A \mathbb{Z}_{q}-Fan theorem

Frédéric Meunier*

December 11, 2006

Abstract

In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam theorem stating that there is no \mathbb{Z}_{2}-equivariant map from the d-dimensional sphere S^{d} to the $(d-1)$-dimensional sphere S^{d-1}. The aim of the present paper is to provide the same kind of combinatorial theorem for Dold's theorem, which is a generalization of the Borsuk-Ulam theorem when \mathbb{Z}_{2} is replaced by \mathbb{Z}_{q}, and the spheres replaced by d-dimensional $(d-1)$-connected free \mathbb{Z}_{q}-spaces. It provides a combinatorial proof of Dold's theorem. Moreover, the proof does not work by contradiction.

Key Words: combinatorial proof; Dold's theorem; Fan's theorem; labelling; Tucker's lemma; triangulation.

1 Introduction

Ky Fan gave ([3]) in 1952 a combinatorial generalization of the Borsuk-Ulam theorem:
Theorem 1 (Fan's theorem) Let T be a symmetric triangulation of the d-sphere (if $\sigma \in \mathrm{T}$ then $-\sigma \in \mathrm{T})$ and let $\lambda: V(\mathrm{~T}) \rightarrow\{-1,+1,-2,+2, \ldots,-m,+m\}$ be an antipodal labelling $(\lambda(-v)=-\lambda(v))$ of the vertices of T such that no edge is labelled by $-j,+j$ for some j (there is no antipodal edge). Then we have at least one simplex in T labelled with $-j_{0},+j_{1}, \ldots,(-1)^{d+1} j_{d}$ where $j_{0}<j_{1}<\ldots<j_{d}$.

In combinatorics, a continuous version of Fan's theorem is used in particular in the study of Kneser graphs (see [6],[10],[11]).

Since there is a generalization of Borsuk-Ulam theorem with other free actions ($\mathbb{Z}_{q^{-}}$ actions) than the central symmetry (\mathbb{Z}_{2}-action), namely Dold's theorem, a natural question is whether there is a generalization of Fan's theorem using q "signs" instead of the 2 signs ,-+ and leading to a purely combinatorial proof of Dold's theorem.

The present paper gives such a " \mathbb{Z}_{q}-Fan theorem". An equivariant triangulation T of a free \mathbb{Z}_{q}-space is a triangulation such that if $\sigma \in \mathrm{T}$, then $\nu_{s} \sigma \in \mathrm{~T}$ for all $s \in \mathbb{Z}_{q}$ (ν_{s} is the homeomorphism corresponding to the action of $s \in \mathbb{Z}_{q}$ on the \mathbb{Z}_{q}-space).

Theorem $2\left(\mathbb{Z}_{q}\right.$-Fan's theorem) Let q be an odd positive integer, let T be an equivariant triangulation of a d-dimensional $(d-1)$-connected free \mathbb{Z}_{q}-space and let $\lambda: V(\mathrm{~T}) \rightarrow$ $\mathbb{Z}_{q} \times\{1,2, \ldots, m\}$ be a equivariant labelling (if $\lambda(v)=(\epsilon, j)$, then $\lambda\left(\nu_{s} v\right)=(s+\epsilon, j)$ - counted modulo q - for all $s \in \mathbb{Z}_{q}$) of the vertices of T such that no edge is labelled by $(\epsilon, j),\left(\epsilon^{\prime}, j\right)$, with $\epsilon \neq \epsilon^{\prime}$, for some j. Then we have at least one simplex in T labelled with $\left(\epsilon_{0}, j_{0}\right),\left(\epsilon_{1}, j_{1}\right), \ldots,\left(\epsilon_{d}, j_{d}\right)$ where $\epsilon_{i} \neq \epsilon_{i+1}$ for all $i \in\{0,1, \ldots, d-1\}$, and $j_{0}<j_{1}<\ldots<j_{d}$.

[^0]It is not clear whether this theorem is also true for q even.
The plan is the following: First, we reprove Fan's theorem with the same kind of technics we use in the rest of the paper (Section 3). Then, following the same scheme, we prove the \mathbb{Z}_{q}-Fan theorem (Section 4). Finally, in the Section 5, we explain how this proof provides a new combinatorial proof of Dold's theorem, after the one found by Günter M. Ziegler in [12]: the \mathbb{Z}_{p}-Tucker lemma. "Combinatorial" means, according to Ziegler, no homology, no continuous map, no approximation. From this point of view our proof has a little advantage: it does not work by contradiction. This provides a new step in the direction of a constructive proof of Dold's theorem, whose existence is an important question (see the discussion of Mark de Longueville and Rade Zivaljevic in [1]). A constructive proof of Borsuk-Ulam theorem was found by Freund and Todd in 1981 ([4]). Another one, proving also Fan's theorem (Theorem 1), was proposed by Prescott and Su in 2005 ([9]).

2 Notations

We assume basic knowledge in algebraic topology. A good reference is the book of James Munkres [8].

2.1 General notations

\mathbb{Z}_{n} is the set of integers modulo n.
Let S be a set, and suppose that \mathbb{Z}_{n} acts on S. We denote by ν_{s} the action corresponding to $s \in \mathbb{Z}_{n}$. We denote $\nu:=\nu_{1}$. We have then $\nu_{s}=\underbrace{\nu \times \nu \times \ldots \times \nu}_{s \text { terms }}=\nu^{s}$ and in particular $\nu^{0}=\mathrm{id}$.

