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Summary We study dislocation dynamics with a level set point of
view. The model we present here looks at the zero level set of the
solution of a non local Hamilton Jacobi equation, as a dislocation in
a plane of a crystal. The front has a normal speed, depending on the
solution itself. We prove existence and uniqueness for short time in
the set of continuous viscosity solutions. We also present a first order
finite difference scheme for the corresponding level set formulation
of the model. The scheme is based on monotone numerical Hamilto-
nian, proposed by Osher and Sethian. The non local character of the
problem makes it not monotone. We obtain an explicit convergence
rate of the approximate solution to the viscosity solution. We finally
provide numerical simulations.
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1 Introduction

The object of this article is to prove the convergence for a first or-
der finite difference scheme that approximates the solution of a non
local Hamilton Jacobi equation, describing a model for dislocation
dynamics.

The model looks at a dislocation (see [AHLM2] for a physical
presentation of the model for dislocation dynamics) in a 2D plane
as the zero level set of a continuous function u, solving the following
equation:
wla, 1) = (@« bi(ey,0) [Vu(e,p. 0] Bx©T)

where [u] is the characteristic function of the set {u > 0}, defined by

1 ifu>0
— = 2
[l {0 if u < 0. @)

Here V indicates the gradient with respect to the spatial variables,
the kernel c°(z,y) depends only on the space variables and x denotes
the convolution in space.

The equation

pe(z,y,t) = (O % p(z,y,1)) [Vo(z,y,t)| R x (0,T)
p(z,y,0) = p°(z,y) R?,
has been studied in the case of discontinuous viscosity solutions p in
[AHLM2,ACM], where short time existence and uniqueness results
are proved under certain conditions. This equation is related to (1)
since one expects that p = [u] for p° = [u0].

The paper is organized as follows. In section 2 we present the ap-
proximation scheme for the problem (1). In section 3 we present our
main results: existence of continuous solution of the problem (1) and
convergence of the corresponding approximation solution. These re-
sults are respectively proved in Sections 6 and 7. In Section 4 and 5
we establish auxillary regularity results respectively for the continu-

ous and discrete problem. In Section 8 we propose some numerical
simulations.
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2 Setting of the problem

We build a first order finite difference scheme that uses a monotone
numerical Hamiltonian for the norm of the spatial gradient, the dis-
crete convolution for the non local speed and forward Euler scheme
for the time derivative. _

Given a mesh size Az, Ay, At and a lattice Q7 = Q4 x{0, ..., (At) Nz}
where Q4 = {(iAz,jAy) : (i,j) € Z?} and N is the integer part of
T /At, we will denote with (z;,yj,t,) the node (iAz,jAy, nAt) and
with v" = ('ugfj)i,j the values of the numerical approximation of the
exact solution u(z;,y;,tn). We set AX = (Az, Ay) so that its Eu-
clidean norm |AX]| is the space mesh size. We shall assume through-
out that |[AX| <1 and At <1.

The main difficulty with (1) is clearly due to the the dependence
of the velocity on the solution itself. This requires the availability of
the solution we are intending to approximate. We solve this problem
by fixing the solution on each time step [t,,t,+1] and we apply a
monotone scheme S :

¢ _ .0
iy — U (i, yj)-

{fu"+1 = S([v"],v",4,5) n=0,....,Ny—1 3)
v

The scheme S is an explicit marching scheme:

S([v"], 0", 5) = v+ AtHg([v"], D;v{fj, D;'vzj, Dy wii, Doy,

7),
(4)

1 ifo?. >
GRS (5)
0 ifvg; <O,

where

and the discrete numerical Hamiltonian reads:

Hd([vn]aD;UzrfjaD;”ZjaD;UZjaD;ijaiaj) = (6)

{ci,qun])w if ¢15([v"]) > 0
Cz‘,j([’l)n])Ef if Cz‘,j([ﬂn]) < 0.

Here Et,E~ are numerical monotone Hamiltonians that approxi-
mate the Euclidean norm. For concreteness, we shall take those pro-
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posed by Osher and Sethian in [OS]:

Et = {max(Djv Z"],O) +maX(D+ ’an’O)Q

1
+ min(D; v};,0)% + min(D, v}';,0)* } 2

E~ = {min(DJv ?],O) +m1n(D+ ;L],O)2

+ max (D v?;,0)? + max (D, v;"; 0)2 }

’L]’ ZJ’

DFov”. and D, v} i are the standard forward and backward first dif-

z Vi j
ference, i.e. for a general function f; ; :

D+f17] — f'L—|—1,j f'L,]

Az
D fz,j — f’l,] Afl
fij+1 — fi
D+f »J J )
Zaj Ay
fz Vi fz j—1
Dy fij = A AL
Z,J Ay
The non-local velocity in (6) is the discrete convolution
Ciaj(['vn]) = Z Eg—l,j—m[vn]l,mAxAya (7)
l,m€eZ
with .
Gy = A (z,y)dzdy (8)
’ ‘QZ,]' Q7,,]

where @Q; ; is the square cell

Qij = [ — Az /2,2; + Az /2] x [y; — Ay/2,y; + Ay/2].

3 Main results
3.1 Notations

To state our result, we need some notations.
BV (R2) is the space of functions on R? with bounded variation :

BV(R®) = {u: R* - R: |u|gy(re) < oo},
for |u|py(re) = |ulr1g2) + [Dulp(re2) Where [p|pre) = |1l (R?) desig-

nates the total variation of the measure . We also denote by Lip(R?),
resp. Lip(R? x [0,T')), the set of the globally Lipschitz functions in
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space, resp. in space and time. The functions can be unbounded, but
they will have at most linear growth.

