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1. Combinatorial Stokes formula and applications

1.1. Combinatorial Stokes formula. Let M be an d-dimensional pseudomanifold. Let λ :
V (M) → {−1,+1, . . . ,−k,+k} be a labeling of its vertices, where k is some positive integer. A
`-dimensional simplex σ of M is negatively alternating (resp. positively alternating) if λ(V (σ)) is
of the form {−j0,+j1, . . . , (−1)`−1j`} (resp. of the form {+j0,−j1, . . . , (−1)`j`}) with 1 ≤ j0 <
j1 < · · · < j` ≤ k. We denote by β−(M) (resp. β+(M)) the number of negatively (resp. positively)
alternating d-simplices of M.

The following proposition due to Fan [7] is a powerful tool for providing elementary proofs of
fundamental topological results.

Proposition 1.1. Suppose that λ(u) + λ(v) 6= 0 whenever u and v are adjacent vertices. Then

β+(M) + β−(M) = β−(∂M) mod 2.

Proof. Consider the graph G = (V,E) where the vertices are the d-simplices of M, plus an additional
dummy vertex s. Two vertices distinct from s are connected by an edge if the corresponding
simplices share a common facet that is negatively alternating. A vertex is connected to s by an
edge if the corresponding simplex has a facet on ∂M that is negatively alternating.

The following facts can be easily checked. An almost negatively alternating simplex is a d-simplex
that is not alternating while having a negatively alternating facet.

• A vertex corresponding to an alternating d-simplex is of degree 1.
• A vertex corresponding to an almost negatively alternating d-simplex is of degree 2.
• s is of degree β−(∂M).
• Any other vertex is of degree 0.

The equality to be proved is then a consequence of the evenness of the number of odd degree vertices
in G. �

1.2. Tucker’s lemma, the Borsuk-Ulam theorem, and beyond.

Theorem 1.2 (Combinatorial Ky Fan’s theorem [7]). Let T be a centrally symmetric triangulation
of Sd and let

λ : V (T)→ {−1,+1, . . . ,−k,+k}
be a labeling of its vertices such that λ(−v) = −λ(v) for every v ∈ V (T). If λ(u) + λ(v) 6= 0
whenever u and v are adjacent vertices, then both β+(T) and β−(T) are odd.

We prove the statement when T is a centrally symmetric triangulation that refines the boundary

of the crosspolytope: ∂3d+1 = {x ∈ Rd+1 :
∑d+1

i=1 |xi| = 1}. The statement is also true for any
symmetric triangulations, but the proof is less easy. Anyway, for the applications of Theorem 1.2
that follow, this kind of triangulations is enough.

Proof of Theorem 1.2. The proof works by induction on d. For d = 0, the statement is obvious.
Suppose now that d ≥ 1. Consider the triangulation T′ induced by T on the equator of ∂3d+1,

which is {x ∈ Rd+1 :
∑d+1

i=1 |xi| = 1, xd+1 = 0}. This triangulation satisfies the condition of
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the theorem. Thus, by induction β−(T′) is odd. Denote T+ (resp. T−) the triangulation induced

by T on the positive (resp. negative) hemisphere {x ∈ Rd+1 :
∑d+1

i=1 |xi| = 1, xd+1 ≥ 0} (resp.

{x ∈ Rd+1 :
∑d+1

i=1 |xi| = 1, xd+1 ≤ 0}). According to Proposition 1.1, we have β+(T+) + β−(T+)
odd. Since λ is antipodal, we have β+(T−) = β−(T+) and β+(T+) + β+(T−) = β+(T). Thus,
β+(T) is odd. By antipodality, β−(T) is also odd. �

Corollary 1.3 (Tucker’s lemma [20]). Let T be a centrally symmetric triangulation of Sd and let

λ : V (T)→ {−1,+1, . . . ,−k,+k}
be a labeling of its vertices such that λ(−v) = −λ(v) for every v ∈ V (T). If λ(u) + λ(v) 6= 0
whenever u and v are adjacent vertices, then k ≥ d+ 1 .

Theorem 1.4 (Borsuk-Ulam theorem). There is no continuous map f : Sd → Sd−1 such that
f(−x) = −f(x) for all x ∈ Sd.

To prove it, we follow the same scheme as on p.35 of [11].