2.2 Simplices, chains and cochains

The definitions of simplices, simplicial complexes, chains and cochains are assumed to be known. We give here some specific or less well-known definitions and notations.

The join of two simplicial complexes K and L is denoted by $\mathrm{K} * \mathrm{~L}$ and the join of $\mathrm{K} k$ times by itself is denoted by $\mathrm{K}^{* k}$.
$\left(\mathbb{Z}_{q}\right)^{* m}$ is the $(m-1)$-dimensional simplicial complex whose vertex set is the disjoint union of m copies of \mathbb{Z}_{q} and whose simplices are the subsets of this disjoint union containing at most one vertex of each copy. It is often denoted by $E_{m-1} \mathbb{Z}_{q}$ in the literature. A vertex of $\left(\mathbb{Z}_{q}\right)^{* m}$ is of the form (ϵ, j), with $\epsilon \in \mathbb{Z}_{q}$ and $j \in\{1,2, \ldots, m\}$.

Let c_{k} be a k-chain and c^{k} be a k-cochain. We denote the value taken by c^{k} at c_{k} by $\left\langle c^{k}, c_{k}\right\rangle$. Moreover, we identify through $\langle.,$.$\rangle chains and cochains.$

Let G be a group acting on a topological space X. The action of G on X is said to be free if every non-trivial element of G acts without fixed-point. In this case, we also say that G acts freely on X.

Let G be a group acting on two sets X and Y. A map (or a labelling) $f: X \rightarrow Y$ is said to be G-equivariant if $f \circ g=g \circ f$ for any $g \in G$.

2.3 The standard complex

2.3.1 Definition

The standard complex is defined in [5] for instance. Let S be a set. For $i=0,1,2 \ldots$ let $E_{i}(S, G)$ be the free module over an abelian group G generated by $(i+1)$-tuples $\left(x_{0}, \ldots, x_{i}\right)$
with $x_{0}, \ldots, x_{i} \in S$. Thus such $(i+1)$-tuples form a basis of $E_{i}(S, G)$ over G. There is a unique homomorphism

$$
\partial: E_{i+1}(S, G) \rightarrow E_{i}(S, G)
$$

such that

$$
\partial\left(x_{0}, \ldots, x_{i+1}\right)=\sum_{j=0}^{i+1}(-1)^{j}\left(x_{0}, \ldots, \hat{x}_{j}, \ldots, x_{i+1}\right)
$$

where the symbol \hat{x}_{j} means that this term is to be omitted.
An element of $E_{i}(S, G)$ is an $(i+1)$-chain and can be written $\sum_{k} \lambda_{k} \sigma_{k}$, where the σ_{k} are $(i+1)$-tuples of S, and the λ_{k} are taken in G.

We denote this complex $\mathcal{C}(S, G)$ and the corresponding coboundary map δ :

$$
\begin{aligned}
\delta\left(x_{0}, x_{1}, \ldots, x_{i}\right)=\sum_{a \in S}\left(\left(a, x_{0}, x_{1}, \ldots, x_{i}\right)\right. & +\sum_{k=0}^{i-1}(-1)^{k+1}\left(x_{0}, x_{1}, \ldots, x_{k}, a, x_{k+1}, \ldots, x_{i}\right) \\
& \left.+(-1)^{i+1}\left(x_{0}, x_{1}, \ldots, x_{i}, a\right)\right)
\end{aligned}
$$

A standard complex used throughout the paper is $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right): E_{i}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$ is the free module over \mathbb{Z}_{q} generated by the elements of \mathbb{Z}_{q}^{i+1}. For instance, $((0,1,0)-(2,2,2)-(0,2,1)) \in$ $\mathcal{C}\left(\mathbb{Z}_{3}, \mathbb{Z}_{3}\right)$ and $\partial((0,1,0)-(2,2,2)+(0,2,1))=(0,1)-(0,0)+(1,0)-(2,2)+(2,2)-(2,2)+$ $(0,2)-(0,1)+(2,1)=(2,1)+(0,2)+2(2,2)+(1,0)+2(0,0)$.

As we use in this paper the elements of $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$ as cochains, we illustrate the action of δ on one of these elements: for $((0,2)-(0,1)) \in \mathcal{C}\left(\mathbb{Z}_{3}, \mathbb{Z}_{3}\right)$, we have:
$\delta((0,2)-(0,1))=\delta(0,2)-\delta(0,1)$
$=((0,0,2)+(1,0,2)+(2,0,2)-(0,0,2)-(0,1,2)-(0,2,2)+(0,2,0)+(0,2,1)+(0,2,2))-$ $((0,0,1)+(2,0,1)+(1,0,1)-(0,0,1)-(0,2,1)-(0,1,1)+(0,1,0)+(0,1,2)+(0,1,1))$ $=((1,0,2)+(2,0,2)+2(0,1,2)+(0,2,0)+(0,2,1))+2((2,0,1)+(1,0,1)+2(0,2,1)+$ $(0,1,0)+(0,1,2))$
$=(1,0,2)+(2,0,2)+(0,1,2)+(0,2,0)+2(0,2,1)+2(2,0,1)+2(1,0,1)+2(0,1,0)$.