Following [AHLM1], given a function u € L] _(R?), we define the
quantities

lul g gy = sup / l,  Julges 2:/|u|oo N
Lunlf(R) (w’y)eRz Q(Z,y) Llnt(R) R2 L (Q( y))

where Q(z,y) is the unit square centered at (z,y):

1 1
Qz,y) ={@"y) €R sz -2 < S ly -] < 5}

We denote respectively by L. .:(R?*) and Lg, (R?) the space that con-
sists of the functions for which these quantities are finite.
We will make use of the following inequality (see [AHLM1] for the

proof):

Lemma 31 (Convolution Inequality)
For every f € LL,(R?) and g € L. . (R?), the convolution product

int unif

f *g is bounded and satisfies

f % glre@2) < |l @9l (re)-

nt

For a function u(z,y,t), we denote with L,, the Lipschitz constant
of u with respect to (z,y) and with L], the Lipschitz constant of u
with respect to t, i.e.

u(z,y,1) — u(a,y', )| < Lul(z,y) - (2 4) + Lyt — ¢

for all z,z’,y,1y/,t,t'.

Functions in (z,y,t) on the lattice Qg (with nodes (z;,y;,tn) =
(iAz, jAy,nAt)) are written indifferently f7'; or f".

We denote by Ls» the spatial Lipschitz constant of f":

125 = Ffoal < Lgel(@ir5) = (@1,m)

for all z;,y;, z;, ym. We will also use the discrete 1-norm defined by:

If1r = 1f (@i y)) | Az Ay.

4
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3.2 Ezistence and convergence

We state our existence and uniqueness result for the problem (1),
whose natural framework is the theory of continuous viscosity solu-
tions (see for instance [B],[CL1],[CEL]).

Theorem 1 (Short time existence and uniqueness) Let u° €
Lip(R?) satisfying

0
a—uy(a:,y) >b>0 inR ae. (9)
Let ¢ verify
& € LL,(R?*) N BV (R?). (10)

Then there exists

T* = mi L <1+ b ) b !
=mins 77— in = |y T T
|CO‘BV(R2) 2Lu0 Luo 16|CO|L?&(R2)

for which there ezists a unique viscosity solution u(z,y,t) € Lip(R? x
[0,T*)) of the problem (1) in R% x [0,T*). The solution verifies

|Vu(z,y,t)| < 2Ly, on R x[0,T*) a.e. (11)
Z—Z(m,y,t) >b/2>0 on R®x[0,T%) a.e. (12)

Our second main result is a convergence result for the scheme (3)
to the solution of the problem (1), with an estimate of the rate of
convergence. It turns out that we can obtain the same rate as the
one for fronts with a velocity that is independent of u.

Theorem 2 (Numerical error estimate) Let us consider the vis-
cosity solution u(zx,y,t) of (1) on R? x [0,T*), with initial condition
u? satisfying the assumptions of Theorem 1. Let Vpj be the numerical
solution of the scheme (3). Assume that the time step At satisfies

At = M Az, At = N\, Ay (13)

with Az, Ay positive constant such that

1
0< A Ay < ————.
SR WO
Then there exist a time 0 < T; < T* and a positive constant
C, depending only on Ay, Ay, |cO|L;,>§t, || By, |Vul|Le, b (where b is
defined in Theorem 1) such that

sup |u(z;,y;,nAt) —v;;| < C|At|% ;, n=0,...Np:. (14)
1,jEZ
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Remark 31 We could actually use the CFL estimate
1

0 < Agy Ay < (15)
o 2v/2sup; ; |¢; ([v™)]

that corresponds to a mon uniform time step or the estimate

1
0< Ay Ay £ ———

SR WO
that is uniform in time but still depends on the mesh. This CFL con-
ditions are weaker than the one given in the statement of the Theorem
by virtue of the inequalities

sup [ei g ([W"])] < 21 <[]
0]

Our numerical schemes will freely use these refined conditions.

Remark 32 We can choose Hy as any monotone and consistent nu-
merical Hamiltonian; for instance you can replace the Osher-Sethian
with the one proposed by E. Rouy and A. Tourin [RT].

Remark 33 F. Sabac has proved in [S] that the rate of convergence
1/2 in L' of monotone finite difference schemes for hyperbolic con-
servation laws is optimal. From this result the convergence rate 1/2
in L*® for Hamilton Jacobi equation seems sharp.

Remark 34 From the proof of Theorem 2, it can be easily seen that
we do not only get an error estimate between the continuous and
the numerical solutions, but also get an error estimate between the
position of the continous and of the numerical level sets.

4 Preliminaries for the continuous problem

Lemma 41 (A priori regularity for the eikonal equation) Con-
sider the eikonal equation

ug = c(z,y,t)|[Vu| in B2 x (0,T), u(-,0) =u® in R2. (16)

Suppose that the velocity c is bounded and continuous with respect to
all the variables and is Lipschitz continuous in space with Lipschitz
constant L.. Suppose also that the initial data is Lipschitz continuous
and satisfies
o 0
|Vu®| < BY, ai >0 a.e. in R?,
Y
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for some constants BY > 0 and b° > 0.