Proof of Theorem 1.4. Suppose for a contradiction that such map f exists. We set ε = 1√
d
. With

such an ε, for every z = (z1, . . . , zd) ∈ Sd−1, we always have zi > ε for some i ∈ d. Since f is
uniformly continuous, there exists a δ > 0 such that if the distance between z and z′ is not larger
than δ, then ||f(z) − f(z′)||∞ < 2ε. We choose a triangulation T of Sd such that diam(σ) < δ
for every simplex σ ∈ T. Now, let us define a labeling λ : V (T) → {−1,+1, . . . ,−d,+d}. To that
purpose, let

k(v) = min{i ∈ [d] : |f(v)i| ≥ ε}.
We set then

λ(v) =

{
+k(v) if f(v)k(v) > 0,
−k(v) if f(v)k(v) < 0.

The labeling λ satisfies the condition of Corollary 1.3 with k = d. Thus, there must be some edge
uv with λ(u) = −λ(v) > 0. Setting i = λ(u), we get f(u)i ≥ ε and f(v)i ≤ −ε. Therefore,
||f(u)− f(v)||∞ ≥ 2ε; a contradiction. �

Theorem 1.5 (Ky Fan’s theorem [7]). Let A1, . . . , Ak be k subsets of Sd satisfying the following
conditions:

• They are all open or all closed.
• None of them contain antipodal points.

•
⋃k

i=1(Ai ∪ (−Ai)) = Sd.

Then there exist d+ 1 integers 1 ≤ j0 < · · · < jd ≤ k such that

Aj0 ∩ (−Aj1) ∩ · · · ∩ ((−1)dAjd) 6= ∅.

Proof. We first prove the case when all Ai are closed.
Let T be a centrally symmetric triangulation of Sd of arbitrary small mesh size. We define then

a labeling λ of its vertices as follows. Let v ∈ V (T). We set k(v) = min{i ∈ [k] : v ∈ Ai ∪ (−Ai).
We define then

λ(v) =

{
k(v) if v ∈ Ak(v)

−k(v) if v ∈ −Ak(v)

The fact that none of the Ai contain antipodal points ensures that the sign of λ(v) is well-defined
and that no adjacent vertices have opposite labels. λ satisfies the condition of Theorem 1.2. There
exists thus a positively alternating simplex. Considering a sequence of symmetric triangulations
whose mesh size tends to zero and using the compactness of Sd, we get a sequence of positively
alternating simplices converging toward a point and having all the same labels j0,−j1, . . . , (−1)djd.
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The limit point is in the intersection Aj0 ∩ (−Aj1) ∩ · · · ∩ ((−1)dAjd), which gives the sought
conclusion.

To get the result when all the Ai’s are open, we proceed as follows. For each point x of the
sphere, we choose an open neighborhood Vx whose closure is contained in some Ai or in some −Ai.
We do it in such a way that V−x = −Vx. By compactness, we can then build m closed subsets
A′1, . . . , A

′
k such that A′i ⊂ Ai for i = 1, . . . , k and satisfying the condition of the theorem. The

conclusion of the theorem for these sets provides the conclusion for the original sets. �

Theorem 1.6 (Ky Fan’s theorem [7] – alternate version). Let A1, . . . , Ak be k subsets of Sd satis-
fying the following conditions:

• They are all open or all closed.
• None of them contain antipodal points.

•
⋃k

i=1Ai = Sd.

Then there exist d+ 2 integers 1 ≤ j0 < · · · < jd ≤ k such that

Aj0 ∩ (−Aj1) ∩ · · · ∩ ((−1)d+1Ajd+1
) 6= ∅.

Proof. The proof is similar as the one for Theorem 1.6, working first with closed sets, and with
the same definition of k(v). There is thus always a positively alternating simplex with labels
j0,−j1, . . . , (−1)djd. Now, notice that the vertex with label (−1)djd is also in (−1)d+1A` for some
` > jd. Indeed, (−1)d+1A1, . . . , (−1)d+1Ak is a cover of Sd, and v is contained in none of the
(−1)d+1Ai for i ≤ jd. By compactness, we get the result. We get the result for open sets similarly
as for Theorem 1.6. �

Ky Fan’s theorem (Theorem 1.6) implies the following equivalent version of the Borsuk-Ulam
theorem.

