A \mathbb{Z}_q -Fan theorem

Frédéric Meunier*

December 11, 2006

Abstract

In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam theorem stating that there is no \mathbb{Z}_2 -equivariant map from the *d*-dimensional sphere S^d to the (d-1)-dimensional sphere S^{d-1} . The aim of the present paper is to provide the same kind of combinatorial theorem for Dold's theorem, which is a generalization of the Borsuk-Ulam theorem when \mathbb{Z}_2 is replaced by \mathbb{Z}_q , and the spheres replaced by *d*-dimensional (d-1)-connected free \mathbb{Z}_q -spaces. It provides a combinatorial proof of Dold's theorem. Moreover, the proof does not work by contradiction.

Key Words: combinatorial proof; Dold's theorem; Fan's theorem; labelling; Tucker's lemma; triangulation.

1 Introduction

Ky Fan gave ([3]) in 1952 a combinatorial generalization of the Borsuk-Ulam theorem:

Theorem 1 (Fan's theorem) Let T be a symmetric triangulation of the d-sphere (if $\sigma \in T$ then $-\sigma \in T$) and let $\lambda : V(T) \rightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be an antipodal labelling $(\lambda(-v) = -\lambda(v))$ of the vertices of T such that no edge is labelled by -j,+j for some j (there is no antipodal edge). Then we have at least one simplex in T labelled with $-j_0, +j_1, \ldots, (-1)^{d+1}j_d$ where $j_0 < j_1 < \ldots < j_d$.

In combinatorics, a continuous version of Fan's theorem is used in particular in the study of Kneser graphs (see [6],[10],[11]).

Since there is a generalization of Borsuk-Ulam theorem with other free actions (\mathbb{Z}_q -actions) than the central symmetry (\mathbb{Z}_2 -action), namely Dold's theorem, a natural question is whether there is a generalization of Fan's theorem using q "signs" instead of the 2 signs -, + and leading to a purely combinatorial proof of Dold's theorem.

The present paper gives such a " \mathbb{Z}_q -Fan theorem". An equivariant triangulation T of a free \mathbb{Z}_q -space is a triangulation such that if $\sigma \in \mathsf{T}$, then $\nu_s \sigma \in \mathsf{T}$ for all $s \in \mathbb{Z}_q$ (ν_s is the homeomorphism corresponding to the action of $s \in \mathbb{Z}_q$ on the \mathbb{Z}_q -space).

Theorem 2 (\mathbb{Z}_q -Fan's theorem) Let q be an odd positive integer, let T be an equivariant triangulation of a d-dimensional (d-1)-connected free \mathbb{Z}_q -space and let $\lambda : V(\mathsf{T}) \to \mathbb{Z}_q \times \{1, 2, \ldots, m\}$ be a equivariant labelling (if $\lambda(v) = (\epsilon, j)$, then $\lambda(\nu_s v) = (s + \epsilon, j)$ - counted modulo q - for all $s \in \mathbb{Z}_q$) of the vertices of T such that no edge is labelled by $(\epsilon, j), (\epsilon', j)$, with $\epsilon \neq \epsilon'$, for some j. Then we have at least one simplex in T labelled with $(\epsilon_0, j_0), (\epsilon_1, j_1), \ldots, (\epsilon_d, j_d)$ where $\epsilon_i \neq \epsilon_{i+1}$ for all $i \in \{0, 1, \ldots, d-1\}$, and $j_0 < j_1 < \ldots < j_d$.

^{*}Algorithm Project, INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France E-mail: frederic.meunier@inria.fr

It is not clear whether this theorem is also true for q even.

The plan is the following: First, we reprove Fan's theorem with the same kind of technics we use in the rest of the paper (Section 3). Then, following the same scheme, we prove the \mathbb{Z}_q -Fan theorem (Section 4). Finally, in the Section 5, we explain how this proof provides a new combinatorial proof of Dold's theorem, after the one found by Günter M. Ziegler in [12]: the \mathbb{Z}_p -Tucker lemma. "Combinatorial" means, according to Ziegler, no homology, no continuous map, no approximation. From this point of view our proof has a little advantage: it does not work by contradiction. This provides a new step in the direction of a constructive proof of Dold's theorem, whose existence is an important question (see the discussion of Mark de Longueville and Rade Zivaljevic in [1]). A constructive proof of Borsuk-Ulam theorem was found by Freund and Todd in 1981 ([4]). Another one, proving also Fan's theorem (Theorem 1), was proposed by Prescott and Su in 2005 ([9]).

2 Notations

We assume basic knowledge in algebraic topology. A good reference is the book of James Munkres [8].

2.1 General notations

 \mathbb{Z}_n is the set of integers modulo n.

Let S be a set, and suppose that \mathbb{Z}_n acts on S. We denote by ν_s the action corresponding to $s \in \mathbb{Z}_n$. We denote $\nu := \nu_1$. We have then $\nu_s = \underbrace{\nu \times \nu \times \ldots \times \nu}_{s \text{ terms}} = \nu^s$ and in particular

 $\nu^0 = \mathrm{id}.$

2.2 Simplices, chains and cochains

The definitions of simplices, simplicial complexes, chains and cochains are assumed to be known. We give here some specific or less well-known definitions and notations.

