the marginal 7i(dz) = &, u(dz)
+ bdd coupling (||Vg()fllL= < 00) == LSl for p.

Adaptive biasing techniques

® [F. Legoll, TL, Nonlinearity, 2010] Effective dynamics for £(Q;). Uniform

control in time;

2
H(L(E(Q) £(z2)) < € (W) H(£(Qo) ).

15
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:
e Use empirical means over many replicas (interacting particle
system):
N m,N m,N
L AX™NY see(xmNy — 2
B(F(X)[E(Xe) = 2) ~ Tt [IXe DOEXT) 22)
> om=10°(&(Xe) — 2)
This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive

pathS. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

e Use trajectorial averages along a single path:
Jo F(X5)3°(&(Xs) — 2) ds
fot 6%(&(Xs) — z) ds

The longtime behavior is much more difficult to analyze.

E(f(X1)[€(Xt) = 2) =~
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ABF: Current developments and open problems

Avoid the computation of &: extended-ABF

Projection on a gradient of the mean force (Helmholtz
decomposition)

Reaction coordinates in larger dimension: exchange bias,
separated representations

Extension of the analysis to the Langevin dynamics

Extension of the analysis to approximations of the mean force
or the free energy based on time averages
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Other techniques to compute thermodynamic quantities

Other algorithms which are used in MD to sample efficiently p:

e Umbrella sampling and statistical reconstruction: Histogram
methods

e Out of equilibrium methods: fluctuation relations a /a
Jarzynski-Crooks

e Modify the dynamics: Metropolis Hastings algorithms with
well-chosen proposals, non-reversible perturbations,...

e Interacting replicas techniques: Parallel tempering, Replica
exchange dynamics, ...
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A book on the mathematics for stochastic MD

Tony Leliévre « Mathias Rousset « Gabriel Stoltz

Free Energy

Computations

A Mathematical Perspective

Free Energy
Computations
A Mathematical Perspective
This monograph provides a general introduction [
to advanced computational methods for free
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energy calculations, from the systematic and
rigorous point of view of applied mathematics.
Free energy calculations in molecular dynamics
have become an outstanding and increasingly
broad computational field in physics, chemistry
and molecular biology within the past few years,
by making possible the analysis of complex
molecular systems. This work proposes a new,
general and rigorous presentation, intended both
for practitioners interested in a mathematical
treatment, and for applied

interested in molecular dynamics.
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