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Abstract

In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam

theorem stating that there is no Z2-equivariant map from the d-dimensional sphere Sd

to the (d − 1)-dimensional sphere Sd−1. The aim of the present paper is to provide

the same kind of combinatorial theorem for Dold's theorem, which is a generalization

of the Borsuk-Ulam theorem when Z2 is replaced by Zq, and the spheres replaced by

d-dimensional (d − 1)-connected free Zq-spaces. It provides a combinatorial proof of

Dold's theorem. Moreover, the proof does not work by contradiction.

Key Words: combinatorial proof; Dold's theorem; Fan's theorem; labelling; Tucker's

lemma; triangulation.

1 Introduction

Ky Fan gave ([3]) in 1952 a combinatorial generalization of the Borsuk-Ulam theorem:

Theorem 1 (Fan's theorem) Let T be a symmetric triangulation of the d-sphere (if σ ∈ T
then −σ ∈ T) and let λ : V (T) → {−1,+1,−2,+2, . . . ,−m,+m} be an antipodal la-
belling (λ(−v) = −λ(v)) of the vertices of T such that no edge is labelled by −j,+j for
some j (there is no antipodal edge). Then we have at least one simplex in T labelled with
−j0,+j1, . . . , (−1)d+1jd where j0 < j1 < . . . < jd.

In combinatorics, a continuous version of Fan's theorem is used in particular in the study
of Kneser graphs (see [6],[10],[11]).

Since there is a generalization of Borsuk-Ulam theorem with other free actions (Zq-
actions) than the central symmetry (Z2-action), namely Dold's theorem, a natural question
is whether there is a generalization of Fan's theorem using q �signs� instead of the 2 signs
−,+ and leading to a purely combinatorial proof of Dold's theorem.

The present paper gives such a �Zq-Fan theorem�. An equivariant triangulation T of a
free Zq-space is a triangulation such that if σ ∈ T, then νsσ ∈ T for all s ∈ Zq (νs is the
homeomorphism corresponding to the action of s ∈ Zq on the Zq-space).

Theorem 2 (Zq-Fan's theorem) Let q be an odd positive integer, let T be an equivari-
ant triangulation of a d-dimensional (d − 1)-connected free Zq-space and let λ : V (T) →
Zq × {1, 2, . . . ,m} be a equivariant labelling (if λ(v) = (ε, j), then λ(νsv) = (s + ε, j)
- counted modulo q - for all s ∈ Zq) of the vertices of T such that no edge is labelled
by (ε, j),(ε′, j), with ε 6= ε′, for some j. Then we have at least one simplex in T la-
belled with (ε0, j0), (ε1, j1), . . . , (εd, jd) where εi 6= εi+1 for all i ∈ {0, 1, . . . , d − 1}, and
j0 < j1 < . . . < jd.
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It is not clear whether this theorem is also true for q even.
The plan is the following: First, we reprove Fan's theorem with the same kind of technics

we use in the rest of the paper (Section 3). Then, following the same scheme, we prove the
Zq-Fan theorem (Section 4). Finally, in the Section 5, we explain how this proof provides
a new combinatorial proof of Dold's theorem, after the one found by Günter M. Ziegler in
[12]: the Zp-Tucker lemma. �Combinatorial� means, according to Ziegler, no homology, no
continuous map, no approximation. From this point of view our proof has a little advantage:
it does not work by contradiction. This provides a new step in the direction of a constructive
proof of Dold's theorem, whose existence is an important question (see the discussion of Mark
de Longueville and Rade Zivaljevic in [1]). A constructive proof of Borsuk-Ulam theorem
was found by Freund and Todd in 1981 ([4]). Another one, proving also Fan's theorem
(Theorem 1), was proposed by Prescott and Su in 2005 ([9]).

2 Notations

We assume basic knowledge in algebraic topology. A good reference is the book of James
Munkres [8].

2.1 General notations

Zn is the set of integers modulo n.