Then, the eikonal equation (16) has a unique viscosity solution u
with at most linear growth in space. Moreover, u is Lipschitz contin-
wous and we have the estimates
8“(7t)

ot

ou(-,t)

B 2 b(t) a.e. in B2 x (0,T),

[Vu(-, )] < B(t), | | <C@),

for the functions
B(t) = B%"', O(t) = |ele=B%"", b(t) =t" — B® ("' —1).

PrROOF  The solvability of the eikonal equation (16) in the set of
the continuous functions with at most linear growth is classical (see
e.g. Barles [B] for a proof). The Lipschitz bounds in space and time
are also standard (see e.g. Crandall, Lions [CL2]; see also [AHLM?2]
for a complete proof that is more adapted to the present equation).

To establish the lower bound on du(-,t)/dy, we simply consider
for A > 0, the function

Nz, y,t) = u(z,y + A\, t) — Ab(2).

We check easily that this is a supersolution satisfying @*(z,7,0) >
u(z,y,0). The comparison principle shows that we have

u >u
ie.
w(z,y + A\, t) —u(z,y,t) > Ab(t) for every A > 0.
This is the integral form of the differential bound in the statement of
the lemma. O

The next lemma, concerns the estimate of the distance of the level
sets of two functions u! and 42, which are assumed to be increasing
in one direction as a function of |u! —u?|1«. We measure the distance
of two level sets as the area of the difference of the two characteristic
functions associated.

Lemma 42 (Estimate on the characteristic functions) Let u! €
C(R?) satisfy

o 1

A Sy

Ay
in the distributions’ sense for some b > 0 and u? € LS, (R?). Then,
we have the estimate

|[w?] = [u']] 2

unif

< %|u2—u1|Loo. (17)
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PrROOF We fix (Z,7) € R? and we set Q = Q(7,7). We set M =
|u? — ul|;~ and we redefine u? on a set of zero measure so that
|u? — ul| < M everywhere. We fix z € [T — 1/2,T + 1/2] arbitrarily.
Since u'(z,y) — by is nondecreasing in y and continuous, there is a
unique ¥, so that u!(z,y,) = 0. We claim that

Ay ={y e g—1/2,9+1/2] | W’](z,y) # [u'](z,y)}
C [yz — M/b,y, + M/b).

Indeed, if y, + M/b < y <7+ 1/2, we have that
u2(x,y) Z ul(xay) -M 2 ul(xayw) + b(y - yl‘) -M>0.

So, both u?(z,y) and u'(z,y) are positive; hence, [u?](z,y) = [u'](z,y).
Similarly, whenever y—1/2 < y < y,—M /b, both u?(z,y) and u'(z,y)
are negative, hence [u?](z,y) = [u!](z,y). The required inclusion fol-
lows.

For every z € [T—1/2,7+1/2], we deduce from the inclusion that

y+1/2
/ [w?)(z,y) — [u'](2,y)| dy < meas(As) < 2M/b.
y—1/2

Integrating with respect to z, we deduce that |[u?] — [u1]|L1 (0@a) <

2M/b. Taking the supremum over (Z,7y) yields the bound of the
lemma. O

Finally we will use the following result which is a simple adapta-
tion of a result in [AHLM?2]:

Proposition 43 (A stability result, [AHLMZ2])
Let us consider for p = 1,2 two different equations

{ut =cP(z,y,t) |[VuP| on R2x(0,T)
( ,yaO) - O(x,y),
with initial condition u® and velocity P satisfying the assumptions in

Lemma 41. B
Then we have for every t € [0,T):

(18)

0?5, 8) = ul (- 1) | poo m2)
/ |C )‘L°°(R2) max (|VU1(3';3)|L°°(R2);
|VU2('3';3)|L<>°(R2)) ds
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5 Preliminaries for the discrete problem

Let us consider the equation
Uy = C(iL', Y, t)|V’U/|
and the monotone scheme

oj ! = vl + AL HM W) (19)
with L
numy, n. oo ) G BT >0

H (U aza])_{c’zﬁ;jE— lf CZ]SO ? (20)
where ET and E~ have been defined in Section 2. We assume through-
out that the CFL condition (15) holds with cf; instead of ¢; ;([v"]).
We establish in this section several estimates that are the discrete
analogues of the results obtained previously.

Lemma 51 If for some M™ > 0 we have

n n
Yij+1 ~ Vi
Ay

gl n
Vit1,j ~ Vi

<M", Vi,jeZ
A"E — R Z’Je

b

and

g — .
Cit1,5 ~ Giyj

M= M (1 + 2At sup (

ijez Az ’ Ay
then
U?ﬂj—llj — ?;_1 +1
L gl e Z. 21
e > i (21)

Exchanging 7 and j and changing sign, we obtain the following corol-
lary.

Lemma 52 (Discrete gradient estimate) If for some M° > 0 we

have

0 .0

Vi1~ Vi
Ay

0 0
Vit1,7 ~ Vi

< 0 ..
N <M°, Vi,jeZ

bl

and

noo_ el
Cij+1 ~ G
Ay

T — .
Cit1,j — Ciyj
Az

7

M =M™ | 14 2A¢ sup (
1,JEZL

)

<M" Vij€Z VYneN

then

n — T,
Yig+1 ~ Vi
Ay

n — .
Vi1, ~ Va4
Az

bl
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PROOF OF LEMMA 51 We consider the function

n __ n n
wi’j = IUi—l—]_,j —+ M A.’,C

By assumption, we have

wl; >} Vi,j € L.

