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Introduction
The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Some examples of macroscopic quantities:

(i) Thermodynamics quantities (average of some observable wrt
an equilibrium measure): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx).

(ii) Dynamical quantities (average over trajectories at equilibrium):
diffusion coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) =

∫

C0(R+,Rd )
F((x t)t≥0))W(d((x t)t≥0)).
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Introduction

Many applications in various fields: biology, physics, chemistry,
materials science. Molecular dynamics computations consume
today a lot of CPU time.

A molecular dynamics model amounts essentially in choosing a
potential V which associates to a configuration
(x1, ..., xN) = x ∈ R

3N an energy V (x1, ..., xN).

In the canonical (NVT) ensemble, configurations are distributed
according to the Boltzmann-Gibbs probability measure:

dµ(x) = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.



Introduction Effective dynamics Splitting strategies The Parallel Replica Algorithm References

Introduction

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l ).

For example, V1(x i , x j) = VLJ(|x i − x j |) where

VLJ(r) = 4ǫ
(

(

σ
r

)12
−
(

σ
r

)6
)

is the Lennard-Jones potential.

Difficulties: (i) high-dimensional problem (N ≫ 1) ; (ii) µ is a
multimodal measure.
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Introduction
To sample µ, ergodic dynamics wrt to µ are used. A typical
example is the over-damped Langevin (or gradient) dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t .

It is the limit (when the mass goes to zero or the damping parameter to infinity) of the Langevin

dynamics:
{

dX t = M−1
Pt dt,

dPt = −∇V (X t ) dt − γM−1
Pt dt +

√

2γβ−1dW t ,

where M is the mass tensor and γ is the friction coefficient.

To compute dynamical quantities, these are also typically the
dynamics of interest. Thus,

Eµ(ϕ(X )) ≃
1

T

∫ T

0

ϕ(X t) dt and E(F((X t)t≥0)) ≃
1

N

N
∑

m=1

F((Xm
t )t≥0).

In the following, we mainly consider the over-damped Langevin
dynamics.



Introduction Effective dynamics Splitting strategies The Parallel Replica Algorithm References

Introduction

Difficulty: In practice, X t is a metastable process, so that the
convergence to equilibrium is very slow, and sampling metastable
trajectories is very difficult.

A 2d schematic picture: X 1
t is a slow variable (a metastable dof) of

the system.

x1

x2

V (x1, x2)
X 1

t

t
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Introduction

Where does metastability come from ?
Energetic barrier:

x coordinate
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Introduction
For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example the review [TL, Rousset, Stoltz, 2010]). On the opposite,
computing efficiently dynamical quantities remains a challenge.

In practice, one is only interested in a reduced description of the
original full dynamics (X t)t≥0. Two cases:

Case 1: One is given a smooth low-dimensional function

ξ : Rd → R

and the aim is to capture the dynamics of (ξ(X t))t≥0.

Case 2: One is given a continuous state to discrete state map

S : Rd → N

and the aim is to capture the dynamics of (S(X t))t≥0.
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Outline

In the following, I will present:

1. An analytical procedure to approximate (ξ(X t))t≥0: error
analysis of an effective dynamics.

2. An algorithm to generate transition paths, using ξ: the
Adaptive multilevel splitting method.

3. The mathematical analysis of an algorithm proposed by A.
Voter to approximate (S(X t))t≥0: the Parallel Replica
dynamics.

There are many other techniques: hyperdynamics and temperature
accelerated dynamics [Voter, Fichthorn], the string method [E, Ren,

Vanden-Eijnden], transition path sampling methods [Chandler, Bolhuis, Dellago],
milestoning techniques [Elber, Schuette, Vanden-Eijnden], etc...
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Preliminary remark:
To estimate the error in the dynamics, two measures may be used:

A Error on the propagation of the law at time t of the
coarse-grained process (time marginals). (PDE)

B Error on the law of the trajectories of the coarse-grained
process. (SDE)

Of course, B is better than A. A is a first step to B, and is often
more tractable mathematically.
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Effective dynamics

Recall the original dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t .

We are given a smooth one dimensional function ξ : Rd → R.

Problem: propose a Markovian dynamics (say on zt ∈ R) that
approximates the dynamics (ξ(X t))t≥0.