2.3.2 Actions on the standard complex

Moreover, if there is a group H acting on S, then H acts also on $\mathcal{C}(S, G)$: for ν_{h} an action corresponding to an element h of H, we extend it as follows: $\nu_{h \#}$ is the unique homomorphism $E_{i}(S, G) \rightarrow E_{i}(S, G)$ such that $\nu_{h \#}\left(x_{0}, \ldots, x_{i}\right)=\left(\nu_{h} x_{0}, \ldots, \nu_{h} x_{i}\right)$. We define $\nu_{h}^{\#}$ similarly for cochains.

2.3.3 Concatenation

We introduce the following notation: for a $(i+1)$-tuple $\left(x_{0}, x_{1}, \ldots, x_{i}\right) \in S^{i+1}$ and $c_{j} \in$ $E_{j}(S, G)$ a j-chain, we denote $\left(x_{0}, x_{1}, \ldots, x_{i}, c_{j}\right)$ the $(i+j+1)$-chain $\sum_{k} \lambda_{k}\left(x_{0}, x_{1}, \ldots, x_{i}, \sigma_{k}\right)$ where the σ_{k} are the $(j+1)$-tuples such that $c_{j}=\sum_{k} \lambda_{k} \sigma_{k}$.

3 Proof of Fan's theorem

This section is devoted to a new proof of Ky Fan's theorem (Theorem 1). A simple combinatorial proof can also be found in [7]. In the one presented here, we try to extract the exact mechanism that explains this theorem. We distinguish four steps.

Let T be a symmetric triangulation of the d-sphere S^{d} and let $\lambda: V(\mathrm{~T}) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$ be an antipodal labelling of the vertices of T such that no edge is labelled by $-j,+j$ for some j. λ commutes with ν, where ν is defined for any vertex v of T by $\nu(v)=-v$.

In the first step, using the definition of λ, we embed $\mathcal{C}\left(T, \mathbb{Z}_{2}\right)$ in the standard complex $\mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$. In the second and third step, we build a sequence $\left(h_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-chains of $\mathcal{C}\left(\mathbf{T}, \mathbb{Z}_{2}\right)$ and a sequence $\left(e_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-cochains of $\mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ which satisfy dual relations. Finally, using this duality and an induction, we achieve the proof.

3.1 $\psi_{\#}: \mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{2}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$

We see λ as a simplicial map going from T into the ($m-1$)-dimensional simplicial complex C , whose simplices are the subsets of $\{-1,+1,-2,+2, \ldots,-m,+m\}$ containing no pair $\{-i,+i\}$ for some $i \in\{1,2, \ldots, m\}$ (such a complex is the boundary complex of the cross-polytope).

Let $\phi: x \in \mathbb{Z} \backslash\{0\} \mapsto \phi(x) \in \mathbb{Z}_{2}$ where $\phi(x)=1$ if and only if $x>0$. We define then the following chain map $\phi_{\#}: \mathcal{C}\left(\mathbb{C}, \mathbb{Z}_{2}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ for $\sigma=\left\{j_{0}, \ldots, j_{k}\right\} \in \mathrm{C}$ with $\left|j_{0}\right|<\left|j_{1}\right|<\ldots<\left|j_{k}\right|$ by $\phi_{\#}(\sigma)=\left(\phi\left(j_{0}\right), \phi\left(j_{1}\right), \ldots, \phi\left(j_{k}\right)\right)$ (checking that it is a chain map is straightforward).

We define $\psi_{\#}:=\phi_{\#} \circ \lambda_{\#}$. It is a chain map going from the chain complex $\mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{2}\right)$ into the standard complex $\mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$. Note that $\psi_{\#}$ commutes with $\nu_{\#}$ (where $\nu: a \in \mathbb{Z}_{2} \mapsto$ $\left.(a+1) \in \mathbb{Z}_{2}\right)$.

3.2 the "hemispheres"

It is easy to see that there is a sequence $\left(h_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-chains in $\mathcal{C}\left(\mathbf{T}, \mathbb{Z}_{2}\right)$ such that h_{0} is a vertex and such that

$$
\begin{equation*}
\partial h_{k+1}=\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k} \tag{1}
\end{equation*}
$$

for all $k \in\{0,1, \ldots, d-1\}$. These k-chains can be seen as k-dimensional hemispheres of S^{d}. There is an easy construction of them. We can also see their existence through an homology argument: let h_{0} be any vertex; then

$$
\partial\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k}=\left(\mathrm{id}_{\#}+\nu_{\#}\right) \partial h_{0}=0
$$

and there exists an h_{1} such that $\partial h_{1}=\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{0}$ (the 0th homology group of the d-sphere is 0); finally, if h_{k} exists, then
$\partial\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k}=\left(\mathrm{id}_{\#}+\nu_{\#}\right) \partial h_{k}=\left(\mathrm{id}_{\#}+\nu_{\#}\right)\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k-1}=\left(\mathrm{id}_{\#}+\nu_{\#}^{2}\right) h_{k-1}=2 \mathrm{id}_{\#} h_{k-1}=0 ;$
hence there exists an h_{k+1} such that $\partial h_{k+1}=\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k}$ (the k th homology group of the d-sphere is 0 for $k \leq d-1$).