The join of two simplicial complexes K and L is denoted by K * L and the join of K k times by itself is denoted by K^{*k} .

 $(\mathbb{Z}_q)^{*m}$ is the (m-1)-dimensional simplicial complex whose vertex set is the disjoint union of m copies of \mathbb{Z}_q and whose simplices are the subsets of this disjoint union containing at most one vertex of each copy. It is often denoted by $E_{m-1}\mathbb{Z}_q$ in the literature. A vertex of $(\mathbb{Z}_q)^{*m}$ is of the form (ϵ, j) , with $\epsilon \in \mathbb{Z}_q$ and $j \in \{1, 2, \ldots, m\}$.

Let c_k be a k-chain and c^k be a k-cochain. We denote the value taken by c^k at c_k by $\langle c^k, c_k \rangle$. Moreover, we identify through $\langle ., . \rangle$ chains and cochains.

Let G be a group acting on a topological space X. The action of G on X is said to be free if every non-trivial element of G acts without fixed-point. In this case, we also say that G acts freely on X.

Let G be a group acting on two sets X and Y. A map (or a labelling) $f: X \to Y$ is said to be G-equivariant if $f \circ g = g \circ f$ for any $g \in G$.

2.3 The standard complex

2.3.1 Definition

The standard complex is defined in [5] for instance. Let S be a set. For i = 0, 1, 2, ... let $E_i(S, G)$ be the free module over an abelian group G generated by (i+1)-tuples $(x_0, ..., x_i)$

with $x_0, \ldots, x_i \in S$. Thus such (i + 1)-tuples form a basis of $E_i(S, G)$ over G. There is a unique homomorphism

$$\partial: E_{i+1}(S,G) \to E_i(S,G)$$

such that

$$\partial(x_0, \dots, x_{i+1}) = \sum_{j=0}^{i+1} (-1)^j (x_0, \dots, \hat{x}_j, \dots, x_{i+1}),$$

where the symbol \hat{x}_j means that this term is to be omitted.

An element of $E_i(S,G)$ is an (i+1)-chain and can be written $\sum_k \lambda_k \sigma_k$, where the σ_k are (i+1)-tuples of S, and the λ_k are taken in G.

We denote this complex $\mathcal{C}(S,G)$ and the corresponding coboundary map δ :

$$\delta(x_0, x_1, \dots, x_i) = \sum_{a \in S} \left((a, x_0, x_1, \dots, x_i) + \sum_{k=0}^{i-1} (-1)^{k+1} (x_0, x_1, \dots, x_k, a, x_{k+1}, \dots, x_i) \right)$$

$$+(-1)^{i+1}(x_0,x_1,\ldots,x_i,a))$$

A standard complex used throughout the paper is $\mathcal{C}(\mathbb{Z}_q, \mathbb{Z}_q)$: $E_i(\mathbb{Z}_q, \mathbb{Z}_q)$ is the free module over \mathbb{Z}_q generated by the elements of \mathbb{Z}_q^{i+1} . For instance, $((0, 1, 0) - (2, 2, 2) - (0, 2, 1)) \in \mathcal{C}(\mathbb{Z}_3, \mathbb{Z}_3)$ and $\partial((0, 1, 0) - (2, 2, 2) + (0, 2, 1)) = (0, 1) - (0, 0) + (1, 0) - (2, 2) + (2, 2) - (2, 2) + (0, 2) - (0, 1) + (2, 1) = (2, 1) + (0, 2) + 2(2, 2) + (1, 0) + 2(0, 0).$

As we use in this paper the elements of $\mathcal{C}(\mathbb{Z}_q, \mathbb{Z}_q)$ as cochains, we illustrate the action of δ on one of these elements: for $((0,2) - (0,1)) \in \mathcal{C}(\mathbb{Z}_3, \mathbb{Z}_3)$, we have:

$$\begin{split} &\delta\big((0,2)-(0,1)\big) = \delta(0,2) - \delta(0,1) \\ &= \big((0,0,2)+(1,0,2)+(2,0,2)-(0,0,2)-(0,1,2)-(0,2,2)+(0,2,0)+(0,2,1)+(0,2,2)\big) - \\ &\big((0,0,1)+(2,0,1)+(1,0,1)-(0,0,1)-(0,2,1)-(0,1,1)+(0,1,0)+(0,1,2)+(0,1,1)\big) \\ &= \big((1,0,2)+(2,0,2)+2(0,1,2)+(0,2,0)+(0,2,1)\big) + 2\big((2,0,1)+(1,0,1)+2(0,2,1)+(0,1,0)+(0,1,2)\big) \\ &= (1,0,2)+(2,0,2)+(0,1,2)+(0,2,0)+2(0,2,1)+2(2,0,1)+2(1,0,1)+2(0,1,0). \end{split}$$

2.3.2 Actions on the standard complex

Moreover, if there is a group H acting on S, then H acts also on $\mathcal{C}(S,G)$: for ν_h an action corresponding to an element h of H, we extend it as follows: $\nu_{h\#}$ is the unique homomorphism $E_i(S,G) \to E_i(S,G)$ such that $\nu_{h\#}(x_0,\ldots,x_i) = (\nu_h x_0,\ldots,\nu_h x_i)$. We define $\nu_h^{\#}$ similarly for cochains.