Theorem 1.7 (Lyusternik-Shnirel’man theorem). Let U1, . . . , Ud+1 be a cover of the sphere Sd

with d+ 1 open sets. Then there is at least one of them containing a pair of antipodal points.

Proof. Suppose for a contradiction that none of the Ui contain antipodal points. We define Ai =
(−1)i−1Ui. These Ai’s satisfy the condition of Theorem 1.6. There is thus a point x in A1∩(−A2)∩
· · · ∩ ((−1)dAd+1). In other words, x ∈

⋂d+1
i=1 Ui. Since the Ui’s form a cover of Sd, there is a j such

that −x ∈ Uj . We have then both x and −x in Uj , a contradiction. �

1.3. Homotopy and antipodality.

Theorem 1.8. There are no homotopic continuous maps f, g : Sd → Sd such that f(−x) = −f(x)
and g(−x) = g(x) for all x ∈ Sd.

This theorem is a consequence of the following proposition.

Proposition 1.9. Let T be a triangulation of Sd × [0, 1] that is centrally symmetric on Sd × {0}
and on Sd × {1}. Let λ : V (T) → {−1,+1, . . . ,−k,+k} be a labeling of its vertices. Suppose that
λ(−v) = −λ(v) when v is a vertex on Sd × {0} and that λ(−v) = λ(v) when v is a vertex on
Sd × {1}. If λ(u) + λ(v) 6= 0 whenever u and v are adjacent vertices, then both β+(T) and β−(T)
are odd.

Proof. ∂T is the union of a centrally symmetric triangulation of Sd×{0}, which we denote T0, and
a centrally symmetric triangulation of Sd × {1}, which we denote T1. Because of the condition on
λ, we have β+(T1) and β−(T1) both even. According to Theorem 1.2, we have β+(T0) and β−(T0)
both odd. Proposition 1.1 implies then that both β+(T) and β−(T) are odd. �

To prove Theorem 1.8, we follow the same scheme as for proving the Borsuk-Ulam from Tucker’s
lemma. We simply replace Tucker’s lemma by Proposition 1.9.
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Proof of Theorem 1.8. Suppose for a contradiction that such maps f and g exist. We have then a
continuous mapping H : Sd × [0, 1] → Sd such that H(x, 0) = f(x) and H(x, 1) = g(x) for every
x ∈ Sd.

We set ε = 1√
d+1

. With such an ε, for every z = (z1, . . . , zd+2) ∈ Sd × [0, 1], we always have

zi > ε for some i ∈ [d+ 1]. Since the mapping H is uniformly continuous, there exists a δ > 0 such
that if the distance between z and z′ is not larger than δ, then ||H(z)−H(z′)||∞ < 2ε. We choose
a triangulation T of Sd × [0, 1] such that diam(σ) < δ for every simplex σ ∈ T.

Now, let us define a labeling λ : V (T)→ {−1,+1, . . . ,−(d+ 1),+(d+ 1)}. To that purpose, let

k(v) = min{i ∈ [d+ 1] : |H(v)i| ≥ ε}.

We set then

λ(v) =

{
+k(v) if H(v)k(v) > 0,
−k(v) if H(v)k(v) < 0.

The labeling λ satisfies the condition of Proposition 1.9 with k = d+1. There are not enough labels
to get any negatively or positively alternating d-simplex in T. Thus, both β+(T) and β−(T) are
even, which implies that there must be some edge uv with λ(u) = −λ(v) > 0. Setting i = λ(u),
we get H(u)i ≥ ε and H(v)i ≤ −ε. Therefore, ||H(u)−H(v)||∞ ≥ 2ε; a contradiction. �

2. Combinatorial proof of the Lovász-Kneser theorem

2.1. The Lovász-Kneser theorem. Let m, ` be two integers such that m ≥ 2`. The Kneser
graph KG(m, `) is defined by

V (KG(m, `)) =
([m]

`

)
E(KG(m, `)) =

{
AB : A,B ∈

([m]
`

)
, A ∩B = ∅

}
.

Theorem 2.1. Let m ≥ 2`. We always have χ(KG(m, `)) = m− 2`+ 2.