Let S be a set, and suppose that Zn acts on S. We denote by νs the action corresponding
to s ∈ Zn. We denote ν := ν1. We have then νs = ν × ν × . . .× ν︸ ︷︷ ︸

s terms

= νs and in particular

ν0 = id.

2.2 Simplices, chains and cochains

The de�nitions of simplices, simplicial complexes, chains and cochains are assumed to be
known. We give here some speci�c or less well-known de�nitions and notations.

The join of two simplicial complexes K and L is denoted by K ∗ L and the join of K k
times by itself is denoted by K∗k.

(Zq)∗m is the (m − 1)-dimensional simplicial complex whose vertex set is the disjoint
union of m copies of Zq and whose simplices are the subsets of this disjoint union containing
at most one vertex of each copy. It is often denoted by Em−1Zq in the literature. A vertex
of (Zq)∗m is of the form (ε, j), with ε ∈ Zq and j ∈ {1, 2, . . . ,m}.

Let ck be a k-chain and ck be a k-cochain. We denote the value taken by ck at ck by
〈ck, ck〉. Moreover, we identify through 〈., .〉 chains and cochains.

Let G be a group acting on a topological space X. The action of G on X is said to be
free if every non-trivial element of G acts without �xed-point. In this case, we also say that
G acts freely on X.

Let G be a group acting on two sets X and Y . A map (or a labelling) f : X → Y is said
to be G-equivariant if f ◦ g = g ◦ f for any g ∈ G.

2.3 The standard complex

2.3.1 De�nition

The standard complex is de�ned in [5] for instance. Let S be a set. For i = 0, 1, 2. . . . let
Ei(S,G) be the free module over an abelian group G generated by (i+1)-tuples (x0, . . . , xi)
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with x0, . . . , xi ∈ S. Thus such (i + 1)-tuples form a basis of Ei(S,G) over G. There is a
unique homomorphism

∂ : Ei+1(S,G) → Ei(S,G)

such that

∂(x0, . . . , xi+1) =
i+1∑
j=0

(−1)j(x0, . . . , x̂j , . . . , xi+1),

where the symbol x̂j means that this term is to be omitted.
An element of Ei(S,G) is an (i + 1)-chain and can be written

∑
k λkσk, where the σk

are (i+ 1)-tuples of S, and the λk are taken in G.
We denote this complex C(S,G) and the corresponding coboundary map δ:

δ(x0, x1, . . . , xi) =
∑
a∈S

(
(a, x0, x1, . . . , xi) +

i−1∑
k=0

(−1)k+1(x0, x1, . . . , xk, a, xk+1, . . . , xi)

+(−1)i+1(x0, x1, . . . , xi, a)
)
.

A standard complex used throughout the paper is C(Zq,Zq): Ei(Zq,Zq) is the free module
over Zq generated by the elements of Zi+1

q . For instance,
(
(0, 1, 0) − (2, 2, 2) − (0, 2, 1)

)
∈

C(Z3,Z3) and ∂
(
(0, 1, 0)−(2, 2, 2)+(0, 2, 1)

)
= (0, 1)−(0, 0)+(1, 0)−(2, 2)+(2, 2)−(2, 2)+

(0, 2)− (0, 1) + (2, 1) = (2, 1) + (0, 2) + 2(2, 2) + (1, 0) + 2(0, 0).
As we use in this paper the elements of C(Zq,Zq) as cochains, we illustrate the action of

δ on one of these elements: for
(
(0, 2)− (0, 1)

)
∈ C(Z3,Z3), we have:

δ
(
(0, 2)− (0, 1)

)
= δ(0, 2)− δ(0, 1)

=
(
(0, 0, 2)+(1, 0, 2)+(2, 0, 2)− (0, 0, 2)− (0, 1, 2)− (0, 2, 2)+(0, 2, 0)+(0, 2, 1)+(0, 2, 2)