We will check that w is a discrete supersolution, i.e.

witt — (wf; + AtH™™(w™;4, 5)) > 0. (22)

Since the scheme is monotone and v; is a solution, (22) will imply

that

J
wift > ot Vi, j e Z,
which is exactly (21).
Let us show that w™ is a discrete supersolution

Wi = (wf + ALH™ (w755, 7))

]
sz:Lllj + M Az — (v} + M™ Az + AtH™™ (w";4, 7))

= (M™! — M™) Az + At (H™™(v";4 + 1,5) — H™™(w";4, §))
= (M"+1 — M") Az + At (Hnum(v";i +1,75) — H™™ (", R ,]))

Assume that ¢, and ¢ have the same sign, e.g. that they are

1,] i+1,5
nonnegative. Then,
n+1 n num/, n,,; .
w;'] (wi,j + AtH™™ (w ,’L,j))
' n
Cit1,j ~ Ciyj
Az

” — .
Cij+1 ~ Cij
Ay

bl

=2M" AtAz sup (

) + (C?+1,j — CZ])AtE+
1,J€EZL

7 —cm.
Gy T Gy
Az

If ¢ ; and ¢;'; do not have the same sign, the conclusion prevails
because of the estimate for a,b > 0:

n — .
Cij+1 ~ Ciyj
Ay

" — .
Cit1,j — Ciyj
Az

bl

> 2M" AtAx (sup (
%,JEL

> 0.

\cﬁrl’ja b| < max(a, b) max(\cl+1j| \c”|)
< max(a,b)\ciﬂ’j — c?’j|
cho. . —ch,
< max(a, b) %&:m Az
This ends the proof of the lemma. a

In the same way we can prove:
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Lemma 53 (Discrete gradient estimate from below) If for
some b° > 0, we have

0 0
Vgl T Vg S 0y Y/
Ay - 7 7
and
B — B 2A¢ sup ( G~ G| |G ) un
i,jET Az Ay

then " "

ol — ol

Litl ) sy VijeZ VneN (23)

Ay
PROOF We consider the function

n _ ,n 7
wi,j = Ui,j—l + b Ay

By assumption, we have
wi; <oy Vi, 5 € Z.
One can check easily that w is a discrete subsolution, i.e.

wi = (wf; + AtH™™ (w";4, 7)) < 0. (24)

Since the scheme is monotone and v;; is a solution, (24) implies that

n+1 n+1 ..
w; ;- < Vi,j € Z,

which is exactly (23). O

Proposition 54 (A numerical stability result) Let us consider
two numerical solutions v™ and w™ of the corresponding monotone
scheme (with the same initial condition)

ot = oy + AtHM™ (51, §) (25)
and

w’fj'l = wy; + AtHF"™ (w";1, j) (26)
with H"™

H™(0"54,5) =

cll’]"E+ if cln>0
cl’nE* if c 0,
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where ET and E~ are defined in Section 2 and HY"™ defined similarly
as H™™ .
Then there exist a positive constant C, depending on the discrete
gradients estimate on v and w, such that
sul)|vgf;-'1 — wz;'1| < CTsuﬂci’}L - c?”ﬁ. (27)
Q4 Q4

Proor We follow the proof of the Prop.43 in [AHLM2]. We look at
the numerical solution v™ in the scheme (26):

nt+l . n.
M g, )| = [HE (0", 5) - HE (075, 5)

< max(Ej, Ef)\ci’f - cff

We set K = sup |ci’;-1 - ci’j"\ max(E;", E) (K can be bounded by a
Z’J,n

quantity that only depends on the estimates for ||c||f« and on the

bounds of the discrete gradient of v) and we define 9;; = v, +nK At.

This discrete function verifies

~n—+1 ATl num/(asn, ;
by > 0 + AtHy"™(0";1, 7).

Since the scheme (26) is monotone, this implies

bij > Wigs
i.e.
wy; — v < nKAt.
Exchanging the role of v™ with w™ we finally obtain (27). O

We prove an estimate on the discrete characteristic functions.

Lemma 55 (Estimate on the discrete characteristic functions)
Assume that for some b > 0, we have

1 1

v — V.

It s Vi e Z.
Ay

Then, for all i, we get

2 1
sup; ; [vi; — v; ;
Z\[v?,j]—[v%,j]lﬂyﬂ( e “‘y)-
JEZL

for every vfj.
2
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ProOOF For each | € Z, let m; € Z such that

1 1
Ul,ml < 07 IUl,ml—H Z 07

i.e.
Wiy =0, [V 1] = 1.
Let
M := sup \vl%m —Ull’m\
(I,m)ez?

and fix P € N such that M < bPAy < M +bAy. Then, for all p > P,
we have

2 1 1
Vimgt+pt+1 = Vlmytpt1 — M 2 V41 +0PAy — M > 0.
Similarly,

vzmz—p S ”ll,mz—p +M < Uzl,m, —bPAy+ M < 0.

Therefore,
2 1 2 1
[Ul,ml+p+1] =1= [Ul,ml+p+1]’ [Ul,ml—p] =0= [Ul,ml—p]'
This implies:

M
> Wi — vl Ay < > Ay < 2PAy <2 (7 + Ay) :
meZ m;—P+1<m<m;+P

O

6 Proof of theorem 1

PROOF
We define the set

( |Vu(z,y,t)| < 2L,0 a.e. )
ou

b
gu > ae.
F={ucLE® x[0,T), |ay ¥t 230

ou
‘E(:c,y,t) < 2Lu0|CO|Li°§t(R2) a.e.