Introduction Effective dynamics Splitting strategies The Parallel Replica Algorithm References

Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

First attempt:

dz̃t = b̃(t, z̃t) dt +
√

2β−1σ̃(t, z̃t) dBt

with

b̃(t, z̃) = E

(

(−∇V · ∇ξ + β−1∆ξ)(X t)
∣

∣

∣
ξ(X t) = z̃

)

σ̃2(t, z̃) = E

(

|∇ξ|2(X t)
∣

∣

∣
ξ(X t) = z̃

)

.

Then, for all time t ≥ 0, L(ξ(X t)) = L(z̃t) ! But b̃ and σ̃ are
untractable numerically...
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Construction of the effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dWt

The effective dynamics:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with

b(z) = Eµ

(

(−∇V · ∇ξ + β−1∆ξ)(X )
∣

∣

∣
ξ(X ) = z

)

σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

.

Related approaches: Mori-Zwanzig and projection operator
formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin,

Pavliotis/Stuart, ...].



Introduction Effective dynamics Splitting strategies The Parallel Replica Algorithm References

Link with the free energy
Recall the definition of the free energy:

A(z) = −β−1 ln

∫

exp(−βV (x)) δξ(x)−z(dx).

The effective dynamics is:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with

b(z) = Eµ

(

(−∇V · ∇ξ + β−1∆ξ)(X )
∣

∣

∣
ξ(X ) = z

)

= −σ2(z)A′(z) + β−1∂zσ
2(z),

σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

.

Thus, the effective dynamics is:

dzt = σ2(zt)
(

−A′(zt) + β−1∂z [ln(σ
2)](zt)

)

dt +
√

2β−1σ(zt) dBt .
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Error analysis: time marginals
The effective dynamics is ergodic (detailed balanced) wrt ξ ∗ µ.
Moreover Under the assumptions (|∇ξ| = Cte for simplicity):

(H1) The conditional probability measures µ(·|ξ(x) = z) satisfy a
Logarithmic Sobolev Inequality with constant ρ,

(H2) Bounded coupling assumption: ‖∇∇ξ⊥∇∇ξV ‖L∞ ≤ κ,

(H3) The probability measure µ satisfies a Logarithmic Sobolev
Inequality with constant R ,

Then, ∃C > 0, ∀t ≥ 0,

‖L(ξ(X t))− L(zt)‖TV

≤ C min

(

κ

ρ

(

H(L(X 0)|µ)− H(L(X t)|µ)
)

, exp(−β−1Rt)

)

.

Typically ρ≫ R .
The proof [Legoll, TL] is PDE-based. It is inspired by a decomposition
of the entropy proposed in [Grunewald/Otto/Villani/Westdickenberg], and entropy
estimates.
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Sketch of the proof in the 2d case and ξ(x , y) = x (1/4)

2D FP:∂tψ = β−1
div

[

ψ∞∇

(

ψ

ψ∞

)]

, ψ∞(x , y) = Z−1 exp(−βV (x , y)).

Let ψ̄(t, x) be the law of ξ(Xt) = xt , that is
ψ̄(t, x) =

∫

ψ(t, x , y) dy :

∂tψ̄ = β−1∂x

∫

ψ∞∂x

(

ψ

ψ∞

)

dy .

The free energy A is defined by

exp(−βA(x)) =

∫

ψ∞(x , y) dy = Z−1

∫

exp(−βV (x , y)) dy

A′(x) = Eµ [∂xV (X ) | ξ(X ) = x ]

Since σ = 1, the effective dynamics is
dzt = −A′(zt) dt +

√

2/β dBt . The law φ(t, x) of zt satisfies

∂tφ = β−1∂x

[

φ∞∂x

(

φ

φ∞

)]

, φ∞(x) = exp(−βA(x)).
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Sketch of the proof (2/4)
Consider

E (t) = H(ψ̄|φ) =

∫

R

ln

(

ψ̄(t, x)

φ(t, x)

)

ψ̄(t, x) dx

and introduce the correct drift b̃(t, x) =

∫

ψ∂xV dy
∫

ψ dy
.

dE

dt
= −β−1I (ψ̄|φ) +

∫

R

ψ̄ ∂x

(

ln
ψ̄

φ

)

(

A′ − b̃
)

≤ −β−1I (ψ̄|φ) +
1

2α

∫

ψ̄

(

∂x

(

ln
ψ̄

φ

))2

+
α

2

∫

ψ̄
(

A′ − b̃
)2

=

(

1

2α
− β−1

)

I (ψ̄|φ) +
α

2
(∗)