2.3.3 Concatenation

We introduce the following notation: for a (i + 1)-tuple $(x_0, x_1, \ldots, x_i) \in S^{i+1}$ and $c_j \in E_j(S, G)$ a *j*-chain, we denote $(x_0, x_1, \ldots, x_i, c_j)$ the (i+j+1)-chain $\sum_k \lambda_k(x_0, x_1, \ldots, x_i, \sigma_k)$ where the σ_k are the (j + 1)-tuples such that $c_j = \sum_k \lambda_k \sigma_k$.

3 Proof of Fan's theorem

This section is devoted to a new proof of Ky Fan's theorem (Theorem 1). A simple combinatorial proof can also be found in [7]. In the one presented here, we try to extract the exact mechanism that explains this theorem. We distinguish four steps.

Let T be a symmetric triangulation of the *d*-sphere S^d and let $\lambda : V(\mathsf{T}) \to \{\pm 1, \pm 2, \ldots, \pm m\}$ be an antipodal labelling of the vertices of T such that no edge is labelled by -j, +j for some j. λ commutes with ν , where ν is defined for any vertex v of T by $\nu(v) = -v$. In the first step, using the definition of λ , we embed $\mathcal{C}(\mathsf{T},\mathbb{Z}_2)$ in the standard complex $\mathcal{C}(\mathbb{Z}_2,\mathbb{Z}_2)$. In the second and third step, we build a sequence $(h_k)_{k\in\{0,1,\ldots,d\}}$ of k-chains of $\mathcal{C}(\mathsf{T},\mathbb{Z}_2)$ and a sequence $(e_k)_{k\in\{0,1,\ldots,d\}}$ of k-cochains of $\mathcal{C}(\mathbb{Z}_2,\mathbb{Z}_2)$ which satisfy dual relations. Finally, using this duality and an induction, we achieve the proof.

3.1
$$\psi_{\#} : \mathcal{C}(\mathsf{T}, \mathbb{Z}_2) \to \mathcal{C}(\mathbb{Z}_2, \mathbb{Z}_2)$$

We see λ as a simplicial map going from T into the (m-1)-dimensional simplicial complex C, whose simplices are the subsets of $\{-1, +1, -2, +2, \ldots, -m, +m\}$ containing no pair $\{-i, +i\}$ for some $i \in \{1, 2, \ldots, m\}$ (such a complex is the *boundary complex of the cross-polytope*).

Let $\phi : x \in \mathbb{Z} \setminus \{0\} \mapsto \phi(x) \in \mathbb{Z}_2$ where $\phi(x) = 1$ if and only if x > 0. We define then the following chain map $\phi_{\#} : \mathcal{C}(\mathsf{C},\mathbb{Z}_2) \to \mathcal{C}(\mathbb{Z}_2,\mathbb{Z}_2)$ for $\sigma = \{j_0,\ldots,j_k\} \in \mathsf{C}$ with $|j_0| < |j_1| < \ldots < |j_k|$ by $\phi_{\#}(\sigma) = (\phi(j_0), \phi(j_1), \ldots, \phi(j_k))$ (checking that it is a chain map is straightforward).

We define $\psi_{\#} := \phi_{\#} \circ \lambda_{\#}$. It is a chain map going from the chain complex $\mathcal{C}(\mathsf{T}, \mathbb{Z}_2)$ into the standard complex $\mathcal{C}(\mathbb{Z}_2, \mathbb{Z}_2)$. Note that $\psi_{\#}$ commutes with $\nu_{\#}$ (where $\nu : a \in \mathbb{Z}_2 \mapsto$ $(a+1) \in \mathbb{Z}_2$).

3.2 the "hemispheres"

It is easy to see that there is a sequence $(h_k)_{k \in \{0,1,\dots,d\}}$ of k-chains in $\mathcal{C}(\mathsf{T},\mathbb{Z}_2)$ such that h_0 is a vertex and such that

$$\partial h_{k+1} = (\mathrm{id}_\# + \nu_\#)h_k,\tag{1}$$

for all $k \in \{0, 1, ..., d-1\}$. These k-chains can be seen as k-dimensional hemispheres of S^d . There is an easy construction of them. We can also see their existence through an homology argument: let h_0 be any vertex; then

$$\partial (\mathrm{id}_{\#} + \nu_{\#})h_k = (\mathrm{id}_{\#} + \nu_{\#})\partial h_0 = 0$$

and there exists an h_1 such that $\partial h_1 = (id_\# + \nu_\#)h_0$ (the 0th homology group of the *d*-sphere is 0); finally, if h_k exists, then

$$\partial(\mathrm{id}_{\#}+\nu_{\#})h_{k} = (\mathrm{id}_{\#}+\nu_{\#})\partial h_{k} = (\mathrm{id}_{\#}+\nu_{\#})(\mathrm{id}_{\#}+\nu_{\#})h_{k-1} = (\mathrm{id}_{\#}+\nu_{\#}^{2})h_{k-1} = 2\mathrm{id}_{\#}h_{k-1} = 0$$

hence there exists an h_{k+1} such that $\partial h_{k+1} = (\mathrm{id}_{\#} + \nu_{\#})h_k$ (the kth homology group of the *d*-sphere is 0 for $k \leq d-1$).