The inequality χ(KG(m, `)) ≤ m− 2`+ 2 is easy. It is a consequence of the explicit coloring

c : U ∈
(

[m]

`

)
7−→ min(min(U),m− 2`+ 2) ∈ [m− 2`+ 2].

The original proof of the reverse inequality used the Borsuk-Ulam theorem. It is the celebrated
proof by Lovász [10]. In this section, we explain Matoušek’s purely combinatorial proof of this
inequality [12].

2.2. Another combinatorial Ky Fan’s theorem. The main tool for proving Lemma 3.2 is the
following lemma. It uses “signed vectors”, which are elements of {+,−, 0}m. We endow this set
with a partial order � as follows. We have x � y if for every index i ∈ [m] whenever xi 6= 0, then
xi = yi.

Let λ : {+,−, 0}m \{0} → {−1,+1, . . . ,−k,+k} for some positive integers k and m. A positively
alternating m-chain is a sequence x1 � x2 � · · · � xm such that λ

(
{x1, . . . ,xm}

)
is of the form

{+j1,−j2, . . . , (−1)m−1jm} with 1 ≤ j1 < j2 < · · · < jm ≤ k.

Lemma 2.2 (Octahedral Ky Fan’s lemma). Suppose that λ satisfies the following conditions

• λ(−x) = −λ(x) for every x.
• λ(x) + λ(y) 6= 0 whenever x � y.

Then the number of positively alternating m-chains is odd. In particular, we have k ≥ m.

This lemma without the statement on the number of positively alternating m-chains is usually
known under the name “Octahedral Tucker’s lemma”.
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Proof of Lemma 2.2. Let T be barycentric subdivision of the boundary of the unit cube:

T = sd ∂[−1,+1]m.

Note that T is a triangulation of Sm−1. The signed vectors are precisely the vertices of T, once + is
replaced by 1 and − replaced by −1, and there is a one-to-one correspondence between the chains
for � and the simplices of T. In particular, an edge of the barycentric subdivision corresponds to
two comparable signed vectors. Theorem 1.2 applies and it ensures that there is an odd number
of positively alternating (m − 1)-simplices in T, which are precisely the positively alternating m-
chains. �

2.3. The combinatorial proof. For the proof, we introduce the following notation. For x ∈
{+,−, 0}m, we define |x| as being the number of its nonzero components. Moreover we define

x+ = {i ∈ [m] : xi = +} and x− = {i ∈ [m] : xi = −}.

Proof of Theorem 2.1. The inequality χ(KG(m, `)) ≤ m− 2`+ 2 has already noted to be true. Let
us prove the reverse inequality.

Let c :
([m]

`

)
→ [t] be a proper coloring of KG(m, `) with t colors. For a subset A of [m] of

cardinality at least `, we define

c(A) = max{c(U) : U ⊆ A, |U | = `}.
Now, for x ∈ {+,−, 0}m \ {0}, we define

λ(x) =


|x| if |x| ≤ 2`− 2 and min(x+) < min(x−),
−|x| if |x| ≤ 2`− 2 and min(x−) < min(x+),
c(x+) + 2`− 2 if |x| ≥ 2`− 1 and c(x+) > c(x−),
−c(x−)− 2`+ 2 if |x| ≥ 2`− 1 and c(x−) > c(x+).

(We use the convention that the minimum (resp. maximum) of a function over an empty set is +∞
(resp. −∞)). The fact that c is proper coloring ensures that c(x+) 6= c(x−) once |x| ≥ 2`− 1.
λ obviously satisfies λ(−x) = −λ(x) for every x. Now, consider two nonzero signed vectors x

and y such that λ(x) = −λ(y). Without loss of generality, we assume that λ(x) > 0. Suppose
first that |x| ≤ 2` − 2, then x and y necessarily have the same support cardinality, but opposite
value for their first nonzero component. Thus x and y are not comparable. Suppose now that
|x| ≥ 2`− 1. There is a subset U of cardinality ` in x+ and a subset V of cardinality ` in y− such
that c(U) = c(V ). As c is proper coloring, these two sets intersect. It implies that again x and y
are not comparable. λ satisfies therefore the condition of Lemma 2.2 with k = t+ 2`− 2.