\ 7/

where T is to be defined later. We endow E with the topology of
uniform convergence, e.g. with the distance

: b
d(ul,u2) = min (|’U,2 - ’u,1|Loo(R2X(0,T*)), Z)
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We note that F is a complete metric space.

We fix p € E. Then, the convolution c¢(z, y,t) := (<’ x [p(-, -, 1)]) (z,y)
satisfies the following properties.

Bounded in space and time:

sup (CO*[p('a'at)]) (m,y) <
R2x[0,T*)

0
S (- Dlzy w2l |Lgg, o) <

‘CO|L;’§t(R2)a

because |[p]| < 1.
Lipschitz in space: let z,y,z',y' € Rt € [0,T%)

‘ (CO * [p(7 at)]) (l‘, y) - (CO * [p(a at)]) (‘Tlayl)| S
‘CO|BV(R2)(‘$ —a'[+ 1y =)
Continuous in time. For all p € E, for all t1,t3 € [0,T7%),z,y € R
[ (% [p(-, -, 10)]) (2,8) = (" x [p(:, -, t2)]) (2, 9))|
<1 g @) llp(s 1)) = [pCy s )]l w2y
4
< |C |L°° (R2) 7 b |p(a 'atl) - p(', ) t2)|L°°(R2)
8
< gLu0|CO|%;>;t(R2)|t1 — ta].
We have used Lemma 42 for the second inequality, and the definition
of the set F for the last inequality.

From Lemma 41, we can therefore define w as the unique viscosity
solution of

{ = (P« [p]) [V on B x (0,77)
(-, 0) = u(-, )

We have that w € E as long as b(t) > 2 and B(t) < 2L, on [0,T*)
(where the expressions of b(t) and B(t) are given in Lemma 41 with
B = L0, and b° = b). This holds true if

1
T* < min Oiln(l—i— b ), 01112 .
1<l gy w2 2Ly ) " | gy (w2

Since b < L0, the min reduces to the first term:

T* < min %ln(l—i— b )
1<l By (r2) 2Ly0
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The operator ¢ defined by ¢(p) = w therefore maps F into E. Fur-
thermore, from the stability result (Proposition 43) and the estimate
on the characteristic function (Lemma 42), we get for v’ = &(p*)

[w? = w'|Loo w2 (0,74
< 2Ly T % [p7] = ¢ % [0"]| Lo (m2 (0,77
< 2L T 1Pl rey SU [[671C2-28) = 1o Dl e

. 4
< 2L40|¢”| Lo, (g2yT™ min (—|P2 — p'|eo@x o, 1)

8L0
< — oo m2) T d(p®,p")

Choosing

T* — mi L <1+ b ) b !
=min{ — In — ), — 0,
1<%l By w2y 2Lyo Lo 16(c?| e ()

we conclude

—_

d(w?, w') < |w® — w'| L@z o)) < 5 AP p")

[\

i.e. @ is a contraction. By the fixed point theorem, we conclude that
there exists a unique viscosity solution on (0, 7). This ends the proof
of the theorem. O

7 Proof of theorem 2
7.1 The abstract convergence theorem of [ACMR]

In this section, we recall the abstract convergence result of [ACMR]
for the discretization of the non local eikonal equation

ug = clu] |[Vu| in R? x (0,7**),  u(-,0)=u" in R%. (28)
We suppose that the equation has a solution u € Lip(R? x [0, T**))
and that c[u] € WH™(R? x [0,T**)).

Let EA = RZ**{0,--NT} e the set of discrete functions defined
on the mesh QT and B4 = ET** We denote by G2 : E'A — EA

the operator that associates to a given discrete velocity ¢® € E2 the
discrete solution v of the finite difference scheme

: A
{U?H = o + At A (X1, t,) Ezlgn(c (Xptn)) (D", D o™,

o0 = W (Xy). (29
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Here E’ff = Efit (pi,py Pz >p,) is a suitable approximation of the
Euclidean norm that is Lipschitz continuous, consistent with the Eu-
clidean norm (i.e. E;t (PzsPys Pz>Py) = |(Pe,Py)|) and monotone

OET OE; OE; OES
>0, >0, < <0, < <0,

Opz Opy Opz Opy

B E E E

aiso, 8150, Pa 5, %P5

Opz Opy Opz Opy

One readily checks that the Osher-Sethian Hamiltonian recalled in
section 2 satisfies these properties.

For every mesh A and every T' < T™*, we consider two subsets
U4 and VA of E4 and set UA = UANE# and VA2 = VAN EZ. For
all T < T**, we assume that GA(VA4) C U and that (u)5 € UZ,
where (u)% is the restriction to Q?; of the continuous solution u of
(28).

We also assume that the sets U2 and V4 are respectively equi-
Lipschitz and equibounded in the sense that there is a constant K so
that, for every mesh A,

|IDYw| <K, |¢f<K, foralweU?andceV4 (30)

In addition, we suppose that the following uniform CFL condition
is satisfied

L L
<= A At = A
for
_ OF OF OF oF
L' =2max (I 2 geo + |72 oo, | 7 |peo + |52 L°°>
Opz Ops 8py 8py
and

K = sup sup |c?]so-
A yA

For the Osher-Sethian Hamiltonian, one computes easily that L =
1/2+/2. This guarantees that the scheme defined by (29) is monotone.