)
−(

(0, 0, 1) + (2, 0, 1) + (1, 0, 1)− (0, 0, 1)− (0, 2, 1)− (0, 1, 1) + (0, 1, 0) + (0, 1, 2) + (0, 1, 1)
)

=
(
(1, 0, 2) + (2, 0, 2) + 2(0, 1, 2) + (0, 2, 0) + (0, 2, 1)

)
+ 2

(
(2, 0, 1) + (1, 0, 1) + 2(0, 2, 1) +

(0, 1, 0) + (0, 1, 2)
)

= (1, 0, 2) + (2, 0, 2) + (0, 1, 2) + (0, 2, 0) + 2(0, 2, 1) + 2(2, 0, 1) + 2(1, 0, 1) + 2(0, 1, 0).

2.3.2 Actions on the standard complex

Moreover, if there is a group H acting on S, then H acts also on C(S,G): for νh an action
corresponding to an element h of H, we extend it as follows: νh# is the unique homomor-

phism Ei(S,G) → Ei(S,G) such that νh#(x0, . . . , xi) = (νhx0, . . . , νhxi). We de�ne ν#
h

similarly for cochains.

2.3.3 Concatenation

We introduce the following notation: for a (i + 1)-tuple (x0, x1, . . . , xi) ∈ Si+1 and cj ∈
Ej(S,G) a j-chain, we denote (x0, x1, . . . , xi, cj) the (i+j+1)-chain

∑
k λk(x0, x1, . . . , xi, σk)

where the σk are the (j + 1)-tuples such that cj =
∑

k λkσk.

3 Proof of Fan's theorem

This section is devoted to a new proof of Ky Fan's theorem (Theorem 1). A simple com-
binatorial proof can also be found in [7]. In the one presented here, we try to extract the
exact mechanism that explains this theorem. We distinguish four steps.

Let T be a symmetric triangulation of the d-sphere Sd and let λ : V (T) → {±1,±2, . . . ,±m}
be an antipodal labelling of the vertices of T such that no edge is labelled by −j,+j for some
j. λ commutes with ν, where ν is de�ned for any vertex v of T by ν(v) = −v.
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In the �rst step, using the de�nition of λ, we embed C(T,Z2) in the standard complex
C(Z2,Z2). In the second and third step, we build a sequence (hk)k∈{0,1,...,d} of k-chains
of C(T,Z2) and a sequence (ek)k∈{0,1,...,d} of k-cochains of C(Z2,Z2) which satisfy dual
relations. Finally, using this duality and an induction, we achieve the proof.

3.1 ψ# : C(T,Z2) → C(Z2,Z2)

We see λ as a simplicial map going from T into the (m−1)-dimensional simplicial complex C,
whose simplices are the subsets of {−1,+1,−2,+2, . . . ,−m,+m} containing no pair {−i,+i}
for some i ∈ {1, 2, . . . ,m} (such a complex is the boundary complex of the cross-polytope).

Let φ : x ∈ Z\{0} 7→ φ(x) ∈ Z2 where φ(x) = 1 if and only if x > 0. We de�ne
then the following chain map φ# : C(C,Z2) → C(Z2,Z2) for σ = {j0, . . . , jk} ∈ C with
|j0| < |j1| < . . . < |jk| by φ#(σ) = (φ(j0), φ(j1), . . . , φ(jk)) (checking that it is a chain map
is straightforward).

We de�ne ψ# := φ# ◦ λ#. It is a chain map going from the chain complex C(T,Z2) into
the standard complex C(Z2,Z2). Note that ψ# commutes with ν# (where ν : a ∈ Z2 7→
(a+ 1) ∈ Z2).