3.3 the "co-hemispheres"

On the other side, we have for the standard complex $\mathcal{C}(\mathbb{Z}_2,\mathbb{Z}_2)$:

$$\delta \underbrace{(0,1,0,1,\ldots)}_{k \text{ terms}} = \underbrace{(0,1,0,1,\ldots)}_{k+1 \text{ terms}} + \underbrace{(1,0,1,0,\ldots)}_{k+1 \text{ terms}},$$

which can be written

$$\delta e_k = (\mathrm{id}^\# + \nu^\#) e_{k+1},\tag{2}$$

where $e_k = \underbrace{(0, 1, 0, 1, \ldots)}_{k \text{ terms}}$ and where $\nu : (\epsilon_0, \epsilon_1, \ldots, \epsilon_k) \mapsto (\epsilon_0 + 1, \epsilon_1 + 1, \ldots, \epsilon_k + 1)$ (counted

modulo 2). There is an obvious duality between equations (1) and (2). We call the e_k "co-hemispheres".

3.4 induction

We use now this symmetry to achieve the proof: we prove now the following property by induction on $k \leq d$:

$$\langle e_k, \psi_\# \left((\mathrm{id}_\# + \nu_\#) h_k \right) \rangle = 1 \mod 2.$$

It is true for k = 0: $e_0 = (0)$ and $\psi_{\#}((\mathrm{id}_{\#} + \nu_{\#})h_0) = (0) + (1)$. If it is true for $k \ge 0$, we have

$$\langle e_{k+1}, \psi_{\#} \big((\mathrm{id}_{\#} + \nu_{\#}) h_{k+1} \big) \rangle = \langle (\mathrm{id}^{\#} + \nu^{\#}) e_{k+1}, \psi_{\#} h_{k+1} \rangle = \langle \delta e_k, \psi_{\#} h_{k+1} \rangle$$
$$= \langle e_k, \psi_{\#} \partial h_{k+1} \rangle = \langle e_k, \psi_{\#} \big((\mathrm{id}_{\#} + \nu_{\#}) h_k \big) \rangle = 1 \mod 2.$$

This proves the property. For k = d, it means that there is at least one *d*-simplex σ such that $\psi_{\#}(\sigma) = (0, 1, 0, 1, ...)$, which is exactly the statement of the theorem.

4 Proof of \mathbb{Z}_q -Fan theorem

In this section, we prove Theorem 2. We follow similar four steps.

Let q be an odd positive integer, let T be an equivariant triangulation of a d-dimensional (d-1)-connected free \mathbb{Z}_q -space and let $\lambda : V(\mathsf{T}) \to \mathbb{Z}_q \times \{1, 2, \ldots, m\}$ be an equivariant labelling (if $\lambda(v) = (\epsilon, j)$, then $\lambda(\nu_s v) = (s + \epsilon, j)$ for all $s \in \mathbb{Z}_q$) of the vertices of T such that no edge is labelled by $(\epsilon, j), (\epsilon', j)$, with $\epsilon \neq \epsilon'$, for some j.

In the first step, using the definition of λ , we embed $\mathcal{C}(\mathsf{T},\mathbb{Z}_2)$ in the standard complex $\mathcal{C}(\mathbb{Z}_q,\mathbb{Z}_q)$. In the second and third steps, we build a sequence $(h_k)_{k\in\{0,1,\ldots,d\}}$ of k-chains in $\mathcal{C}(\mathsf{T},\mathbb{Z}_q)$ and a sequence $(e_k)_{k\in\{0,1,\ldots,d\}}$ of k-cochains in $\mathcal{C}(\mathbb{Z}_q,\mathbb{Z}_q)$ which satisfy dual relations. Finally, using this duality and an induction, we achieve the proof.

4.1 $\psi_{\#}: \mathcal{C}(\mathsf{T}, \mathbb{Z}_q) \to \mathcal{C}(\mathbb{Z}_q, \mathbb{Z}_q)$

We see λ as a simplicial map going from T into the (m-1)-dimensional simplicial complex $(\mathbb{Z}_q)^{*m}$, whose simplices are the subsets of $\mathbb{Z}_q \times \{1, 2, \ldots, m\}$ containing no pair $\{(\epsilon, j), (\epsilon', j)\}$ for some $j \in \{1, 2, \ldots, m\}$ and some $\epsilon, \epsilon' \in \mathbb{Z}_q$ with $\epsilon \neq \epsilon'$.

We define then the following chain map $\phi_{\#}$: $\mathcal{C}((\mathbb{Z}_q)^{*m}, \mathbb{Z}_q) \to \mathcal{C}(\mathbb{Z}_q, \mathbb{Z}_q)$ for $\sigma = [(\epsilon_0, j_0), \ldots, (\epsilon_k, j_k)] \in (\mathbb{Z}_q)^{*m}$ with $j_0 < j_1 < \ldots < j_k$ by $\phi_{\#}(\sigma) = (\epsilon_0, \epsilon_1, \ldots, \epsilon_k)$ (checking that it is a chain map is straightforward).