3.3 the "co-hemispheres"

On the other side, we have for the standard complex $\mathcal{C}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$:

$$
\delta \underbrace{(0,1,0,1, \ldots)}_{k \text { terms }}=\underbrace{(0,1,0,1, \ldots)}_{k+1 \text { terms }}+\underbrace{(1,0,1,0, \ldots)}_{k+1 \text { terms }}
$$

which can be written

$$
\begin{equation*}
\delta e_{k}=\left(\mathrm{id}^{\#}+\nu^{\#}\right) e_{k+1} \tag{2}
\end{equation*}
$$

where $e_{k}=\underbrace{(0,1,0,1, \ldots)}_{k \text { terms }}$ and where $\nu:\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{k}\right) \mapsto\left(\epsilon_{0}+1, \epsilon_{1}+1, \ldots, \epsilon_{k}+1\right)$ (counted modulo 2). There is an obvious duality between equations (1) and (2). We call the e_{k} "co-hemispheres".

3.4 induction

We use now this symmetry to achieve the proof: we prove now the following property by induction on $k \leq d$:

$$
\left\langle e_{k}, \psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k}\right)\right\rangle=1 \bmod 2 .
$$

It is true for $k=0: e_{0}=(0)$ and $\psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{0}\right)=(0)+(1)$.
If it is true for $k \geq 0$, we have

$$
\begin{gathered}
\left\langle e_{k+1}, \psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k+1}\right)\right\rangle=\left\langle\left(\mathrm{id}^{\#}+\nu^{\#}\right) e_{k+1}, \psi_{\#} h_{k+1}\right\rangle=\left\langle\delta e_{k}, \psi_{\#} h_{k+1}\right\rangle \\
=\left\langle e_{k}, \psi_{\#} \partial h_{k+1}\right\rangle=\left\langle e_{k}, \psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}\right) h_{k}\right)\right\rangle=1 \bmod 2 .
\end{gathered}
$$

This proves the property. For $k=d$, it means that there is at least one d-simplex σ such that $\psi_{\#}(\sigma)=(0,1,0,1, \ldots)$, which is exactly the statement of the theorem.

4 Proof of \mathbb{Z}_{q}-Fan theorem

In this section, we prove Theorem 2. We follow similar four steps.
Let q be an odd positive integer, let T be an equivariant triangulation of a d-dimensional $(d-1)$-connected free \mathbb{Z}_{q}-space and let $\lambda: V(\mathrm{~T}) \rightarrow \mathbb{Z}_{q} \times\{1,2, \ldots, m\}$ be an equivariant labelling (if $\lambda(v)=(\epsilon, j)$, then $\lambda\left(\nu_{s} v\right)=(s+\epsilon, j)$ for all $s \in \mathbb{Z}_{q}$) of the vertices of T such that no edge is labelled by $(\epsilon, j),\left(\epsilon^{\prime}, j\right)$, with $\epsilon \neq \epsilon^{\prime}$, for some j.

In the first step, using the definition of λ, we embed $\mathcal{C}\left(T, \mathbb{Z}_{2}\right)$ in the standard complex $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$. In the second and third steps, we build a sequence $\left(h_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-chains in $\mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{q}\right)$ and a sequence $\left(e_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-cochains in $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$ which satisfy dual relations. Finally, using this duality and an induction, we achieve the proof.

4.1 $\quad \psi_{\#}: \mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{q}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$

We see λ as a simplicial map going from T into the $(m-1)$-dimensional simplicial complex $\left(\mathbb{Z}_{q}\right)^{* m}$, whose simplices are the subsets of $\mathbb{Z}_{q} \times\{1,2, \ldots, m\}$ containing no pair $\left\{(\epsilon, j),\left(\epsilon^{\prime}, j\right)\right\}$ for some $j \in\{1,2, \ldots, m\}$ and some $\epsilon, \epsilon^{\prime} \in \mathbb{Z}_{q}$ with $\epsilon \neq \epsilon^{\prime}$.

We define then the following chain map $\phi_{\#}: \mathcal{C}\left(\left(\mathbb{Z}_{q}\right)^{* m}, \mathbb{Z}_{q}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$ for $\sigma=$ $\left[\left(\epsilon_{0}, j_{0}\right), \ldots,\left(\epsilon_{k}, j_{k}\right)\right] \in\left(\mathbb{Z}_{q}\right)^{* m}$ with $j_{0}<j_{1}<\ldots<j_{k}$ by $\phi_{\#}(\sigma)=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{k}\right)$ (checking that it is a chain map is straightforward).

We define $\psi_{\#}:=\phi_{\#} \circ \lambda_{\#}$. It is a chain map going from the chain complex $\mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{q}\right)$ into the standard complex $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$. Note that $\psi_{\#}$ commutes with the $\nu_{\#}$ (where $\nu: a \in \mathbb{Z}_{q} \mapsto$ $\left.(a+1) \in \mathbb{Z}_{q}\right)$.