3.2 the �hemispheres�

It is easy to see that there is a sequence (hk)k∈{0,1,...,d} of k-chains in C(T,Z2) such that h0

is a vertex and such that
∂hk+1 = (id# + ν#)hk, (1)

for all k ∈ {0, 1, . . . , d− 1}. These k-chains can be seen as k-dimensional hemispheres of Sd.
There is an easy construction of them. We can also see their existence through an homology
argument: let h0 be any vertex; then

∂(id# + ν#)hk = (id# + ν#)∂h0 = 0

and there exists an h1 such that ∂h1 = (id#+ν#)h0 (the 0th homology group of the d-sphere
is 0); �nally, if hk exists, then

∂(id#+ν#)hk = (id#+ν#)∂hk = (id#+ν#)(id#+ν#)hk−1 = (id#+ν2
#)hk−1 = 2id#hk−1 = 0;

hence there exists an hk+1 such that ∂hk+1 = (id# + ν#)hk (the kth homology group of the
d-sphere is 0 for k ≤ d− 1).

3.3 the �co-hemispheres�

On the other side, we have for the standard complex C(Z2,Z2):

δ (0, 1, 0, 1, . . .)︸ ︷︷ ︸
k terms

= (0, 1, 0, 1, . . .)︸ ︷︷ ︸
k+1 terms

+(1, 0, 1, 0, . . .)︸ ︷︷ ︸
k+1 terms

,

which can be written
δek = (id# + ν#)ek+1, (2)

where ek = (0, 1, 0, 1, . . .)︸ ︷︷ ︸
k terms

and where ν : (ε0, ε1, . . . , εk) 7→ (ε0 +1, ε1 +1, . . . , εk +1) (counted

modulo 2). There is an obvious duality between equations (1) and (2). We call the ek

�co-hemispheres�.
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3.4 induction

We use now this symmetry to achieve the proof: we prove now the following property by
induction on k ≤ d:

〈ek, ψ#

(
(id# + ν#)hk

)
〉 = 1 mod 2.

It is true for k = 0: e0 = (0) and ψ#

(
(id# + ν#)h0

)
= (0) + (1).

If it is true for k ≥ 0, we have

〈ek+1, ψ#

(
(id# + ν#)hk+1

)
〉 = 〈(id# + ν#)ek+1, ψ#hk+1〉 = 〈δek, ψ#hk+1〉

= 〈ek, ψ#∂hk+1〉 = 〈ek, ψ#

(
(id# + ν#)hk

)
〉 = 1 mod 2.

This proves the property. For k = d, it means that there is at least one d-simplex σ such
that ψ#(σ) = (0, 1, 0, 1, . . .), which is exactly the statement of the theorem.

4 Proof of Zq-Fan theorem

In this section, we prove Theorem 2. We follow similar four steps.
Let q be an odd positive integer, let T be an equivariant triangulation of a d-dimensional

(d − 1)-connected free Zq-space and let λ : V (T) → Zq × {1, 2, . . . ,m} be an equivariant
labelling (if λ(v) = (ε, j), then λ(νsv) = (s + ε, j) for all s ∈ Zq) of the vertices of T such
that no edge is labelled by (ε, j),(ε′, j), with ε 6= ε′, for some j.

In the �rst step, using the de�nition of λ, we embed C(T,Z2) in the standard complex
C(Zq,Zq). In the second and third steps, we build a sequence (hk)k∈{0,1,...,d} of k-chains
in C(T,Zq) and a sequence (ek)k∈{0,1,...,d} of k-cochains in C(Zq,Zq) which satisfy dual
relations. Finally, using this duality and an induction, we achieve the proof.

4.1 ψ# : C(T,Zq) → C(Zq,Zq)

We see λ as a simplicial map going from T into the (m− 1)-dimensional simplicial complex
(Zq)∗m, whose simplices are the subsets of Zq×{1, 2, . . . ,m} containing no pair {(ε, j), (ε′, j)}
for some j ∈ {1, 2, . . . ,m} and some ε, ε′ ∈ Zq with ε 6= ε′.

We de�ne then the following chain map φ# : C((Zq)∗m,Zq) → C(Zq,Zq) for σ =
[(ε0, j0), . . . , (εk, jk)] ∈ (Zq)∗m with j0 < j1 < . . . < jk by φ#(σ) = (ε0, ε1, . . . , εk) (checking
that it is a chain map is straightforward).