We define $\psi_{\#} := \phi_{\#} \circ \lambda_{\#}$. It is a chain map going from the chain complex $\mathcal{C}(\mathsf{T}, \mathbb{Z}_q)$ into the standard complex $\mathcal{C}(\mathbb{Z}_q, \mathbb{Z}_q)$. Note that $\psi_{\#}$ commutes with the $\nu_{\#}$ (where $\nu : a \in \mathbb{Z}_q \mapsto$ $(a+1) \in \mathbb{Z}_q)$.

4.2 the "hemispheres"

It is not too hard to exhibit a sequence $(h_k)_{k \in \{0,1,\dots,d\}}$ of k-chains in $\mathcal{C}(\mathsf{T},\mathbb{Z}_q)$ such that h_0 is a vertex and such that, for l any integer ≥ 0 :

$$\partial h_{2l+1} = (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_{2l}, \partial h_{2l+2} = (\nu_{\#} - \nu_{\#}^{-1})h_{2l+1}.$$
(3)

We can also see their existence through an homology argument: let h_0 be any vertex of T; then

$$\partial(\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_0 = (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})\partial h_0 = 0$$

and there exists an h_1 such that $\partial h_1 = (\mathrm{id}_\# + \nu_\# + \ldots + \nu_\#^{q-1})h_0$ (the 0th homology group of T is 0: T is (d-1)-connected); finally, if h_{2l} exists, then

$$\partial (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) h_{2l} = (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) \partial h_{2l} = (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) (\nu_{\#} - \nu_{\#}^{-1}) h_{2l-1} = 0$$

hence there exists an h_{2l+1} such that $\partial h_{2l+1} = (\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_{2l}$, and if h_{2l+1} exists, then

$$\partial(\nu_{\#} - \nu_{\#}^{-1})h_{2l+1} = (\nu_{\#} - \nu_{\#}^{-1})\partial h_{2l+1} = (\nu_{\#} - \nu_{\#}^{-1})(\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_{2l} = 0;$$

hence there exists an h_{2l+2} such that $\partial h_{2l+2} = (\nu_{\#} - \nu_{\#}^{-1})h_{2l+1}$ (the kth homology group of T is 0 for $k \leq d-1$: T is (d-1)-connected).

the "co-hemispheres" 4.3

Our aim is to find a sequence (e_k) of elements of the standard complex $\mathcal{C}(\mathbb{Z}_q,\mathbb{Z}_q)$ playing the same role than the e_k in the proof of Theorem 1 above.

For the proof, it is enough to know that such a sequence exists (the construction of this sequence is given in the Appendix - Lemma 2 - at the end of the paper), which satisfies $e_0 = (0)$ and, for l any integer ≥ 0 :

$$\delta e_{2l} = (\nu^{\#} - \nu^{\#-1})e_{2l+1},$$

$$\delta e_{2l+1} = (\mathrm{id}^{\#} + \nu^{\#} + \dots + \nu^{\#q-1})e_{2l+2}.$$
(4)

Again, the h_k and the e_k satisfy dual relations. We call the latter "co-hemispheres".

4.4 induction

We use now this symmetry between equations (3) and (4) to achieve the proof: we prove now the following property by induction on $l \leq d$:

$$\langle e_{2l}, \psi_{\#} ((\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_{2l}) \rangle = (-1)^l \mod q$$

and

$$\langle e_{2l+1}, \psi_{\#} \left((\nu_{\#} - \nu_{\#}^{-1}) h_{2l+1} \right) \rangle = (-1)^{l+1} \mod q_{\#}$$

It is true for l = 0: $\psi_{\#} \left((\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) h_0 \right) = (0) + (1) + \ldots + (q-1)$ and $\langle e_0, \psi_{\#} \left((\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) h_{2l} \right) \rangle = \langle (0), (0) + (1) + \ldots + (q-1) \rangle = 1.$ If it is true for $l \ge 0$, we have:

$$\langle e_{2l+1}, \psi_{\#} \left((\nu_{\#} - \nu_{\#}^{-1})h_{2l+1} \right) \rangle = \langle (\nu^{\#-1} - \nu^{\#})e_{2l+1}, \psi_{\#}h_{2l+1} \rangle = -\langle \delta e_{2l}, \psi_{\#}h_{2l+1} \rangle$$

= $-\langle e_{2l}, \psi_{\#}\partial h_{2l+1} \rangle = -\langle e_{2l}, \psi_{\#} \left((\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1})h_{2l} \right) \rangle = (-1)^{l+1} \mod q,$

and

$$\langle e_{2l+2}, \psi_{\#} \left((\mathrm{id}_{\#} + \nu_{\#} + \ldots + \nu_{\#}^{q-1}) h_{2l+2} \right) \rangle = \langle (\mathrm{id}^{\#} + \nu^{\#} + \ldots + \nu^{\#q-1}) e_{2l+2}, \psi_{\#} h_{2l+2} \rangle = \langle \delta e_{2l+1}, \psi_{\#} h_{2l+2} \rangle$$

$$= \langle e_{2l+1}, \psi_{\#} \partial h_{2l+2} \rangle = \langle e_{2l+1}, \psi_{\#} \left((\nu_{\#} - \nu_{\#}^{-1}) h_{2l+1} \right) \rangle = (-1)^{l+1} \mod q.$$

This proves the property. For k = d, it means that there is at least one d-simplex σ such that $\psi_{\#}(\sigma) = (\epsilon_0, \epsilon_1, \dots, \epsilon_d)$ with $\epsilon_i \neq \epsilon_{i+1}$ for $i = 0, 1, \dots, d-1$ (in the e_k , all k + 1-tuples satisfy this property - see Lemma 1 in the Appendix), which is exactly the statement of the theorem.

