Combinatorial approach to Kneser graphs

Frédéric Meunier

May 20th, 2015

Combinatorial proof of the Lovász-Kneser theorem

Kneser graphs

Kneser graph $\mathrm{KG}(m, \ell)$:

$$
\begin{aligned}
& V(\mathrm{KG}(m, \ell))=\binom{[m]}{\ell} \\
& E(\mathrm{KG}(m, \ell)))=\left\{A B: A, B \in\binom{[m]}{\ell}, A \cap B=\emptyset\right\}
\end{aligned}
$$

Lovász-Kneser theorem

Theorem
$\chi(\mathrm{KG}(m, \ell))=m-2 \ell+2$.
$\chi(\mathrm{KG}(m, \ell)) \leq m-2 \ell+2$ (easy: explicit coloring).

Matoušek proposed in 2003 a combinatorial (yet still topological) proof.

Octahedral Tucker lemma

Lemma
Let $\lambda:\{+,-, 0\}^{m} \backslash\{\mathbf{0}\} \rightarrow\{ \pm 1, \ldots, \pm k\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then $k \geq m$.

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \preceq \boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \quad \text { if } \quad x_{i} \neq 0 \Rightarrow y_{i}=x_{i}
$$

Matoušek's proof

$\star c:\binom{[m]}{\ell} \rightarrow[t]$ proper coloring of $\mathrm{KG}(m, \ell)$ with t colors.

* Extension for any $U \subseteq[m]: c(U)=\max \{c(A): A \subseteq U,|A|=\ell\}$.
$\star \boldsymbol{X}^{+}=\left\{i: x_{i}=+\right\}$ and $\boldsymbol{x}^{-}=\left\{i: x_{i}=-\right\}$
$\star \lambda(\boldsymbol{x})= \begin{cases}|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 \ell-2, \min \left(\boldsymbol{x}^{+}\right)<\min \left(\boldsymbol{x}^{-}\right) \\ -|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 \ell-2, \min \left(\boldsymbol{x}^{-}\right)<\min \left(\boldsymbol{x}^{+}\right) \\ c\left(\boldsymbol{x}^{+}\right)+2 \ell-2 & \text { if }|\boldsymbol{x}| \geq 2 \ell-1, c\left(\boldsymbol{x}^{+}\right)>c\left(\boldsymbol{x}^{-}\right) \\ -c\left(\boldsymbol{x}^{-}\right)-2 \ell+2 & \text { if }|\boldsymbol{x}| \geq 2 \ell-1, c\left(\boldsymbol{x}^{-}\right)>c\left(\boldsymbol{x}^{+}\right)\end{cases}$

An interlude: the splitting necklace theorem

Two thieves and a necklace

n beads, t types of beads, a_{i} (even) beads of each type.
Two thieves: Alice and Bob.

Beads fixed on the string.

Fair splitting $=$ each thief gets $a_{i} / 2$ beads of type i

The splitting necklace theorem

Theorem (Alon, Goldberg, West, 1985-1986)
There is a fair splitting of the necklace with at most t cuts.

t is tight

t cuts are sometimes necessary:

An interlude: Hedetniemi's conjecture for Kneser graphs

Product of graphs and Hedetniemi's conjecture

Let G, H be two graphs.
Categorical product $\mathrm{G} \times \mathrm{H}$:

$$
\begin{aligned}
& V(G \times H)=V(G) \times V(H) \\
& E(G \times H)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right): u u^{\prime} \in E(G), v v^{\prime} \in E(H)\right\}
\end{aligned}
$$

Hedetniemi's conjecture (1966)

$$
\chi(G \times H)=\min (\chi(G), \chi(H))
$$

Hedetniemi and Kneser

Theorem (Hell, 1980)
Hedetniemi's conjecture is true for pairs of Kneser graphs.
"Direct proof" by Valencia-Pabon and Vrecia.

Circular chromatic number of Kneser graphs

Circular chromatic number

Let $G=(V, E)$ be a graph.
(p, q)-coloring. Mapping $c: V \rightarrow[p]$ s.t.

$$
q \leq|c(u)-c(v)| \leq p-q \quad \text { for every } u v \in E
$$

($p \geq q \geq 1$ are two integers.)
Circular chromatic number.

$$
\chi_{c}(G)=\inf \{p / q: G \text { admits a }(p, q) \text {-coloring }\} .
$$

Known facts.

- $\chi(G)-1<\chi_{c}(G) \leq \chi(G)$
- the infimum is a minimum $\left(\chi_{c}(G)\right.$ is rational $)$

Question. For which G do we have $\chi_{c}(G)=\chi(G)$?

Circular chromatic number of Kneser graphs

The following has been conjectured by Johnson, Holroyd, and Stahl in 1997.

Theorem (Chen 2011)

$$
\chi_{c}(\mathrm{KG}(m, \ell))=\chi(\mathrm{KG}(m, \ell))
$$

For even m, already proved by Simonyi, Tardos, and M..

Chen's proof is combinatorial: extension of Matoušek's proof.

Chen's lemma

$K_{t, t}^{*}=K_{t, t}-$ a perfect matching.

Lemma
Any proper coloring of $\mathrm{KG}(m, \ell)$ with $m-2 \ell+2$ colors contains a colorful copy of $K_{m-2 \ell+2, m-2 \ell+2}^{*}$.
$\chi_{c}(\mathrm{KG}(m, \ell))=\chi(\mathrm{KG}(m, \ell))$ is then a direct consequence.