Notice that b̃(t, x) =
∫

R
∂xV (x , y) νx

1
(dy) with

νx
1
(dy) ∝ ψ(t, x , y) dy , and A′(x) =

∫

R
∂xV (x , y) νx

2
(dy) with

νx
2
(dy) ∝ ψ∞(x , y) dy .
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Sketch of the proof (3/4)

A′(x)− b̃(t, x) =

∫

∂xV (x , y) νx
1 (dy)−

∫

∂xV (x , y) νx
2 (dy)

=

∫

(∂xV (x , y1)− ∂xV (x , y2))π
x(dy1, dy2)

∣

∣

∣
A′(x)− b̃(t, x)

∣

∣

∣
≤ ‖∂xyV ‖L∞

∫

|y1 − y2|π
x(dy1, dy2)

with

∫

(φ1(y1) + φ2(y2))π
x(dy1, dy2) =

∫

φ1dν
x
1 +

∫

φ2dν
x
2 .

Optimize on πx :
∣

∣

∣
A′(x)− b̃(t, x)

∣

∣

∣
≤ ‖∂xyV ‖L∞ W1(ν

x
1 , ν

x
2 ) [Wasserstein distance]

≤
‖∂xyV ‖L∞

ρ

√

I (νx
1
|νx

2
) [Talagrand, LSI on νx

2 ]

Hence,

(∗) =

∫

ψ̄
(

A′(x)− b̃(t, x)
)2

≤
‖∂xyV ‖2

L∞

ρ2

∫

ψ̄I (νx
1 |ν

x
2 ) ≤

‖∂xyV ‖2

L∞

ρ2
I (ψ
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Sketch of the proof (4/4)

dE

dt
≤

(

1

2α
− β−1

)

I (ψ̄|φ) +
α

2

‖∂xyV ‖2

L∞

ρ2
I (ψ|ψ∞)

=

(

1

2α
− β−1

)

I (ψ̄|φ)−
αβ‖∂xyV ‖2

L∞

2ρ2

dH(ψ|ψ∞)

dt
.

Take 2α = β to cancel the first term:

dE

dt
≤ −

β2‖∂xyV ‖2

L∞

4ρ2

dH(ψ|ψ∞)

dt
.

Integrate in time, with E (0) = 0, and H(ψ(t)|ψ∞) ≥ 0:

E (t) ≤
β2‖∂xyV ‖2

L∞

4ρ2
H(ψ(t = 0)|ψ∞).

We hence need ‖∂xyV ‖L∞ = ‖∇Σz F‖L∞ < +∞ and LSI on
νx
2
(dy) ∝ ψ∞(x , y) dy , namely probability measures µ conditioned

at fixed ξ.
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Error analysis: pathwise convergence
Assume for simplicity ξ(x) = x1 where X = (x1, . . . , xd ) (so that
σ = 1 and b(z) = −Eµ(∂x1V (X )|ξ(X ) = z). Then one can show
that under the assumptions:

(H1)’ The conditional probability measures µ(·|ξ(x) = z) satisfy a
Poincaré Inequality with constant ρ,

(H2)’ Bounded coupling assumption: ‖∂x2...d
∂x1V ‖L∞ ≤ κ,

then

X 1,t − zt =

∫ t

0

(b(X 1,t)− b(zt)) dt + Rt

where

E

(

sup
0≤t≤T

R2

t

)

≤
C (κ)T

ρ
.

The proof [Legoll, TL, Olla] is probabilistic in nature.
Then, using Gronwall-like argument, one obtains almost sure error
estimates on the trajectories on finite time intervals (typically if b is smooth

and decreasing at infinity).
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Splitting strategies

A B
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Multilevel splitting

We would like to sample trajectories between two given metastable
states A and B . The main assumption in this section is that we are
given a smooth one dimensional function ξ : Rd → R (s.t.
|∇ξ| 6= 0) which "indexes" the transition from A to B in the
following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax},

where zmin < zmax, and Σzmin
(resp. Σzmax

) is “close” to ∂A (resp.
∂B).

Example: ξ(x) = ‖x − xA‖ where xA ∈ A is a reference configuration in A.
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Multilevel splitting

Question: How to compute dynamical quantities using ξ ? More
precisely, we consider: (a) Reactive trajectories and (b) Transition
times between the two metastable states A and B .