Hence, t+ 2`− 2 ≥ m and the conclusion follows. �

3. Circular chromatic number of Kneser graphs

3.1. Context and main results. Let G = (V,E) be a graph. For two integers p ≥ q ≥ 1, a
(p, q)-coloring of G is a mapping c : V → [p] such that q ≤ |c(u)− c(v)| ≤ p− q for every edge uv
of G. The circular chromatic number of G is

χc(G) = inf{p/q : G admits a (p, q)-coloring}.
It is known that χ(G) − 1 < χc(G) ≤ χ(G) and that the infimum in the definition is actually a
minimum, i.e. χc(G) is attained for some (p, q)-coloring (and thus the circular chromatic number
is always rational), see [22] for details. The question of determining which graphs are such that
χc(G) = χ(G) has received a considerable attention. The following theorem has been conjectured
by Johnson, Holroyd, and Stahl [9]. It has been proved independently for even m by M. [13] and
Simonyi and Tardos [17]. The general case has been proved by Chen [5].

Theorem 3.1. Let m ≥ 2`. We always have χc(KG(m, `)) = χ(KG(m, `)).
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This theorem is actually a consequence of the following more general result, also proved by Chen
in the same paper. We denote by K∗q,q the bipartite complete graph Kq,q from which a perfect
matching has been removed.

Lemma 3.2. Any proper coloring of KG(m, `) with m − 2` + 2 colors contains a colorful copy of
K∗m−2`+2,m−2`+2.

It is quite easy to prove Theorem 3.1 from this lemma.

Proof of Theorem 3.1. Let c be a (p, q)-coloring of KG(m, `) with p ≤ q(m − 2` + 2). Define a
new coloring of the vertices by ĉ(v) = dc(v)/qe. It is proper coloring of the vertices with at most
m−2`+2 colors. According to Lemma 3.2, there is a colorful copy of K∗m−2`+2,m−2`+2 in KG(m, `)
for the coloring ĉ. If m = 1 or m = 2, the statement we have to prove is obvious. Let us thus
assume that m ≥ 3.

If m is even, we have thus a cycle v1, . . . , vm−2`+2, v1 of length m − 2` + 2, with ĉ(vi) = i.
Hence, we have c(vi) ≤ c(vi+1) for every i ∈ [m − 2` + 1]. Since c is a (p, q)-coloring, we have
c(v1) + iq ≤ c(vi+1) for every i ∈ [m − 2` + 1]. In particular, c(v1) + (m − 2` + 1)q ≤ c(vm−2`+2).
Moreover, vm−2`+2 and v1 are adjacent on the cycle. Therefore, c(vm−2`+2)− c(v1) ≤ p− q, which
implies (m− 2`+ 1)q ≤ p− q, and we get the conclusion.

If m is odd, we have thus a cycle v1, . . . , vm−2`+2, u1, . . . , um−2`+2, v1 of length 2m− 4`+ 4, with
the colors 1, 2, . . . ,m − 2` + 2, 1, 2, . . . ,m − 2` + 2 appearing in this order on the cycle: ĉ(vi) =
ĉ(ui) = i. Without loss of generality, we can assume that c(u1) ≤ c(v1). We have c(vi) ≤ c(vi+1)
for every i ∈ [m − 2` + 1], and hence we have c(v1) + iq ≤ c(vi+1) for every i ∈ [m − 2` + 1]. In
particular, c(v1) + (m − 2` + 1)q ≤ c(vm−2`+2). Moreover, vm−2`+2 and u1 are adjacent on the
cycle. Therefore, c(vm−2`+2)− c(u1) ≤ p− q, which implies c(vm−2`+2) ≤ p− q+ c(v1), and we get
≥ (m− 2`+ 1)q ≤ p− q, as required. �

The remaining of the section is devoted to the proof of Lemma 3.2. Chang, Liu, and Zhu [4]
simplified Chen’s proof. We propose here a further simplification.

3.2. Proof of Lemma 3.2.

Proof of Lemma 3.2. Let c :
([m]

`

)
→ [m− 2`+ 2] be a proper coloring of KG(m, `) with m− 2`+ 2

colors. For a subset A of [m] of cardinality at least `, we define

c(A) = max{c(U) : U ⊆ A, |U | = `}.