4.2 the "hemispheres"

It is not too hard to exhibit a sequence $\left(h_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-chains in $\mathcal{C}\left(\mathbf{T}, \mathbb{Z}_{q}\right)$ such that h_{0} is a vertex and such that, for l any integer ≥ 0 :

$$
\begin{align*}
& \partial h_{2 l+1}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}, \\
& \partial h_{2 l+2}=\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1} . \tag{3}
\end{align*}
$$

We can also see their existence through an homology argument: let h_{0} be any vertex of T; then

$$
\partial\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{0}=\left(\operatorname{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) \partial h_{0}=0
$$

and there exists an h_{1} such that $\partial h_{1}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{0}$ (the 0th homology group of T is 0 : T is $(d-1)$-connected); finally, if $h_{2 l}$ exists, then
$\partial\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) \partial h_{2 l}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right)\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l-1}=0 ;$
hence there exists an $h_{2 l+1}$ such that $\partial h_{2 l+1}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}$, and if $h_{2 l+1}$ exists, then

$$
\partial\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1}=\left(\nu_{\#}-\nu_{\#}^{-1}\right) \partial h_{2 l+1}=\left(\nu_{\#}-\nu_{\#}^{-1}\right)\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}=0
$$

hence there exists an $h_{2 l+2}$ such that $\partial h_{2 l+2}=\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1}$ (the k th homology group of T is 0 for $k \leq d-1$: T is $(d-1)$-connected).

4.3 the "co-hemispheres"

Our aim is to find a sequence $\left(e_{k}\right)$ of elements of the standard complex $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}_{q}\right)$ playing the same role than the e_{k} in the proof of Theorem 1 above.

For the proof, it is enough to know that such a sequence exists (the construction of this sequence is given in the Appendix - Lemma 2-at the end of the paper), which satisfies $e_{0}=(0)$ and, for l any integer ≥ 0 :

$$
\begin{align*}
& \delta e_{2 l}=\left(\nu^{\#}-\nu^{\#-1}\right) e_{2 l+1}, \\
& \delta e_{2 l+1}=\left(\mathrm{id}^{\#}+\nu^{\#}+\ldots+\nu^{\# q-1}\right) e_{2 l+2} \tag{4}
\end{align*}
$$

Again, the h_{k} and the e_{k} satisfy dual relations. We call the latter "co-hemispheres".

4.4 induction

We use now this symmetry between equations (3) and (4) to achieve the proof: we prove now the following property by induction on $l \leq d$:

$$
\left\langle e_{2 l}, \psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}\right)\right\rangle=(-1)^{l} \bmod q
$$

and

$$
\left\langle e_{2 l+1}, \psi_{\#}\left(\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1}\right)\right\rangle=(-1)^{l+1} \bmod q
$$

It is true for $l=0$: $\psi_{\#}\left(\left(\operatorname{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{0}\right)=(0)+(1)+\ldots+(q-1)$ and $\left\langle e_{0}, \psi_{\#}\left(\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}\right)\right\rangle=\langle(0),(0)+(1)+\ldots+(q-1)\rangle=1$.

If it is true for $l \geq 0$, we have:

$$
\begin{aligned}
& \left\langle e_{2 l+1}, \psi_{\#}\left(\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1}\right)\right\rangle=\left\langle\left(\nu^{\#-1}-\nu^{\#}\right) e_{2 l+1}, \psi_{\#} h_{2 l+1}\right\rangle=-\left\langle\delta e_{2 l}, \psi_{\#} h_{2 l+1}\right\rangle \\
& =-\left\langle e_{2 l}, \psi_{\#} \partial h_{2 l+1}\right\rangle=-\left\langle e_{2 l}, \psi_{\#}\left(\left(\operatorname{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}\right)\right\rangle=(-1)^{l+1} \bmod q,
\end{aligned}
$$

and

$$
\begin{gathered}
\left\langle e_{2 l+2}, \psi_{\#}\left(\left(\operatorname{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l+2}\right)\right\rangle=\left\langle\left(\mathrm{id}^{\#}+\nu^{\#}+\ldots+\nu^{\# q-1}\right) e_{2 l+2}, \psi_{\#} h_{2 l+2}\right\rangle=\left\langle\delta e_{2 l+1}, \psi_{\#} h_{2 l+2}\right\rangle \\
=\left\langle e_{2 l+1}, \psi_{\#} \partial h_{2 l+2}\right\rangle=\left\langle e_{2 l+1}, \psi_{\#}\left(\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1}\right)\right\rangle=(-1)^{l+1} \bmod q
\end{gathered}
$$

This proves the property. For $k=d$, it means that there is at least one d-simplex σ such that $\psi_{\#}(\sigma)=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{d}\right)$ with $\epsilon_{i} \neq \epsilon_{i+1}$ for $i=0,1, \ldots, d-1$ (in the e_{k}, all $k+1$-tuples satisfy this property - see Lemma 1 in the Appendix), which is exactly the statement of the theorem.

5 Combinatorial proof of Dold's theorem

We recall Dold's theorem (proved by Dold in 1983 [2]):
Theorem 3 (Dold's theorem) Let X and Y be two simplicial complexes, which are free \mathbb{Z}_{n}-space. If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a \mathbb{Z}_{n}-equivariant map between free \mathbb{Z}_{n}-spaces, then the dimension of Y is larger than or equal to the connectivity of X .