We propose a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth,

1955] to discard failed trajectories and branch trajectories
approaching the rare set. We focus on an adaptive variant [Cérou,

Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2010]: the Adaptive Multilevel
Splitting (AMS) algorithm.
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Reactive trajectory

A reactive trajectory between two metastable sets A and B is a
piece of equilibrium trajectory that leaves A and goes to B without
going back to A in the meantime [Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006].

A B

Difficulty: A trajectory leaving A is more likely to go back to A
than to reach B .
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AMS Algorithm
Initialisation: Generate an ensemble of N equilibrium trajectories
starting from A, up to the time it reaches A or B , conditionnally to
the fact that supt∈(0,τn) ξ(X

n
t ) > zmin. This is easily done by DNS.

Algorithm: (i) Order the zn = supt∈(0,τn) ξ(X
n
t ) ; (ii) Kill the

trajectory with the smallest supremum (say zn0) ; (iii) Create a new
trajectory by branching another trajectory from the first time it
crosses Σzn0 ; Go back to (i) until zn0 is larger than zmax.
This generates an ensemble of N equilibrium trajectories starting
from A, up to the time it reaches A or B , conditionnally to the fact
that supt∈(0,τn) ξ(X

n
t ) > zmax.

Final step: To get reactive trajectories, one only retains paths which
indeed end in B , and the part of the trajectory between A and B .

Remark: The algorithm can be seen as a kind of adaptive Forward Flux

Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface

Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method

[Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009]
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

A B
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AMS Algorithm

An important output of the algorithm is

α̂N = (1 − 1/N)kmax r

where N is the number of trajectories, kmax the number of
iterations to reach the quantile zmax, and r the proportion of
trajectories that do finally end in B and not in A (at the final step).

The probability α̂N is an estimator of the probability for an
equilibrium trajectory leaving A and reaching Σzmin

to reach B
before A. It may be interprated as a “probability of observing a
reactive trajectory”.

Values for α̂N in the numerical results below vary between 10−18

and 10−4 depending on the test cases: these are very rare events.
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Numerical results

In all the numerical tests, we use overdamped dynamics, but the
algorithm applies to any stochastic Markovian dynamics, is
straightforward to parallelize, and requires only a small modification
of an original MD code.

A 1D example: We consider the double-well potential:

V (x) = x4 − 2x2,

which has two minima at ±1 and one saddle point at 0.
In this simple one dimensional setting, we set as metastable states
A = {−1} and B = {+1}, and the reaction coordinate is taken to
be simply

ξ(x) = x .

To test the consistency of tha algorithm, we compute the
distribution of the time-lengths of the reactive paths and compare
to DNS (when possible).
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A 1D example
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A 1D example

β N α̂N DNS CPU AMS CPU

1 104 1.03 10−1 2s 2s
1 105 1.01 10−1 21s 1 min 19 s
10 104 2.04 10−5 140 min 05 s 5 s
10 105 1.98 10−5 1400 min ⋆ 5 min 22 s
15 105 1.78 10−7 92000 min ⋆ 7 min 52 s
20 105 1.33 10−9 8 min 36 s
40 105 5.82 10−18 10 min 09 s

Probability α̂N , and computational time for different values of β
and numbers of paths N. DNS CPU time with ⋆ is an extrapolated
time deduced from a small number of generated reactive
trajectories.

The algorithm makes possible the generation of reactive trajectories
for some parameter values for which DNS would be impractible.
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A 2D example

Let us consider the potential ([Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and

Vanden-Eijnden, 2006]):

V (x , y) = 3e
−x2−(y− 1

3
)2 − 3e

−x2−(y− 5
3
)2 − 5e

−(x−1)2−y2

− 5e
−(x+1)2−y2

+ 0.2x4 + 0.2

(

y −
1

3

)4

.
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A 2D example

The interest of this “bi-channel” potential is that, depending on the
temperature, one or the other channel is prefered to go from A
(around H− = (−1, 0)) to B (around H+ = (1, 0)).

We will look at two quantities ([Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006]): the density of configurations along reactive paths, and the
flux of reactive trajectories, for two values of the inverse
temperature β = 1.67 and β = 6.67.