These assumptions imply the following stability of the operator
G4 (see Proposition 54): there is a constant K so that, for every
mesh A satisfying the CFL condition (31), for all 0 < 7' < T** and
all c1,c0 € VTA,

sup |G’A(02) — GA(cl)\ < KT sup |cg — c1]- (32)
A

Q4 QT
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Finally, we approximate the nonlocal velocity mappingc: U — V
by a map ¢? : U4 — V4 so that ¢A(U£) C VA for all T < T**. We
make the following two assumptions.

Consistency for the discrete velocity ¢ There is a constant K
such that, for every mesh A, for every T' < T**, we have

sup cfu] — ¢*[u?]] < K|AX| (33)
o

(where u is the solution of (28) and u = (u)#% is the restriction of u

to Q4).
Stability property of the velocity ¢ There is a constant K so
that, for all meshes A, for all 0 < T < T™** and all wi,ws € Urﬁ,

sup |2 [ws] — ¢ [wy]| < K (sup [we — wy| +|AX]). (34)
Q2 Q7
We also suppose that c? is stationary, i.e. that there is a mapping
¢ such that ¢2[w](-,t,) = ¢ [w(-,t,)]. This implies that the explicit
non-local scheme

Vit = 4 At ¢Al)(Xr, t) BN Kt (pryn D=y,
vy = u’(X1)
(35)
has a unique solution for all time, which we denote by v.
The convergence result of [ACMRY] is as follows.

Theorem 3 Assume that T < T** A1. Then, under the previous
assumptions, there exists a positive constant K' such that, for all
0<T<T*AI,

K'\/T|AX
squ|u —v| < (1T|’T)+‘ provided |AX| < T/K'.
Q4

The constant K' only depends on the constants K, L, T**,

|c[ull w100 2 [0,7++)) and on the Lipschitz constants of ET, E- and
0

u.

7.2 Application of the abstract convergence result : proof of Theorem
2

In this part, we verify that the scheme presented in section 2 satisfies
the assumptions of the preceding subsection for 7** = T%/2. Theo-
rem 2 will then follow from Theorem 3 with T} = inf (T** AL, %)
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When
clu] = & x [u]
the solvability of the non-local eikonal equation (28) is guaranteed by
Theorem 1. Moreover, since |[u]| < 1, we have the uniform estimate

|e[ull w002 x[0,r+)) < ‘CO|BV(R2)'
We set

Uf = {w e B4 | |Dfwl, D u| < Lyoe™ <12,

n — wh.
wl:]"'l wl;] Z b _ Luo(e2T‘CO‘BV _ 1)}
Ay

and
VTA = {C € EA | |C| < |CO|L1(R2), |D:C|, ‘D;—C| < |CO|Bv}.

By Lemmas 52 and 53, we see after a straightforward computation
that GA(V,2) C U# for all T < T*. Moreover, by Lemma 41, (u)5 €
U74 for all T < T*. By definition, the sets U and V4 are clearly
equibounded in the sense of (30).

Now consider the non-local discrete velocity given by (7)—(8)

— _ 1
A= @ pllimdzdy, &= o Oz, y)dzdy
l,mez 611 Q4

It is clearly stationary.
In order to verify the remaining properties, we first note that ¢
can be written as the continuous convolution

c’fj [IU] = CO * [")#](372a y])7 (36)
where vy is the piecewise constant lifting of v
VE = D 0iXQug (37)

where xq, ; is the indicator function of @ ;. Indeed,

il = Y A mlmArAy
l,meZ

=) O (z,y)dzdy | [v]m Az Ay
|Qz l,j— m| Qi—t,j—m

I[,m€EeZ
- /Q By o))y
— (% [og))(@0,05)-
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Since |[v]| < 1, we deduce that for all u € UA we have
)l < 1lur,  IDFA] < [V % fugle < 1By

This implies in particular that ¢2(U#) C Vi#. Moreover, since

At = N\ Az, At = A\ Ay, with 0 <Az Ay <
z yAyY z 9 \/_|CO|L1
we see that the CFL condition (31) is satisfied (we recall that L =
1/24/2 for the Osher-Sethian Hamiltonian).
As concerns consistency (33), we deduce from Lemma 42 that

sup |¢j;[u)(-, tn) — cul (zi, 5 tn)
i

< sup [ [ug] (-, tn) — & * [u](- tn)]

< | es, (R2)|[ui]('atn) =[]tz (r2)
<1 oo w2y —|U§(',tn) —u(*,tn)| Lo (r2)
8L,

< |CO|L;>§t(R2) |AX].

Finally, to prove the stablllty (34), we note that
|eijlw'] = e [w?]
= | x [wi] (ms, y5) — & * [wi] (i, ;)]
< |CO‘L;’§t(R2)|[w;1£;E] - [w;a”Lllmif(R?)

< [€7] Leo (r2) SUP / w] — [w?]|de'dy’ | .
9], ER( A R\[ AR

Setting I? = [z — 3,z + 3] N [z; — 4%, z; + 5Z], we deduce from

Lemma 55 that for all z € R

[wy] — [wh]|da'dy'
/[m—%,z—l—l}xR # #
< Z [fwig] = [wf;1] 157] Ay
2 1 2 T
2| Ay + 3 Sup lw;; — wi ] Z 17|
Z’]

i

2
2 (Ay + 3 sup |w;; — “’z‘%ﬂ)
Z’]

for T < T*/2 which garantees that w”%;w” > b/2 for every w €
U#A. Combining the two estimates, we obtain (34).
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8 Numerical tests and applications

Let us first recall that the numerical error estimate given in Theo-
rem 2 shows that the scheme (3) gives accurate numerical solutions
when the gradient in the direction y of the initial data is supposed
bounded from below. In particular this implies that the dislocation
line described by the set of discontinuity of [u] is a graph in the y
direction.