It is not too hard to give an explicit construction (without using homology arguments) of a sequence $\left(h_{k}\right)_{k \in\{0,1, \ldots, d\}}$ of k-chains in $\mathcal{C}\left(\mathrm{T}, \mathbb{Z}_{q}\right)$, where T is any equivariant triangulation of $\left(\mathbb{Z}_{p}\right)^{*(d+1)}$, such that h_{0} is a vertex and such that, for l any integer ≥ 0 :

$$
\begin{align*}
& \partial h_{2 l+1}=\left(\mathrm{id}_{\#}+\nu_{\#}+\ldots+\nu_{\#}^{q-1}\right) h_{2 l}, \\
& \partial h_{2 l+2}=\left(\nu_{\#}-\nu_{\#}^{-1}\right) h_{2 l+1} . \tag{5}
\end{align*}
$$

The proof of Theorem 2 is combinatorial (no homology, no continuous map, no approximation) and does not work by contradiction.

By standard technics, to prove Theorem 3, it is sufficient to consider the case when $n=p$ is prime, X is an equivariant triangulation of $\left(\mathbb{Z}_{p}\right)^{*(d+1)}$ and $\mathrm{Y}:=\left(\mathbb{Z}_{p}\right)^{* d}$, and to prove that there is no equivariant simplicial map $\mathrm{X} \rightarrow \mathrm{Y}$.

Thus Theorem 1 (for $p=2$) and Theorem 2 (for $p=q$ odd) together provide a purely combinatorial proof of Theorem 3 without working by contradiction, because they imply that if λ is a equivariant simplicial map $\mathrm{X} \rightarrow\left(\mathbb{Z}_{p}\right)^{* m}$ then $m>d$.

6 Appendix: definition of the e_{k} for \mathbb{Z}_{q}

6.1 Definitions of C and $\left(e_{k}\right)$

For simplicity, we write $q=2 r+1$. We were not able to find a similar construction for q even (except of course for $q=2$).

We define recursively the infinite sequence $\left(e_{k}\right)_{k \in \mathbb{N}}$ of element of $\mathcal{C}\left(\mathbb{Z}_{q}, \mathbb{Z}\right)$, where $e_{k} \in$ $E_{k}\left(\mathbb{Z}_{q}, \mathbb{Z}\right)$ (we define e_{k} with coefficients in \mathbb{Z}, but the relations they will satisfy will be true for coefficients in \mathbb{Z}_{q} too).

We first begin with e_{0} and e_{1} :

$$
\begin{gathered}
e_{0}:=(0) \\
e_{1}:=\sum_{j=0}^{r-1} \sum_{i=0}^{j}((2 i+1,2 r-2 j+2 i)-(2 r-2 j+2 i, 2 i+1)) .
\end{gathered}
$$

We define then the following application $C: E_{k}\left(\mathbb{Z}_{q}, \mathbb{Z}\right) \rightarrow E_{k+2}\left(\mathbb{Z}_{q}, \mathbb{Z}\right)$ by its value on the natural basis:

$$
C:\left(a_{0}, \ldots, a_{k}\right) \mapsto\left(a_{0}, \ldots, a_{k}, \nu_{\#}^{a_{k}} e_{1}\right)
$$

For $k \geq 2$, we can now define the rest of the infinite sequence:

$$
e_{k}:=C\left(e_{k-2}\right)
$$

This construction implies immediately the following property:
Lemma 1 Let $k \geq 0$, and $\sigma=\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{k}\right) \in \mathbb{Z}_{q}^{k+1}$. If $\left\langle e_{k}, \sigma\right\rangle \neq 0$, which means that σ has a non-zero coefficient is the formal sum e_{k}, then $\epsilon_{i} \neq \epsilon_{i+1}$ for any $i \in\{0,1, \ldots, k-1\}$.

6.2 Examples for $q=3$ and $q=5$

Let us see for instance what it gives for $q=3$ and $q=5$.

```
For \(q=3: \quad e_{0}=(0)\),
\(e_{1}=(1,2)-(2,1)\),
\(e_{2}=(0,1,2)-(0,2,1)\),
\(e_{3}=(1,2,0,1)-(1,2,1,0)-(2,1,2,0)+(2,1,0,2)\),
\(e_{4}=(0,1,2,0,1)-(0,1,2,1,0)-(0,2,1,2,0)+(0,2,1,0,2)\), and so on.
```