Now, for x ∈ {+,−, 0}m \ {0}, we define as in the proof of Theorem 2.1

λ(x) =


|x| if |x| ≤ 2`− 2 and min(x+) < min(x−),
−|x| if |x| ≤ 2`− 2 and min(x−) < min(x+),
c(x+) + 2`− 2 if |x| ≥ 2`− 1 and c(x+) > c(x−),
−c(x−)− 2`+ 2 if |x| ≥ 2`− 1 and c(x−) > c(x+).

Let α(x, λ) be the number of positively alternatingm-chains containing x. According to Lemma 2.2,
we have that

∑
x:|x|=2`−2 α(x, λ) is odd. There exists a positively alternating m-chain x1 � x2 �

· · · � xm such that α(x2`−2, λ) is odd.
The fact that λ is increasing and the alternation of signs implies we may denote [m] = S ∪ T ∪

{a1, . . . , am−2`+2}, where

x(2`−2+i)+ = S ∪ {a1, a3, . . . , ai} and x(2`−2+i)− = T ∪ {a2, a4, . . . , ai−1} if i is odd,

x(2`−2+i)+ = S ∪ {a1, a3, . . . , ai−1} and x(2`−2+i)− = T ∪ {a2, a4, . . . , ai} if i is even,
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and S and T are two disjoint (`− 1)-subsets of [m]. Actually, S = x(2`−2)+ and T = x(2`−2)−. (We
have even that λ(xi) = (−1)i−1i.) Define now a new labeling µ by

µ(x) =

{
−λ(x) if x ∈ {x2`−2,−x2`−2}
λ(x) otherwise.

Since
∑

x:|x|=2`−2 α(x, λ) and
∑

x:|x|=2`−2 α(x, µ) are both odd by Lemma 2.2 and since α(x, λ) =

α(x, µ) when |x| = 2`− 2 except when x ∈ {x2`−2,−x2`−2}, we get

α(x2`−2, λ) + α(−x2`−2, λ) = α(x2`−2, µ) + α(−x2`−2, µ) mod 2.

Note that α(−x2`−2, λ) = 0 and that α(x2`−2, µ) = 0. Since α(x2`−2, λ) is odd, we get that
α(−x2`−2, µ) is also odd. There exists thus a positively alternating m-chain y1 � y2 � · · · � ym

for the labeling µ, with y2`−2 = −x2`−2. For the same reasons as for λ, we get that we may denote
[m] = S ∪ T ∪ {b1, . . . , bm−2`+2}, where

y(2`−2+i)+ = T ∪ {b1, b3, . . . , bi} and y(2`−2+i)− = S ∪ {b2, b4, . . . , bi−1} if i is odd,

and

y(2`−2+i)+ = T ∪ {b1, b3, . . . , bi−1} and y(2`−2+i)− = S ∪ {b2, b4, . . . , bi} if i is even.

We have thus

c(S ∪ {a1, a3, . . . , ai}) = c(T ∪ {b1, b3, . . . , bi} = i for odd i

and

c(T ∪ {a2, a4, . . . , ai}) = c(S ∪ {b2, b4, . . . , bi}) = i for even i.

We show now that ai = bi and that c(S ∪ {ai}) = c(T ∪ {ai}) = i for all i ∈ [m − 2` + 2].
Once this is done, the proof will be complete: the subgraph of KG(m, `) induced by the vertices
{S ∪ {ai}, T ∪ {ai} : i ∈ [m− 2`+ 2]} is a colorful copy of K∗m−2`+2,m−2`+2.

We proceed by induction. We have c(S ∪ {a1}) = c(T ∪ {b1}) = 1. The vertices S ∪ {a1}
and T ∪ {b1} are thus nonadjacent and necessarily a1 = b1. Assume now that we have proved
aj = bj and c(S ∪ {aj}) = c(T ∪ {aj}) = j for all j < i. On the one hand, for j 6= i, we have
c(S ∪ {ai}) 6= c(T ∪ {aj}), since S ∪ {ai} ∩ T ∪ {aj} = ∅. Thus c(S ∪ {ai}) ≥ i. On the other hand,
c(S ∪ {ai}) ≤ c(S ∪ {ai, ai−2, . . .}) = i. Hence, c(S ∪ {ai}) = i. Similarly, c(T ∪ {bi}) = i. Finally,
since S ∪ {ai} and T ∪ {bi} have same color, they are nonadjacent and thus ai = bi. �

4. Kneser hypergraphs

Let m, `, r be three integers such that m ≥ r`. The Kneser hypergraph KGr(m, `) is defined by

V (KGr(m, `)) =
([m]

`

)
E(KGr(m, `)) =

{
{A1, . . . , Ar} : Ai ∈

([m]
`

)
, Ai ∩Aj = ∅ for i 6= j

}
.