From a computational point of view, the evolution of a graph is not
very convenient to implement. For this reason, we only consider here
the case of initial datum which are assumed to be [ -periodic in the
z direction and [y-periodic in the y direction. This will allow us to
work in a periodic box

(10, 1o [X[0, D) per

and to compute numerically the convolution using Fast Fourier Trans-
form. Our simulations will show that our scheme seems reasonable for
these numerical tests.

From the physical point of view, a natural kernel ¢? = cg is pro-
posed in [AHLM2] for the Peierls-Nabarro model. Its Fourier trans-
form is given by:

L(E+H)E)  wam
2\ yere

where v is the Poisson ratio that takes values in (—1,0.5), and § is
a constant proportional to the size of the core of the dislocations.
In our simulations we considered cases with 6 = C|AX| and 1 <
C < 10). Fig.1 represents the set {(z,c) € R? : 3y € R, s.t.c =
®(z,y)}, where the kernel ¢ = ¢} is the discrete Fourier transform
of expression (38) with § = 0.5, = 0.3.

D(Errty) = — (38)

8.1 Computation of the discrete convolution

Our method to compute the convolution is simply to take the inverse
Fourier transform of the product of the Fourier transform of ¢® with
the Fourier transform of

w = [v"].

This procedure is much less expensive from the computational point
of view than the trivial direct discrete convolution. The main result
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10

210 -
20 +
30 +
40
50
60
70 +

Fig. 1. Anisotropic kernel in the Peierls-Nabarromodel

of this subsection is Lemma 81 which shows explicitely how to com-
pute the convolution in Fourier space.

We divide the interval [0,l;[ in m, intervals of length Az =
l;/mg and do the same for [0,l,[ in m, intervals of length Ay =
ly/m,. We introduce the notation M and L for the matrices M =
(”OL”” n2y> L= (low l(:,) We set Qur = [0,1,[x[0,4,[ which is dis-
cretized in Qg = Qa N Qm = {(=i,y;), (4,5) € Z3,} with Z3, =
{0,...,mgy — 1} x {0, ..., my — 1}.

From (36)-(37), we see that the discrete velocity c2 is given by

cf = (¥ *wy) (X))

where wy is the piecewise constant lifting of w; = [v}] defined by

Wy = Z wWrxQr-
Iez?

We recall that we assume that v} satisfies the following periodic con-
ditions

n _ n _ n
Vitmg,j = Yiyj = Vij+m,- (39)
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As a consequence we see easily that w and ¢? are also periodic, i.e.
satisfy (39) and then are characterized by their values for I € Z2 .

On the one hand, for a general discrete function f = (f) Jez2, We
define its discrete Fourier transform by

(f/I\)P — Z f.] e—i27r.]T.M—1.P’ Pec Z%\J
Jez?,

and the inverse Fourier transform is given by
1

3 2nJT.M-1.p 2
= E , PeZy. 40
fp Mg My = (f)J € M ( )
M

On the other hand, we take the following definition for the Fourier
transform of ¢ (using the notation X = (z,y)):

H(s) = # /R I X (X)X,

Then we have the following result

Lemma 81 (Computation of the discrete convolution by dis-
crete Fourier transform) We have

(EZ)P = Wp - (CNO)p for every P € 7% (41)
where
e~ R : Azy Ay
()p = Z D). szn(%ﬁ ) szn(ﬁzyg ) Az Ay,
{¢€=(&z,6y)=nL=1(P+M-K), KEZ?} (fwT) (fyT)
(42)

and &0 is the Fourier transform of the kernel .

From the numerical point of view, the main interest of this lemma,
is to compute the convolution as a simple multiplication in the Fourier
space. This computation is very quick, using first the Fast Fourier
Transform to compute (p) p, and then the inverse Fast Fourier Trans-
form to compute (cy)s in the real space.

In our model, we see from expression (38) that the coefficients
g)(f) with ¢ = 7L~ - (P 4+ M - K) decrease exponentially with K.
In particular when §/|AX]| is large enough, we see that c?)(f ) is quite
well approximated by the first term in the serie (42). The choice of
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this first term depends on the values of P and provides the following
approximation

S SIUERE)  sin(é,FY)
&%) (&Y

(43)

with{ =nL1- (P+ M- K) and K = (ky, k) is defined by (for the
subscripts a = z,y)

ko= 0 if 0 < Pa < Mo /2
ko =—1 if my/2 <pg<mgy—1

Proof of Lemma 81 Using definition (8) we get for P € Z%:

(xwy)(Xp) = ) wK/ A (Xp — X)dX =

KeZ2 K
=0
= Z wgTp_k|Qol
Kez?
— =0
= Z wy Z cpym.k|Qol
Jezrs, KeZ?
=D withy
Jez?,

where we define:

& =1Qu Z b imkc
KeZ2

Then an easy but tedious computation shows that the coefficient
(EO ) is related to ¢® by relation (42). This ends the proof of the
Lemma.