We de�ne ψ# := φ# ◦ λ#. It is a chain map going from the chain complex C(T,Zq) into
the standard complex C(Zq,Zq). Note that ψ# commutes with the ν# (where ν : a ∈ Zq 7→
(a+ 1) ∈ Zq).

4.2 the �hemispheres�

It is not too hard to exhibit a sequence (hk)k∈{0,1,...,d} of k-chains in C(T,Zq) such that h0

is a vertex and such that, for l any integer ≥ 0:

∂h2l+1 = (id# + ν# + . . .+ νq−1
# )h2l,

∂h2l+2 = (ν# − ν−1
# )h2l+1.

(3)

We can also see their existence through an homology argument: let h0 be any vertex of
T; then

∂(id# + ν# + . . .+ νq−1
# )h0 = (id# + ν# + . . .+ νq−1

# )∂h0 = 0

and there exists an h1 such that ∂h1 = (id# + ν# + . . .+ νq−1
# )h0 (the 0th homology group

of T is 0: T is (d− 1)-connected); �nally, if h2l exists, then

∂(id#+ν#+. . .+νq−1
# )h2l = (id#+ν#+. . .+νq−1

# )∂h2l = (id#+ν#+. . .+νq−1
# )(ν#−ν−1

# )h2l−1 = 0;
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hence there exists an h2l+1 such that ∂h2l+1 = (id# + ν# + . . .+ νq−1
# )h2l,

and if h2l+1 exists, then

∂(ν# − ν−1
# )h2l+1 = (ν# − ν−1

# )∂h2l+1 = (ν# − ν−1
# )(id# + ν# + . . .+ νq−1

# )h2l = 0;

hence there exists an h2l+2 such that ∂h2l+2 = (ν#− ν−1
# )h2l+1 (the kth homology group of

T is 0 for k ≤ d− 1: T is (d− 1)-connected).

4.3 the �co-hemispheres�

Our aim is to �nd a sequence (ek) of elements of the standard complex C(Zq,Zq) playing
the same role than the ek in the proof of Theorem 1 above.

For the proof, it is enough to know that such a sequence exists (the construction of this
sequence is given in the Appendix - Lemma 2 - at the end of the paper), which satis�es
e0 = (0) and, for l any integer ≥ 0:

δe2l = (ν# − ν#−1)e2l+1,

δe2l+1 = (id# + ν# + . . .+ ν#q−1)e2l+2.
(4)

Again, the hk and the ek satisfy dual relations. We call the latter �co-hemispheres�.

4.4 induction

We use now this symmetry between equations (3) and (4) to achieve the proof: we prove
now the following property by induction on l ≤ d:

〈e2l, ψ#

(
(id# + ν# + . . .+ νq−1

# )h2l

)
〉 = (−1)l mod q

and
〈e2l+1, ψ#

(
(ν# − ν−1

# )h2l+1

)
〉 = (−1)l+1 mod q.

It is true for l = 0: ψ#

(
(id# + ν# + . . . + νq−1

# )h0

)
= (0) + (1) + . . . + (q − 1) and

〈e0, ψ#

(
(id# + ν# + . . .+ νq−1

# )h2l

)
〉 = 〈(0), (0) + (1) + . . .+ (q − 1)〉 = 1.

If it is true for l ≥ 0, we have:

〈e2l+1, ψ#

(
(ν# − ν−1

# )h2l+1

)
〉 = 〈(ν#−1 − ν#)e2l+1, ψ#h2l+1〉 = −〈δe2l, ψ#h2l+1〉

= −〈e2l, ψ#∂h2l+1〉 = −〈e2l, ψ#

(
(id# + ν# + . . .+ νq−1

# )h2l

)
〉 = (−1)l+1 mod q,

and

〈e2l+2, ψ#

(
(id#+ν#+. . .+νq−1

# )h2l+2

)
〉 = 〈(id#+ν#+. . .+ν#q−1)e2l+2, ψ#h2l+2〉 = 〈δe2l+1, ψ#h2l+2〉

= 〈e2l+1, ψ#∂h2l+2〉 = 〈e2l+1, ψ#

(
(ν# − ν−1

# )h2l+1

)
〉 = (−1)l+1 mod q.