For $q=5: \quad e_{0}=(0)$,
$e_{1}=(1,2)+(3,4)+(1,4)-(2,1)-(4,3)-(4,1)$,
$e_{2}=(0,1,2)+(0,3,4)+(0,1,4)-(0,2,1)-(0,4,3)-(0,4,1)$,
$e_{3}=(1,2,3,4)+(1,2,0,1)+(1,2,3,1)-(1,2,4,3)-(1,2,1,0)-(1,2,1,3)+(3,4,0,1)+$
$(3,4,2,3)+(3,4,0,3)-(3,4,1,0)-(3,4,3,2)-(3,4,3,0)+(1,4,0,1)+(1,4,2,3)+(1,4,0,3)-$
$(1,4,1,0)-(1,4,3,2)-(1,4,3,0)-(2,1,2,3)-(2,1,4,0)-(2,1,2,0)+(2,1,3,2)+(2,1,0,4)+$
$(2,1,0,2)-(4,3,4,0)-(4,3,1,2)-(4,3,4,2)+(4,3,0,4)+(4,3,2,1)+(4,3,2,4)-(4,1,2,3)-$
$(4,1,4,0)-(4,1,2,0)+(4,1,3,2)+(4,1,0,4)+(4,1,0,2)$,
$e_{4}=(0,1,2,3,4)+(0,1,2,0,1)+(0,1,2,3,1)-(0,1,2,4,3)-(0,1,2,1,0)-(0,1,2,1,3)+$
$(0,3,4,0,1)+(0,3,4,2,3)+(0,3,4,0,3)-(0,3,4,1,0)-(0,3,4,3,2)-(0,3,4,3,0)+(0,1,4,0,1)+$
$(0,1,4,2,3)+(0,1,4,0,3)-(0,1,4,1,0)-(0,1,4,3,2)-(0,1,4,3,0)-(0,2,1,2,3)-(0,2,1,4,0)-$
$(0,2,1,2,0)+(0,2,1,3,2)+(0,2,1,0,4)+(0,2,1,0,2)-(0,4,3,4,0)-(0,4,3,1,2)-(0,4,3,4,2)+$
$(0,4,3,0,4)+(0,4,3,2,1)+(0,4,3,2,4)-(0,4,1,2,3)-(0,4,1,4,0)-(0,4,1,2,0)+(0,4,1,3,2)+$
$(0,4,1,0,4)+(0,4,1,0,2)$, and so on.

6.3 Induction property of $\left(e_{k}\right)$

We prove now the equations (4):
Lemma 2 For $l \geq 0$, we have:

$$
\begin{aligned}
& \delta e_{2 l}=\left(\nu^{\#}-\nu^{\#-1}\right) e_{2 l+1} \\
& \delta e_{2 l+1}=\left(\mathrm{id}^{\#}+\nu^{\#}+\ldots+\nu^{\# q-1}\right) e_{2 l+2}
\end{aligned}
$$

Proof: We prove first a serie of claims and finally, prove the equations by induction.
CLAIM 1:

$$
\begin{equation*}
\delta((2)+(4)+\ldots+(2 r))=\left(\mathrm{id}^{\#}-\nu^{\#}\right) e_{1} . \tag{6}
\end{equation*}
$$

PROOF OF CLAIM 1: According to the definition of e_{1}, if a σ is such that $\left\langle e_{1}, \sigma\right\rangle \neq 0$, then σ is of the form (y, x) or (x, y) with x even, y odd and $0 \leq y<x \leq 2 r$. Similarly, if σ is such that $\left\langle\nu^{\#} e_{1}, \sigma\right\rangle \neq 0$, then σ is either of the form (y, x) or (x, y) with x even $\geq 2, y$ odd and $0 \leq x<y \leq 2 r$, or of the form $(0, x)$ or $(x, 0)$ with x even or $0<x \leq 2 r$.

Hence, if σ is such that $\left\langle\left(\mathrm{id}^{\#}-\nu^{\#}\right) e_{1}, \sigma\right\rangle \neq 0$, then σ is of the form (x, y) or (y, x) with $x \in X:=\{2,4, \ldots, 2 r\}$ and $y \in Y:=\{0\} \cup\{1,3, \ldots, 2 r-1\}$. For $x \in X$ and $y \in Y$, the coefficient of (x, y) in $\left(\mathrm{id}^{\#}-\nu^{\#}\right) e_{1}$ is -1 and the coefficient of (y, x) is +1 . The equality $\delta((2)+(4)+\ldots+(2 r))=\left(\mathrm{id}^{\#}-\nu^{\#}\right) e_{1}$ follows.

CLAIM 2:

$$
\begin{equation*}
\delta e_{1}=\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j} e_{2} \tag{7}
\end{equation*}
$$

PROOF OF CLAIM 2: Applying δ on both sides of equation (6), we get: $\delta e_{1}=\nu^{\#}\left(\delta e_{1}\right)$. It implies that δe_{1} can be written $\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j}(0, h)$, where $h \in E_{1}\left(\mathbb{Z}_{q}, \mathbb{Z}\right)$. As the couples (x, y)
in e_{1} never begin with a 0 , we get $\left(0, e_{1}\right)$ while keeping from δe_{1} only the couples beginning with a 0 . Hence $h=e_{1}$, and we have indeed $\delta e_{1}=\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j} e_{2}$, since $e_{2}=\left(0, e_{1}\right)$.