Theorem 4.1 (Alon-Frankl-Lovász theorem [2]).

χ(KGr(m, `)) =

⌈
m− r(`− 1)

r − 1

⌉
.

Theorem 4.2 ([15]). Let p be a prime number. Any proper coloring c of KGp(m, `) with t colors
contains a complete p-uniform p-partite hypergraph with parts U1, . . . , Up satisfying the following
properties.

• It has m− p(`− 1) vertices.
• The values of |Uj | differ by at most one.
• The vertices of Uj get distinct colors.
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Let H = (V,E) be a uniform hypergraph. For X ⊆ V , we define

N (X) = {v : ∃e ∈ E s.t. e \X = {v}}

and N [X] := X ∪N (X). The local chromatic number of H is then defined as

ψ(H) = min
c

max
e∈E, v∈e

|c(N [e \ {v}])|,

where the minimum is taken over all proper colorings c.
An easy consequence of the Zig-zag theorem for Kneser hypergraphs is the following theorem:

Theorem 4.3.

ψ(KGp(m, `)) ≥ min

(⌈
m− p(`− 1)

p

⌉
+ 1,

⌈
m− p(`− 1)

p− 1

⌉)
for any prime number p.

5. Open questions

5.1. Kneser graphs.

Question 5.1 ([17]). What is the local chromatic number of Kneser graphs?

For Schrijver graphs, the answer is almost known, see [17, 18].

Conjecture 5.2 ([19]). There exists a graph homomorphism KG(m, `) → KG(m′, `′) if and only
if m′ ≥ qm− 2k, where `′ = q`− k.

The existence of a graph homomorphism KG(m, `) → KG(m − 2, ` − 1) has been proved by
Stahl [19]. The case m = 2`+ 1 and m′ = 2`′ + 1 has also been proved by Stahl (1996).

5.2. Zig-zag theorem for Kneser hypergraphs.

Question 5.3. Are Theorems 4.2 and 4.3 valid for nonprime p?

5.3. Stable Kneser hypergraphs. A subset A of [m] is s-stable if s ≤ |u − v| ≤ m − s for
any distinct u and v taken in A. The s-stable r-uniform Kneser hypergraph KGr(m, `, s) is the
hypergraph defined by

V (KGr(m, `, s)) =
{
A ∈

([m]
`

)
: A is s-stable

}
E(KGr(m, `, s)) = {{A1, . . . , Ar} : Ai ∈ V (KGr(m, `, s)), Ai ∩Aj = ∅ for i 6= j} .

Conjecture 5.4 ([14]). If m ≥ max(s, r)`

χ(KGr(m, `, s)) =

⌈
m−max(s, r)(`− 1)

r − 1

⌉
.

The case s = r is the Alon-Drewnowski- Luczak-Ziegler conjecture [1, 23]: it states that the
chromatic number of a Kneser hypergraphs of rank r does not change when we restrict its vertex
set to the r-stable `-subsets of [m] (see Section 4). It has been proved for r a power of 2 [1].

Otherwise, some cases have been proved (especially when r = 2 and s even [6]).

6. Exercices

6.1. Sperner’s lemma as a consequence of the combinatorial Ky Fan’s theorem. Prove
that Sperner’s lemma is a consequence of the combinatorial Ky Fan theorem (Theorem 1.2).
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6.2. Combinatorial proof of the Zig-zag theorem. The Zig-zag theorem of Simonyi and Tar-
dos states in particular that any proper coloring of KG(m, `) with t colors contains a complete
bipartite graph Kb(m−2`+2)/2c,d(m−2`+2)/2e that is colorful, with the colors alternating on the two
side when ordered in the increasing order.

Provide an alternate combinatorial proof of this statement with the help of the octahedral Ky
Fan theorem (Lemma 2.2). Hint: adapt the combinatorial proof of the Lovász-Kneser theorem
given in Section 2.3.