5 Combinatorial proof of Dold's theorem

We recall Dold's theorem (proved by Dold in 1983 [2]):

Theorem 3 (Dold's theorem) Let X and Y be two simplicial complexes, which are free \mathbb{Z}_n -space. If $f : X \to Y$ is a \mathbb{Z}_n -equivariant map between free \mathbb{Z}_n -spaces, then the dimension of Y is larger than or equal to the connectivity of X.

It is not too hard to give an explicit construction (without using homology arguments) of a sequence $(h_k)_{k \in \{0,1,\ldots,d\}}$ of k-chains in $\mathcal{C}(\mathsf{T},\mathbb{Z}_q)$, where T is any equivariant triangulation of $(\mathbb{Z}_p)^{*(d+1)}$, such that h_0 is a vertex and such that, for l any integer ≥ 0 :

$$\partial h_{2l+1} = (\mathrm{id}_{\#} + \nu_{\#} + \dots + \nu_{\#}^{q-1})h_{2l}, \partial h_{2l+2} = (\nu_{\#} - \nu_{\#}^{-1})h_{2l+1}.$$
(5)

The proof of Theorem 2 is combinatorial (no homology, no continuous map, no approximation) and does not work by contradiction.

By standard technics, to prove Theorem 3, it is sufficient to consider the case when n = p is prime, X is an equivariant triangulation of $(\mathbb{Z}_p)^{*(d+1)}$ and $Y := (\mathbb{Z}_p)^{*d}$, and to prove that there is no equivariant simplicial map $X \to Y$.

Thus Theorem 1 (for p = 2) and Theorem 2 (for p = q odd) together provide a purely combinatorial proof of Theorem 3 without working by contradiction, because they imply that if λ is a equivariant simplicial map $\mathsf{X} \to (\mathbb{Z}_p)^{*m}$ then m > d.

6 Appendix: definition of the e_k for \mathbb{Z}_q

6.1 Definitions of C and (e_k)

For simplicity, we write q = 2r + 1. We were not able to find a similar construction for q even (except of course for q = 2).

We define recursively the infinite sequence $(e_k)_{k\in\mathbb{N}}$ of element of $\mathcal{C}(\mathbb{Z}_q,\mathbb{Z})$, where $e_k \in E_k(\mathbb{Z}_q,\mathbb{Z})$ (we define e_k with coefficients in \mathbb{Z} , but the relations they will satisfy will be true for coefficients in \mathbb{Z}_q too).

We first begin with e_0 and e_1 :

$$e_0 := (0).$$

$$e_1 := \sum_{j=0}^{r-1} \sum_{i=0}^{j} \left((2i+1, 2r-2j+2i) - (2r-2j+2i, 2i+1) \right).$$

We define then the following application $C : E_k(\mathbb{Z}_q, \mathbb{Z}) \to E_{k+2}(\mathbb{Z}_q, \mathbb{Z})$ by its value on the natural basis:

$$C: (a_0,\ldots,a_k) \mapsto (a_0,\ldots,a_k,\nu_{\#}^{a_k}e_1).$$

For $k \geq 2$, we can now define the rest of the infinite sequence:

$$e_k := C(e_{k-2}).$$

This construction implies immediately the following property:

Lemma 1 Let $k \ge 0$, and $\sigma = (\epsilon_0, \epsilon_1, \ldots, \epsilon_k) \in \mathbb{Z}_q^{k+1}$. If $\langle e_k, \sigma \rangle \ne 0$, which means that σ has a non-zero coefficient is the formal sum e_k , then $\epsilon_i \ne \epsilon_{i+1}$ for any $i \in \{0, 1, \ldots, k-1\}$.

6.2 Examples for q = 3 and q = 5

Let us see for instance what it gives for q = 3 and q = 5.

For q = 3: $e_0 = (0)$, $e_1 = (1, 2) - (2, 1)$, $e_2 = (0, 1, 2) - (0, 2, 1)$, $e_3 = (1, 2, 0, 1) - (1, 2, 1, 0) - (2, 1, 2, 0) + (2, 1, 0, 2)$, $e_4 = (0, 1, 2, 0, 1) - (0, 1, 2, 1, 0) - (0, 2, 1, 2, 0) + (0, 2, 1, 0, 2)$, and so on.