CLAIM 3: $\nu^{\#} \circ C=C \circ \nu^{\#}$.
PROOF OF CLAIM 3: straightforward.
CLAIM 4:

$$
\begin{equation*}
\delta \circ C=C \circ \delta . \tag{8}
\end{equation*}
$$

PROOF OF CLAIM 4: Let $\sigma=\left(a_{0}, \ldots, a_{k}\right)$ be a $(k+1)$-tuple. We have

$$
\begin{aligned}
(\delta \circ C)(\sigma) & =\delta\left(\sigma,\left(\nu^{\# a_{k}} e_{1}\right)\right) \\
& =\left((\delta \sigma),\left(\nu^{\# a_{k}} e_{1}\right)\right)+(-1)^{k+1}\left(\sigma, \delta\left(\nu^{\# a_{k}} e_{1}\right)\right)-(-1)^{k+1} \sum_{j \in \mathbb{Z}_{q}}\left(\sigma, j,\left(\nu^{\# a_{k}} e_{1}\right)\right),
\end{aligned}
$$

et

$$
\begin{aligned}
(C \circ \delta)(\sigma) & =C(\delta \sigma) \\
& =\left((\delta \sigma),\left(\nu^{\# a_{k}} e_{1}\right)\right)+(-1)^{k+1} \sum_{j \in \mathbb{Z}_{q}}\left(\sigma, j,\left(\nu^{\# j} e_{1}\right)\right)-(-1)^{k+1} \sum_{j \in \mathbb{Z}_{q}}\left(\sigma, j,\left(\nu^{\# a_{k}} e_{1}\right)\right)
\end{aligned}
$$

Hence, $(\delta \circ C)(\sigma)-(C \circ \delta)(\sigma)=(-1)^{k+1}\left(\sigma, \delta\left(\nu^{\# a_{k}} e_{1}\right)\right)-(-1)^{k+1} \sum_{j \in \mathbb{Z}_{q}}\left(\sigma, j, \nu^{\# j} e_{1}\right)$. But, according to equation (7), $\delta\left(\nu^{\# a_{k}} e_{1}\right)-\sum_{j \in \mathbb{Z}_{q}}\left(j, \nu^{\# j} e_{1}\right)=\nu^{\# a_{k}}\left(\delta e_{1}\right)-\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j}\left(0, e_{1}\right)=0$ (we have $e_{2}=\left(0, e_{1}\right)$). Thus $(\delta \circ C)(\sigma)-(C \circ \delta)(\sigma)=0$.

Proof of Lemma 2: By induction on l.
For $l=0$, we have $\delta e_{0}=\left(\nu^{\#}-\nu^{\#-1}\right) e_{1}$: indeed, let $c:=(2)+(4)+\ldots+(2 r)$; according to equation (6), we have $\delta c=\left(\mathrm{id}^{\#}-\nu^{\#}\right) e_{1}$; we have also, $\delta((0)+(1)+\ldots+(2 r-1)+(2 r))=0$ (the checking is straightforward); hence, $\delta(0)+\delta c+\delta \nu^{\#-1} c=0$; and thus $\delta(0)=\left(\nu^{\#}-\right.$ $\left.\nu^{\#-1}\right) e_{1}$. Claim 2 is the relation: $\delta e_{1}=\left(\mathrm{id}^{\#}+\nu^{\#}+\cdots+\nu^{\# q-1}\right) e_{2}$. Lemma 2 is proved for $l=0$.

Let's assume that Lemma 2 is proved for $l \geq 0$. According to Claim 3 and Claim 4, we have then:

$$
\delta e_{2 l+2}=(\delta \circ C)\left(e_{2 l}\right)=(C \circ \delta)\left(e_{2 l}\right)=C\left(\left(\nu^{\#}-\nu^{\#-1}\right) e_{2 l+1}\right)=\left(\nu^{\#}-\nu^{\#-1}\right) e_{2 l+3}
$$

and
$\delta e_{2 l+3}=(\delta \circ C)\left(e_{2 l+1}\right)=(C \circ \delta)\left(e_{2 l+1}\right)=C\left(\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j} e_{2 l+2}\right)=\sum_{j \in \mathbb{Z}_{q}} \nu^{\# j} e_{2 l+4}=\left(\mathrm{id}^{\#}+\nu^{\#}+\ldots+\nu^{\# q-1}\right) e_{2 l+4}$.

References

[1] M. de Longueville and R. T. Zivaljevic, The Borsuk-Ulam-property, Tucker-property and constructive proofs in combinatorics, J. Combinatorial Theory, Ser. A, 113:839-850, 2006.
[2] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19:65-69, 1983.
[3] K. Fan, A generalization of Tucker's combinatorial lemma with topological applications, Annals Math., II Ser., 56:431-437, 1952.
[4] R. M. Freund and M. J. Todd, A constructive proof of Tucker's combinatorial lemma, J. Combinatorial Theory, Ser. A, 30:321-325, 1981.
[5] S. Lang, Algebra, Addison-Wesley Publishing Company, 1993.
[6] F. Meunier, Improving on the chromatic number of Kneser graphs with improved topological lemmas, J. Graph Theory, 49:257-261, 2005.
[7] F. Meunier, Combinatorial Stokes fomulae, Eur. J. Combinatorics, to appear.
[8] J. Munkres, Elements of Algebraic Topology, Perseus Books Publishing, 1984.
[9] T. Prescott and F. Su, A constructive proof of Ky Fan's generalization of Tucker's lemma, J. Combinatorial Theory, Ser. A, 111:257-265, 2005.
[10] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica, to appear.
[11] G. Simonyi and G. Tardos, Colorful subgraphs in Kneser-like graphs, Eur. J. Combinatorics, to appear.
[12] G.M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Inventiones Math., 147:671-691, 2002.

[^0]: *Algorithm Project, INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France E-mail: frederic.meunier@inria.fr