Two reaction coordinates are tested: ξ1(x , y) = x or
ξ2(x , y) = ‖(x , y)− H−‖. Both give reliable results, even though:
(i) They are not the commitor functions ; (ii) The system exhibits
metastabilities at fixed values of ξi .
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Density on reactive paths
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Density on reactive paths
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Flux of reactive trajectories
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Computing transition times

To use the algorithm to compute transition times, we split a
transition path from A to B into: excursions from ∂A to Σzmin

and
then back to ∂A, and finally an excursion from ∂A to Σzmin

and
then to B . Assuming Σzmin

is close to an iso-commitor (Markov
property), one obtains that the mean transition time is:

E(T ) =

(

1

p
− 1

)

E(T1 + T2) + E(T1 + T3)

where:

• p is the probability, once Σzmin
has been reached, to go to B

rather than A (approximated by α̂N) ;

• E(T1 + T2) is the mean time for an excursion from ∂A to
Σzmin

and then back to ∂A (approximated by DNS) ;

• E(T1 + T3) is the mean time for an excursion from ∂A to
Σzmin

and then to B (approximated by the AMS algorithm).
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Numerical results

Numerical results on the 1D case

β ∆t zmin E(T ) E(T ) C.I. in E(T ) Error
(DNS) (AMS) (AMS) (%)

5 0.010 −0.9 185 208.3 [199.6, 217.7] 12.591
5 0.010 −0.6 185 221.2 [214.3, 228.4] 19.577
5 0.001 −0.9 185 187.4 [180.5, 194.8] 1.292
5 0.001 −0.6 185 193.2 [188.3, 198.3] 4.459
7 0.010 −0.9 1405 1515 [1468, 1565] 7.832
7 0.010 −0.6 1405 1642 [1567, 1722] 16.847
7 0.001 −0.9 1405 1380 [1316, 1449] 1.808
7 0.001 −0.6 1405 1400 [1358, 1444] 0.370

Transition times for small values of β, with various time steps ∆t
and zmin. Reference values are computed by DNS.
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Numerical results
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with the asymptotic law from large deviation theory:

E(T ) ∝ exp(β∆V )

where ∆V = 1 is the height of the energy barrier.
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Numerical results

Numerical results on the 2D case

N β kAB C.I. on kAB

×103 (AMS) (AMS)

2 1.67 2.03 10−2 [1.83; 2.22] 10−2

10 1.67 1.84 10−2 [1.82; 1.86] 10−2

50 1.67 1.88 10−2 [1.87; 1.88] 10−2

100 1.67 1.89 10−2 [1.89; 1.90] 10−2

2 6.67 9.97 10−8 [7.74; 12.2] 10−8

10 6.67 9.20 10−8 [7.71; 10.7] 10−8

50 6.67 8.88 10−8 [8.42; 9.34] 10−8

100 6.67 9.32 10−8 [9.08; 9.57] 10−8

Estimates of the reaction rate kAB = 2/E(T ), withξ = ξ2. Values
from [Metzner, Schütte, Vanden-Eijnden, 2006] are kAB = 1.912 10−2 for
β = 1.67 and kAB = 9.47 10−8 for β = 6.67.
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Adaptive multilevel splitting: conclusions

The method can be seen as an adaptive forward flux sampling or
interface sampling technique.

Possible extensions:

• Generate equilibrium trajectories which leave a metastable
state A without knowing the neighborhood.

• Adaptively compute a better and better ξ (proportional to the
committor function).

The mathematical analysis of the AMS algorithm remains
essentially to be done:

• Analysis of the time discretization error,

• Asymptotic variance of the estimator and optimization of ξ,

• Precise estimate of the bias.
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The Parallel Replica Algorithm
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The Parallel Replica Algorithm

The Parallel Replica Algorithm, proposed by A.F. Voter in 1998, is
a method to get efficiently a "coarse-grained projection" of a
dynamics.
Let us consider again the overdamped Langevin dyanmics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a smooth mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

The aim of the parallel replica dynamics is to generate very
efficiently a trajectory (St)t≥0 which has (almost) the same law as
(S(X t))t≥0.
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The Parallel Replica Algorithm

Initialization: Consider an initial condition X
ref
0 for a reference

walker, the associated initial condition S0 = S(X ref
0 ), and a

simulation time counter Tsimu = 0.

Then, one iteration of the algorithm goes through three steps.

• The decorrelation step: Let the reference walker (X ref
Tsimu+t)t≥0

evolve over a time interval t ∈ [0, τcorr ]. Then,
• If the process leaves the well during the time interval (i.e.

∃t ≤ τcorr such that S
(

X
ref

Tsimu+t

)

6= S
(

X
ref

Tsimu

)

) advance the

simulation clock by τcorr and restart the decorrelation step ;
• otherwise, advance the simulation clock by τcorr and proceed

to the dephasing step.