$$\begin{split} & \textbf{For } q = \textbf{5:} \quad e_0 = (0), \\ & e_1 = (1,2) + (3,4) + (1,4) - (2,1) - (4,3) - (4,1), \\ & e_2 = (0,1,2) + (0,3,4) + (0,1,4) - (0,2,1) - (0,4,3) - (0,4,1), \\ & e_3 = (1,2,3,4) + (1,2,0,1) + (1,2,3,1) - (1,2,4,3) - (1,2,1,0) - (1,2,1,3) + (3,4,0,1) + (3,4,2,3) + (3,4,0,3) - (3,4,1,0) - (3,4,3,2) - (3,4,3,0) + (1,4,0,1) + (1,4,2,3) + (1,4,0,3) - (1,4,1,0) - (1,4,3,2) - (1,4,3,0) - (2,1,2,3) - (2,1,4,0) - (2,1,2,0) + (2,1,3,2) + (2,1,0,4) + (2,1,0,2) - (4,3,4,0) - (4,3,1,2) - (4,3,4,2) + (4,3,0,4) + (4,3,2,1) + (4,3,2,4) - (4,1,2,3) - (4,1,4,0) - (4,1,2,0) + (4,1,3,2) + (4,1,0,4) + (4,1,0,2), \\ & e_4 = (0,1,2,3,4) + (0,1,2,0,1) + (0,1,2,3,1) - (0,1,2,4,3) - (0,1,2,1,0) - (0,1,2,1,3) + (0,3,4,0,1) + (0,3,4,2,3) + (0,3,4,0,3) - (0,3,4,1,0) - (0,3,4,3,2) - (0,3,4,3,0) + (0,1,4,0,1) + (0,1,4,2,3) + (0,1,4,0,3) - (0,1,4,3,2) - (0,1,4,3,0) - (0,2,1,2,3) - (0,2,1,4,0) - (0,2,1,2,3) + (0,2,1,0,4) + (0,2,1,0,2) - (0,4,3,4,0) - (0,4,3,1,2) - (0,4,3,4,2) + (0,4,3,0,4) + (0,4,3,2,1) + (0,4,3,2,4) - (0,4,1,2,3) - (0,4,1,4,0) - (0,4,1,2,0) + (0,4,1,3,2) + (0,4,1,0,4) + (0,4,1,0,2), \\ & (0,4,3,0,4) + (0,4,3,2,1) + (0,4,3,2,4) - (0,4,1,2,3) - (0,4,1,4,0) - (0,4,1,2,0) + (0,4,1,3,2) + (0,4,1,0,4) + (0,4,1,0,2), \\ & (0,4,1,0,4) + (0,4,1,0,2), \text{ and so on.} \end{split}$$

6.3 Induction property of (e_k)

We prove now the equations (4):

Lemma 2 For $l \ge 0$, we have:

$$\delta e_{2l} = (\nu^{\#} - \nu^{\#-1})e_{2l+1},$$

$$\delta e_{2l+1} = (\mathrm{id}^{\#} + \nu^{\#} + \dots + \nu^{\#q-1})e_{2l+2}.$$

Proof: We prove first a serie of claims and finally, prove the equations by induction. CLAIM 1:

$$\delta((2) + (4) + \ldots + (2r)) = (\mathrm{id}^{\#} - \nu^{\#})e_1.$$
(6)

PROOF OF CLAIM 1: According to the definition of e_1 , if a σ is such that $\langle e_1, \sigma \rangle \neq 0$, then σ is of the form (y, x) or (x, y) with x even, y odd and $0 \leq y < x \leq 2r$. Similarly, if σ is such that $\langle \nu^{\#}e_1, \sigma \rangle \neq 0$, then σ is either of the form (y, x) or (x, y) with x even ≥ 2 , y odd and $0 \leq x < y \leq 2r$, or of the form (0, x) or (x, 0) with x even or $0 < x \leq 2r$.

Hence, if σ is such that $\langle (\mathrm{id}^{\#} - \nu^{\#})e_1, \sigma \rangle \neq 0$, then σ is of the form (x, y) or (y, x) with $x \in X := \{2, 4, \ldots, 2r\}$ and $y \in Y := \{0\} \cup \{1, 3, \ldots, 2r - 1\}$. For $x \in X$ and $y \in Y$, the coefficient of (x, y) in $(\mathrm{id}^{\#} - \nu^{\#})e_1$ is -1 and the coefficient of (y, x) is +1. The equality $\delta((2) + (4) + \ldots + (2r)) = (\mathrm{id}^{\#} - \nu^{\#})e_1$ follows.

CLAIM 2:

$$\delta e_1 = \sum_{j \in \mathbb{Z}_q} \nu^{\#j} e_2. \tag{7}$$

PROOF OF CLAIM 2: Applying δ on both sides of equation (6), we get: $\delta e_1 = \nu^{\#}(\delta e_1)$. It implies that δe_1 can be written $\sum_{j \in \mathbb{Z}_q} \nu^{\#j}(0,h)$, where $h \in E_1(\mathbb{Z}_q,\mathbb{Z})$. As the couples (x, y)

in e_1 never begin with a 0, we get $(0, e_1)$ while keeping from δe_1 only the couples beginning with a 0. Hence $h = e_1$, and we have indeed $\delta e_1 = \sum_{j \in \mathbb{Z}_q} \nu^{\#j} e_2$, since $e_2 = (0, e_1)$.

CLAIM 3: $\nu^{\#} \circ C = C \circ \nu^{\#}$.

PROOF OF CLAIM 3: straightforward.