This proves the property. For k = d, it means that there is at least one d-simplex σ such
that ψ#(σ) = (ε0, ε1, . . . , εd) with εi 6= εi+1 for i = 0, 1, . . . , d− 1 (in the ek, all k + 1-tuples
satisfy this property - see Lemma 1 in the Appendix), which is exactly the statement of the
theorem.
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5 Combinatorial proof of Dold's theorem

We recall Dold's theorem (proved by Dold in 1983 [2]):

Theorem 3 (Dold's theorem) Let X and Y be two simplicial complexes, which are free
Zn-space. If f : X → Y is a Zn-equivariant map between free Zn-spaces, then the dimension
of Y is larger than or equal to the connectivity of X.

It is not too hard to give an explicit construction (without using homology arguments) of
a sequence (hk)k∈{0,1,...,d} of k-chains in C(T,Zq), where T is any equivariant triangulation

of (Zp)∗(d+1), such that h0 is a vertex and such that, for l any integer ≥ 0:

∂h2l+1 = (id# + ν# + . . .+ νq−1
# )h2l,

∂h2l+2 = (ν# − ν−1
# )h2l+1.

(5)

The proof of Theorem 2 is combinatorial (no homology, no continuous map, no approxi-
mation) and does not work by contradiction.

By standard technics, to prove Theorem 3, it is su�cient to consider the case when n = p
is prime, X is an equivariant triangulation of (Zp)∗(d+1) and Y := (Zp)∗d, and to prove that
there is no equivariant simplicial map X → Y.

Thus Theorem 1 (for p = 2) and Theorem 2 (for p = q odd) together provide a purely
combinatorial proof of Theorem 3 without working by contradiction, because they imply
that if λ is a equivariant simplicial map X → (Zp)∗m then m > d.

6 Appendix: de�nition of the ek for Zq

6.1 De�nitions of C and (ek)

For simplicity, we write q = 2r + 1. We were not able to �nd a similar construction for q
even (except of course for q = 2).

We de�ne recursively the in�nite sequence (ek)k∈N of element of C(Zq,Z), where ek ∈
Ek(Zq,Z) (we de�ne ek with coe�cients in Z, but the relations they will satisfy will be true
for coe�cients in Zq too).

We �rst begin with e0 and e1:

e0 := (0).

e1 :=
r−1∑
j=0

j∑
i=0

(
(2i+ 1, 2r − 2j + 2i)− (2r − 2j + 2i, 2i+ 1)

)
.

We de�ne then the following application C : Ek(Zq,Z) → Ek+2(Zq,Z) by its value on
the natural basis:

C : (a0, . . . , ak) 7→ (a0, . . . , ak, ν
ak

# e1).

For k ≥ 2, we can now de�ne the rest of the in�nite sequence:

ek := C(ek−2).

This construction implies immediately the following property:

Lemma 1 Let k ≥ 0, and σ = (ε0, ε1, . . . , εk) ∈ Zk+1
q . If 〈ek, σ〉 6= 0, which means that σ

has a non-zero coe�cient is the formal sum ek, then εi 6= εi+1 for any i ∈ {0, 1, . . . , k − 1}.
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6.2 Examples for q = 3 and q = 5

Let us see for instance what it gives for q = 3 and q = 5.

For q = 3: e0 = (0),
e1 = (1, 2)− (2, 1),
e2 = (0, 1, 2)− (0, 2, 1),
e3 = (1, 2, 0, 1)− (1, 2, 1, 0)− (2, 1, 2, 0) + (2, 1, 0, 2),
e4 = (0, 1, 2, 0, 1)− (0, 1, 2, 1, 0)− (0, 2, 1, 2, 0) + (0, 2, 1, 0, 2), and so on.