8.2 Numerical simulations

In all our simulations, we take Ax = Ay and we plot the level sets
each N iterations. We refer to the table for the values of the param-
eters used for Fig. 2 to 8.
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Fig. 2. Isotropic shrinking of a circle

[Tig [v [0 |du—Ady At [ N
2 0 0.5 |0.04 0.001 | 50
3 0.33 1 0.5 |0.04 0.001 | 40
4 0 0.5 |0.03 0.001 | 20
5 0 0.02 | 0.03 10~* | 150
6,7,8 | 0 0.5 |0.03 0.001 | 30

8.2.1 Isotropic/anisotropic collapse of a circle We propose two tests
regarding the shrinking of a circle: the isotropic and the anisotropic
case. The problem (1) is approximated in [—3,3]? with u%(z,y) =
(max(2 — 2% — 92, O)% —0.5). In the isotropic case (Fig. 2 with v = 0)
the circle shrinks in a self similar way. In the anisotropic case (Fig.
3 with v = 0.33) the circle shrinks changing shape like an ellipsoid
elongated in the direction of the physical Burgers vector (see for in-
stance [AHLM2] or the references quoted therein such as Hirth and
Lothe [HL] for more explanation).
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Fig. 3. Anisotropic shrinking of a circle

8.2.2 Convez/non-convez evolution depending on the core size § We
consider the problem (1) in [~1,1]? with

L5—=(|&=nl+|E+n) [E=—nl+|E+n <3, |0l <15
u’(¢mn) =< —1.5 € —n|+[€+n| >3,1&],|n <15
~15 €, [n] > 1.5

where £(z,5) = 3(v3o + y),n(5,y) = (v3y + 2). Here, we are
looking at the collapse of a non smooth front: the square.

In Fig. 4 we show a non-convex evolution of the square. This non-

convex evolution is possible here, because we chose the size § of the
dislocation core large enough with respect to the size of the square. At
these scales, the dislocation is so small, that its non-convex evolution
has not really a physical meaning.
In Fig. 5, we decrease § by a factor 25, such that the new size ¢ of the
core is now less than the size of the square. Here we recover a convex
evolution. In fact the corners get smoothed and the square evolves
approaching the shape of a circle. This is coherent with the fact that
when § goes to zero, it is physically expected that the limit evolution
is decribed by Mean Curvature Motion.

8.2.8 Non fattening evolution for relatively large 6 For Mean Cur-
vature Motion, it is known that fattening occurs if the starting shape
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Fig. 4. Non convex shrinking of a square
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Fig. 5. Shrinking

of a square approaching a circle, with §/Az = 1.33
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is an eight curve with a double point. In that case, the normal vec-
tor at the double point is not well defined, and this leads to the
phenomenon of fattening which corresponds to the development of a
zone with non-empty interior where the associated viscosity solution
has constant value, i.e. to a level set with non-empty interior. This
is related to the non-unique evolution of the front. From a numerical
point of view, it can be observed from the change of topology of the
level sets close to the double point.

It turns out that for small enough 9§, fattening also occurs for dislo-
cation dynamics.

On the contrary, for relatively large enough &, we do not observe
fattening and the evolution of the front seems uniquely defined. On
Fig. 6, 7, 8, we have considered different shapes of curves with a
double point, more or less elongated in the z-direction or the y-
direction. These simulations correspond respectively to the following
initial data: u°(z,y) = y*—y2+22, uO(z,y) = y*—2¢%+22, uO(z,y) =
y* — 42 + 5z2. In each case, we have represented the three level sets
corresponding to the values —0.01, 0, 0.01. We observe that these
level sets have the same behavior even at the double point which
seems to indicate that there is no fattening.

8.3 A numerical difficulty

In our model, the dislocation line is represented by the zero level line
of the solution u. Numerically the level lines are well defined when

|Vu| > C > 0.
We have seen in the proof of Theorem 2 that for nAt < T7:

Vi1 ~ Vi —27| 0
TZ[)—L“O(C BV_l)'
For times larger than T}, the gradient may vanish, and then we may
loose any control on the level line, and the solution given by our
scheme may be wrong. In these situations, we observe numerically
some oscillations of the level line, which indicate that the numerical
gradient is too small to ensure a good localization of the level line.

The numerical difficulty comes from the fact that the time T); may
be very small. We now show formally how this time scales with the
size § of the core.
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Fig. 6. Non fattening propagation, § = 0.5 (level sets
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We consider ¢ = ¢, whose Fourier transform is given by (38).
We will now follow the dependence on the small parameter §. First
we remark that cg can be rewritten as

o) = S8 (2.1).

where ¢! is a function undependent of §. We deduce that

0
C
5l = legh (15|1

and the Lipschitz constant of the velocity c¢s = ¢} % [u] is estimated
by
0
0 le1lBy
LC(; ~ |C§‘BV ~ 5—2.
This scaling is crucial for the critical time Ty = Tj;, defined in
Theorem 2, since

1
TG s~ ~ §2T*
d,0 |Cg|BV d,1»

where T}, is independent on 4. Similarly the CFL condition reads
(see Theorem 2)

At < 1 B o

Az = 2v214( ) 2V )l

Ignoring all the constants independent on §, we express the final time
and CFL condition only with respect to ¢:

At ~ §Az, T~

In conclusion if we choose the parameter § such that § ~ Az, then
T; ~ At. This implies that the gradient can get too small and in the
worse case, one may have to reinitialize the gradient at each time
iteration.

From our numerical simulations we have observed that if the ratio:

T/At
0/ Az

for final time 7T is small enough, (less than 5) then we are in the
case where the gradient is far from zero and we are able to follow
the evolution of the front. Otherwise, for smaller ¢ or larger T, the
numerical zero level set presents some oscillations, as it is the case in

Fig.5.
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