Octahedral Ky Fan lemma

Lemma
Let $\lambda:\{+,-, 0\}^{m} \backslash\{\mathbf{0}\} \rightarrow\{ \pm 1, \ldots, \pm k\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then there is at least one negatively alternating m-chain.

Negatively alternating m-chain: $\boldsymbol{x}^{1} \preceq \cdots \preceq \boldsymbol{x}^{m}$ with

$$
\begin{gathered}
\lambda\left(\left\{\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right\}\right)=\left\{-j_{1},+j_{2}, \ldots,(-1)^{m} j_{m}\right\} \quad \text { and } \quad 1 \leq j_{1}<j_{2}<\cdots<j_{m} . \\
\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \preceq \boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \quad \text { if } \quad x_{i} \neq 0 \Rightarrow y_{i}=x_{i}
\end{gathered}
$$

Proof of Chen's lemma

$\star c:\binom{[m]}{\ell} \rightarrow[t]$ proper coloring of $\mathrm{KG}(m, \ell)$ with $t=m-2 \ell+2$ colors.

* Extension for any $U \subseteq[m]: c(U)=\max \{c(A): A \subseteq U,|A|=\ell\}$.
$\star \boldsymbol{X}^{+}=\left\{i: x_{i}=+\right\}$ and $\boldsymbol{x}^{-}=\left\{i: x_{i}=-\right\}$

$$
\star \lambda(\boldsymbol{x})= \begin{cases}|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 \ell-2, \min \left(\boldsymbol{x}^{+}\right)<\min \left(\boldsymbol{x}^{-}\right) \\ -|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 \ell-2, \min \left(\boldsymbol{x}^{-}\right)<\min \left(\boldsymbol{x}^{+}\right) \\ c\left(\boldsymbol{x}^{+}\right)+2 \ell-2 & \text { if }|\boldsymbol{x}| \geq 2 \ell-1, c\left(\boldsymbol{x}^{+}\right)>c\left(\boldsymbol{x}^{-}\right) \\ -c\left(\boldsymbol{x}^{-}\right)-2 \ell+2 & \text { if }|\boldsymbol{x}| \geq 2 \ell-1, c\left(\boldsymbol{x}^{-}\right)>c\left(\boldsymbol{x}^{+}\right)\end{cases}
$$

Two m-chains

The negatively alternating m-chain

$$
\boldsymbol{x}^{1} \prec \cdots \prec \boldsymbol{x}^{m} \quad \lambda\left(\boldsymbol{x}^{i}\right)=(-1)^{i} i
$$

Another m-chain

$$
\begin{gathered}
\boldsymbol{y}^{1} \prec \cdots \prec \boldsymbol{y}^{m} \quad \lambda\left(\boldsymbol{y}^{i}\right)=(-1)^{i} i \quad \text { if } i \neq 2 \ell-2 \\
\boldsymbol{y}^{2 \ell-2}=-\boldsymbol{x}^{2 \ell-2}
\end{gathered}
$$

$$
\begin{array}{ll}
\boldsymbol{x}^{(2 \ell-2+i)-}=S \cup\left\{a_{1}, a_{3}, a_{5}, \ldots, a_{i}\right\} & i \text { is odd } \\
\boldsymbol{x}^{(2 \ell-2+i)+}=T \cup\left\{a_{2}, a_{4}, a_{6}, \ldots, a_{i}\right\} & i \text { is even } \\
\boldsymbol{y}^{(2 \ell-2+i)-}=T \cup\left\{b_{1}, b_{3}, b_{5}, \ldots, b_{i}\right\} & i \text { is odd } \\
\boldsymbol{y}^{(2 \ell-2+i)+}=S \cup\left\{b_{2}, b_{4}, b_{6}, \ldots, b_{i}\right\} & i \text { is even }
\end{array}
$$

The lemma follows.

Octahedral Ky Fan lemma

Existence of the two chains $\boldsymbol{x}^{1} \prec \cdots \prec \boldsymbol{x}^{m}$ and $\boldsymbol{y}^{1} \prec \cdots \prec \boldsymbol{y}^{m}$ proved via

Lemma
Let $\lambda:\{+,-, 0\}^{m} \backslash\{\mathbf{0}\} \rightarrow\{ \pm 1, \ldots, \pm k\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then there is an odd number of negatively alternating m-chains.

Defining

$$
\mu(\boldsymbol{y})= \begin{cases}\lambda(\boldsymbol{y}) & \text { if } \boldsymbol{y} \notin\left\{-\boldsymbol{x}^{2 \ell-2}, \boldsymbol{x}^{2 \ell-2}\right\} \\ -\lambda(\boldsymbol{y}) & \text { otherwise, }\end{cases}
$$

makes the job.

An interlude: circular chromatic Hedetniemi's conjecture for Kneser graphs

Hedetniemi, Kneser, and circular chromatic number

Theorem
$\chi_{c}\left(\mathrm{KG}(m, \ell) \times \operatorname{KG}\left(m^{\prime}, \ell^{\prime}\right)\right)=\min \left(\chi_{c}\left(\mathrm{KG}(m, \ell), \chi_{c}\left(\mathrm{KG}\left(m^{\prime}, \ell^{\prime}\right)\right)\right.\right.$.

Conjecture

$$
\chi_{c}(G \times H)=\min \left(\chi_{c}(G), \chi_{c}(H)\right) .
$$