For q = 5: e0 = (0),
e1 = (1, 2) + (3, 4) + (1, 4)− (2, 1)− (4, 3)− (4, 1),
e2 = (0, 1, 2) + (0, 3, 4) + (0, 1, 4)− (0, 2, 1)− (0, 4, 3)− (0, 4, 1),
e3 = (1, 2, 3, 4) + (1, 2, 0, 1) + (1, 2, 3, 1) − (1, 2, 4, 3) − (1, 2, 1, 0) − (1, 2, 1, 3) + (3, 4, 0, 1) +
(3, 4, 2, 3)+(3, 4, 0, 3)−(3, 4, 1, 0)−(3, 4, 3, 2)−(3, 4, 3, 0)+(1, 4, 0, 1)+(1, 4, 2, 3)+(1, 4, 0, 3)−
(1, 4, 1, 0)−(1, 4, 3, 2)−(1, 4, 3, 0)−(2, 1, 2, 3)−(2, 1, 4, 0)−(2, 1, 2, 0)+(2, 1, 3, 2)+(2, 1, 0, 4)+
(2, 1, 0, 2)−(4, 3, 4, 0)−(4, 3, 1, 2)−(4, 3, 4, 2)+(4, 3, 0, 4)+(4, 3, 2, 1)+(4, 3, 2, 4)−(4, 1, 2, 3)−
(4, 1, 4, 0)− (4, 1, 2, 0) + (4, 1, 3, 2) + (4, 1, 0, 4) + (4, 1, 0, 2),
e4 = (0, 1, 2, 3, 4) + (0, 1, 2, 0, 1) + (0, 1, 2, 3, 1) − (0, 1, 2, 4, 3) − (0, 1, 2, 1, 0) − (0, 1, 2, 1, 3) +
(0, 3, 4, 0, 1)+(0, 3, 4, 2, 3)+(0, 3, 4, 0, 3)−(0, 3, 4, 1, 0)−(0, 3, 4, 3, 2)−(0, 3, 4, 3, 0)+(0, 1, 4, 0, 1)+
(0, 1, 4, 2, 3)+(0, 1, 4, 0, 3)−(0, 1, 4, 1, 0)−(0, 1, 4, 3, 2)−(0, 1, 4, 3, 0)−(0, 2, 1, 2, 3)−(0, 2, 1, 4, 0)−
(0, 2, 1, 2, 0)+(0, 2, 1, 3, 2)+(0, 2, 1, 0, 4)+(0, 2, 1, 0, 2)−(0, 4, 3, 4, 0)−(0, 4, 3, 1, 2)−(0, 4, 3, 4, 2)+
(0, 4, 3, 0, 4)+(0, 4, 3, 2, 1)+(0, 4, 3, 2, 4)−(0, 4, 1, 2, 3)−(0, 4, 1, 4, 0)−(0, 4, 1, 2, 0)+(0, 4, 1, 3, 2)+
(0, 4, 1, 0, 4) + (0, 4, 1, 0, 2), and so on.

6.3 Induction property of (ek)

We prove now the equations (4):

Lemma 2 For l ≥ 0, we have:

δe2l = (ν# − ν#−1)e2l+1,

δe2l+1 = (id# + ν# + . . .+ ν#q−1)e2l+2.

Proof: We prove �rst a serie of claims and �nally, prove the equations by induction.

CLAIM 1:
δ
(
(2) + (4) + . . .+ (2r)

)
= (id# − ν#)e1. (6)

PROOF OF CLAIM 1: According to the de�nition of e1, if a σ is such that 〈e1, σ〉 6= 0,
then σ is of the form (y, x) or (x, y) with x even, y odd and 0 ≤ y < x ≤ 2r. Similarly, if
σ is such that 〈ν#e1, σ〉 6= 0, then σ is either of the form (y, x) or (x, y) with x even ≥ 2, y
odd and 0 ≤ x < y ≤ 2r, or of the form (0, x) or (x, 0) with x even or 0 < x ≤ 2r.