CLAIM 4:

$$\delta \circ C = C \circ \delta. \tag{8}$$

PROOF OF CLAIM 4: Let $\sigma = (a_0, \ldots, a_k)$ be a (k+1)-tuple. We have

$$\begin{aligned} (\delta \circ C)(\sigma) &= \delta \big(\sigma, (\nu^{\# a_k} e_1) \big) \\ &= \big((\delta \sigma), (\nu^{\# a_k} e_1) \big) + (-1)^{k+1} \big(\sigma, \delta(\nu^{\# a_k} e_1) \big) - (-1)^{k+1} \sum_{j \in \mathbb{Z}_q} \big(\sigma, j, (\nu^{\# a_k} e_1) \big) \\ \end{aligned}$$

 et

$$\begin{array}{lll} (C \circ \delta)(\sigma) &=& C(\delta \sigma) \\ &=& \left((\delta \sigma), (\nu^{\# a_k} e_1) \right) + (-1)^{k+1} \sum_{j \in \mathbb{Z}_q} \left(\sigma, j, (\nu^{\# j} e_1) \right) - (-1)^{k+1} \sum_{j \in \mathbb{Z}_q} \left(\sigma, j, (\nu^{\# a_k} e_1) \right). \end{array}$$

Hence, $(\delta \circ C)(\sigma) - (C \circ \delta)(\sigma) = (-1)^{k+1} (\sigma, \delta(\nu^{\#a_k}e_1)) - (-1)^{k+1} \sum_{j \in \mathbb{Z}_q} (\sigma, j, \nu^{\#j}e_1)$. But, according to equation (7), $\delta(\nu^{\#a_k}e_1) - \sum_{j \in \mathbb{Z}_q} (j, \nu^{\#j}e_1) = \nu^{\#a_k}(\delta e_1) - \sum_{j \in \mathbb{Z}_q} \nu^{\#j}(0, e_1) = 0$ (we have $e_2 = (0, e_1)$). Thus $(\delta \circ C)(\sigma) - (C \circ \delta)(\sigma) = 0$.

Proof of Lemma 2: By induction on *l*.

For l = 0, we have $\delta e_0 = (\nu^{\#} - \nu^{\#-1})e_1$: indeed, let $c := (2) + (4) + \ldots + (2r)$; according to equation (6), we have $\delta c = (\mathrm{id}^{\#} - \nu^{\#})e_1$; we have also, $\delta((0) + (1) + \ldots + (2r-1) + (2r)) = 0$ (the checking is straightforward); hence, $\delta(0) + \delta c + \delta \nu^{\#-1}c = 0$; and thus $\delta(0) = (\nu^{\#} - \nu^{\#-1})e_1$. Claim 2 is the relation: $\delta e_1 = (\mathrm{id}^{\#} + \nu^{\#} + \cdots + \nu^{\#q-1})e_2$. Lemma 2 is proved for l = 0.

Let's assume that Lemma 2 is proved for $l \ge 0$. According to Claim 3 and Claim 4, we have then:

$$\delta e_{2l+2} = (\delta \circ C)(e_{2l}) = (C \circ \delta)(e_{2l}) = C((\nu^{\#} - \nu^{\#-1})e_{2l+1}) = (\nu^{\#} - \nu^{\#-1})e_{2l+3}$$

and

$$\delta e_{2l+3} = (\delta \circ C)(e_{2l+1}) = (C \circ \delta)(e_{2l+1}) = C\Big(\sum_{j \in \mathbb{Z}_q} \nu^{\# j} e_{2l+2}\Big) = \sum_{j \in \mathbb{Z}_q} \nu^{\# j} e_{2l+4} = (\mathrm{id}^\# + \nu^\# + \ldots + \nu^{\# q-1})e_{2l+4}$$

References

- M. de Longueville and R. T. Zivaljevic, The Borsuk-Ulam-property, Tucker-property and constructive proofs in combinatorics, J. Combinatorial Theory, Ser. A, 113:839-850, 2006.
- [2] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19:65-69, 1983.
- [3] K. Fan, A generalization of Tucker's combinatorial lemma with topological applications, Annals Math., II Ser., 56:431-437, 1952.

- [4] R. M. Freund and M. J. Todd, A constructive proof of Tucker's combinatorial lemma, J. Combinatorial Theory, Ser. A, 30:321-325, 1981.
- [5] S. Lang, Algebra, Addison-Wesley Publishing Company, 1993.
- [6] F. Meunier, Improving on the chromatic number of Kneser graphs with improved topological lemmas, J. Graph Theory, 49:257-261, 2005.
- [7] F. Meunier, Combinatorial Stokes fomulae, Eur. J. Combinatorics, to appear.
- [8] J. Munkres, Elements of Algebraic Topology, Perseus Books Publishing, 1984.
- [9] T. Prescott and F. Su, A constructive proof of Ky Fan's generalization of Tucker's lemma, J. Combinatorial Theory, Ser. A, 111:257-265, 2005.
- [10] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, *Combinatorica*, to appear.
- [11] G. Simonyi and G. Tardos, Colorful subgraphs in Kneser-like graphs, *Eur. J. Combinatorics*, to appear.
- [12] G.M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, *Inven*tiones Math., 147:671-691, 2002.