6.3. A combinatorial proof of the splitting necklace theorem. Consider an open necklace
with m beads. The number of bead types is t. There are ai beads of type i (and thus

∑t
i=1 ai = m).

Assuming that every ai is even, the splitting necklace theorem due to Alon, Golberg, and West [3, 8]
states that there exists a fair splitting of the necklace between two thieves with at most t cuts
(“fair” means that each thief gets the same number of beads of each type). This theorem is a
classic application of the Borsuk-Ulam theorem.

For x ∈ {+,−, 0}m, denote by alt(x) the number of sign changes in x when reading from left to
right (0 does not count). Define h(x) = max{alt(y) : y � x} and s(x) to be y1 for a y realizing
the maximum in the definition of h (check that s(x) is well-defined). Define moreover λ(x) to be
s(x)h(x) when h(x) > t.

Show that it is possible to extend the definition of λ for all x ∈ {+,−, 0}m \ {0} in such a way
that Lemma 2.2 implies the existence of a fair splitting, giving this way an alternate combinatorial
proof of the splitting necklace theorem (this proof is due to Pálvölgyi [16]).

6.4. The circular chromatic number is rational. Let G = (V,E) be a graph. Let c′ : V →
[0, 1]. The map c′ is an r-circular coloring if any adjacent vertices u and v are such that

1

r
≤ |c′(u)− c′(v)| ≤ 1− 1

r
.

1. Prove that inf{r : there exists an r-circular coloring} is actually a minimum (it is attained for
some r).

Let r = min{r : there exists an r-circular coloring} and let c′ be an r-circular coloring. Build
the graph D = (V,A) where (u, v) is an arc of D if c′(v) = c′(u) + 1/r or c′(u) = c′(v) + 1− 1/r.

2. Show that D has a circuit.

3. Deduce that r is a rational number.

4. Explain how to build a p/q-circular coloring from a (p, q)-coloring.

5. Explain how to build a (p, q)-coloring from a p/q-circular coloring.

6. Conclude: the circular chromatic number is rational.

6.5. A direct proof of the validity of Hedetniemi’s conjecture for Kneser graphs.
Hedetniemi’s conjecture states that χ(G × H) = min(χ(G), χ(H)), where G × H stands for
the categorical product of G and H. This latter has vertex set V (G) × V (H) and edge set
{(u, v)(u′, v′) : uu′ ∈ E(G), vv′ ∈ E(H)}.

The inequality χ(G × H) ≤ min(χ(G), χ(H)) is straightforward. The purpose of this exercice
is to prove that Kneser graphs satisfy Hedetniemi’s conjecture. There are various proofs of this
result. Here we propose an elementary one (but using the Lovász-Kneser theorem – Theorem 2.1).
It is due to Valencia-Pabon and Vrecia [21].

1. Show that there exists a graph homomorphism KG(m, `)→ KG(m, `)×KG(m′, `) for any integer
m′ ≥ m.
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2. Show that this implies that Hedetniemi’s conjecture is true for Kneser graphs KG(m, `) and
KG(m′, `′) when ` = `′.

3. Use the existence of a graph homomorphism KG(m, `)→ KG(m−2, `−1) (proved by Stahl [19])
to conclude.

There is also a circular version of Hedetniemi’s conjecture: χc(G×H) = min(χc(G), χc(H)).

4. Explain why the same proof actually shows that Kneser graphs satisfy this latter conjecture.

6.6. Kneser graphs of matroids. For M a matroid, we denote by KG(M) the graphs whose
vertices are the bases of M and whose edges connect disjoint bases.

6.6.1. F7. Prove that χ(KG(F7)) = 3.

6.6.2. Rank 1 and rank 2 matroids.

6.6.3. An upper bound for rank 3 matroids. Prove that if M is a rank 3 matroid and has at least 5
elements, then

χ(KG(M)) ≤ min(n+ 1−max
L∈L
|L|, n− 4),

where L is the set of the hyperplanes of M.

6.7. Explicit coloring of Kneser hypergraphs. Describe an explicit proper coloring of KGr(m, `)

with
⌈
m−r(`−1)

r−1

⌉
colors (see Section 4).

6.8. Local chromatic number of Kneser hypergraphs. Prove Theorem 4.3 from Theorem 4.2.
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