Hence, if σ is such that 〈(id# − ν#)e1, σ〉 6= 0, then σ is of the form (x, y) or (y, x) with
x ∈ X := {2, 4, . . . , 2r} and y ∈ Y := {0} ∪ {1, 3, . . . , 2r − 1}. For x ∈ X and y ∈ Y , the
coe�cient of (x, y) in (id# − ν#)e1 is −1 and the coe�cient of (y, x) is +1. The equality
δ
(
(2) + (4) + . . .+ (2r)

)
= (id# − ν#)e1 follows.

CLAIM 2:
δe1 =

∑
j∈Zq

ν#je2. (7)

PROOF OF CLAIM 2: Applying δ on both sides of equation (6), we get: δe1 = ν#(δe1). It
implies that δe1 can be written

∑
j∈Zq

ν#j(0, h), where h ∈ E1(Zq,Z). As the couples (x, y)
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in e1 never begin with a 0, we get (0, e1) while keeping from δe1 only the couples beginning
with a 0. Hence h = e1, and we have indeed δe1 =

∑
j∈Zq

ν#je2, since e2 = (0, e1).

CLAIM 3: ν# ◦ C = C ◦ ν#.

PROOF OF CLAIM 3: straightforward.

CLAIM 4:
δ ◦ C = C ◦ δ. (8)

PROOF OF CLAIM 4: Let σ = (a0, . . . , ak) be a (k + 1)-tuple. We have

(δ ◦ C)(σ) = δ
(
σ, (ν#ake1)

)
=

(
(δσ), (ν#ake1)

)
+ (−1)k+1

(
σ, δ(ν#ake1)

)
− (−1)k+1

∑
j∈Zq

(
σ, j, (ν#ake1)

)
,

et

(C ◦ δ)(σ) = C(δσ)
=

(
(δσ), (ν#ake1)

)
+ (−1)k+1

∑
j∈Zq

(
σ, j, (ν#je1)

)
− (−1)k+1

∑
j∈Zq

(
σ, j, (ν#ake1)

)
.

Hence, (δ◦C)(σ)−(C◦δ)(σ) = (−1)k+1
(
σ, δ(ν#ake1)

)
−(−1)k+1

∑
j∈Zq

(σ, j, ν#je1). But,
according to equation (7), δ(ν#ake1)−

∑
j∈Zq

(j, ν#je1) = ν#ak(δe1)−
∑

j∈Zq
ν#j(0, e1) = 0

(we have e2 = (0, e1)). Thus (δ ◦ C)(σ)− (C ◦ δ)(σ) = 0.

Proof of Lemma 2: By induction on l.

For l = 0, we have δe0 = (ν#−ν#−1)e1: indeed, let c := (2)+(4)+. . .+(2r); according to
equation (6), we have δc = (id#−ν#)e1; we have also, δ

(
(0)+(1)+ . . .+(2r−1)+(2r)

)
= 0

(the checking is straightforward); hence, δ(0) + δc + δν#−1c = 0; and thus δ(0) = (ν# −
ν#−1)e1. Claim 2 is the relation: δe1 = (id# + ν# + · · ·+ ν#q−1)e2. Lemma 2 is proved for
l = 0.

Let's assume that Lemma 2 is proved for l ≥ 0. According to Claim 3 and Claim 4, we
have then:

δe2l+2 = (δ ◦ C)(e2l) = (C ◦ δ)(e2l) = C
(
(ν# − ν#−1)e2l+1

)
= (ν# − ν#−1)e2l+3

and

δe2l+3 = (δ◦C)(e2l+1) = (C◦δ)(e2l+1) = C
( ∑

j∈Zq

ν#je2l+2

)
=

∑
j∈Zq

ν#je2l+4 = (id#+ν#+. . .+ν#q−1)e2l+4.
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