During all this step, STsimu+t := S
(

X
ref
Tsimu+t

)

.
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The Parallel Replica Algorithm

The reference walker enters a new state
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The Parallel Replica Algorithm

Decorrelation step: wait for a time τcorr .
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• The dephasing step: Duplicate the walker X
ref
Tsimu

into N
replicas. Let these replicas evolve independently and in parallel
over a time interval of length τdephase . If a replica leaves the
well during this time interval, restart the dephasing step for
this replica. Throughout this step, the simulation counter is
stopped.
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The Parallel Replica Algorithm

Dephasing step.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.



Introduction Effective dynamics Splitting strategies The Parallel Replica Algorithm References

The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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• The parallel step: Let all the replicas evolve independently and
track the first escape event:

T = inf
k

T k
W = TK0

W

where K0 = arg infk T k
W and

T k
W = inf{t ≥ 0, S(X k

Tsimu+t) 6= S(X k
Tsimu

)}

is the first time the k-th replica leaves the well. Then:

Tsimu = Tsimu + NT and X
ref
Tsimu+NT = X

K0
Tsimu+T .

Moreover, over [Tsimu,Tsimu + NT ], the state dynamics St is
constant and defined as:

St = S(X 1

Tsimu
).

Then, go back to the decorrelation step...
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The Parallel Replica Algorithm

Parallel step.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

Analysis of the algorithm: the parallel step would introduce no error
if

• the escape time T 1

W was exponentially distributed

• and independent of the next visited state.

This essentially amounts to assuming that S(X t) is a Markov
chain...

How to analyze the error introduced by the algorithm ?

This is related to the general question: how to relate a continuous
state space Markov dynamics to a discrete state space Markov
dynamics ? Pitfalls: (i) the temperature is not necessarily small (ii) the

partition of the state space may be anything (iii) no thermodynamic limit

in general (non-homogeneous systems).
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The quasi-stationary distribution
The quasi-stationary distribution (QSD) ν for X t and associated to
the actual well W is a probability measure which is (i) supported
by W and such that (ii): ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x

t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x

W ) ν(dx)

.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Let L = −∇V · ∇+ β−1∆ be the infinitesimal generator of (X t).
Then the density u of ν (dν = u(x)dx) is the first eigenfunction of
L∗ = div (∇V + β−1∇) with absorbing boundary conditions:

{

L∗u = −λ1u on W ,

u = 0 on ∂W .
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The quasi-stationary distribution and the dephasing step

Property of the QSD: If X 0 ∼ ν then, the first exit time TW from
W is exponentially distributed with parameter λ1 and is a random
variable independent of the first hitting point XTW

on ∂W .

The dephasing step is very much related to the so-called
Fleming-Viot process and may be seen as a way to get N i.i.d.
random variables distributed according to the QSD.

Remark: In general, TW exponentially distribtued is not sufficient
for X 0 to be distributed according to ν.
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The parallel step
As announced above, starting from the QSD, the parallel step is
exact. This is stated precisely here.

Let us start from N initial conditions X
k
0 i.i.d. in the well W and

let the processes evolve independently. Let us denote

T k
W = inf{t > 0,X k

t 6∈ W }

the escape time for the k-th replica, and

T = TK0
W where K0 = arg min

k∈{1,...,N}
T k

W

the first escape time over all processes.

• Assume that T 1

W is exponentially distributed [OK starting
from QSD.] Then NT has the same law as T 1

W .

• Assume that T 1

W is independent of X
1

T 1
W

[OK starting from

QSD.] Then X
K0

T
K0
W

has the same distribution as X
1

T 1
W

and is

independent of TK0
W .
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The decorrelation step

We would like to quantify the error introduced by the dephasing
and parallel steps, when the decorrelation step is successful.

As shown above, when the decorrelation step is successful, it is
assumed that the reference walker is distributed according to the
QSD. If it was indeed the case, the algorithm would be exact. The
decorrelation step can be seen as a way to probe this assumption.
What is the error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1

.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1

≤
1

λ1

.
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The Parallel Replica Algorithm: conclusions

This can be generalized to other dynamics (coarse-graining of
kMC).

Main results:

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations.

• The error analysis holds whatever the partition. But the
method requires metastability between the states to be
computationally efficient.

• The parameter τcorr should be adjusted in terms of the two
first eigenvalues of the Fokker-Planck operator with absorbing
boundary conditions.
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