
NONLINEAR DIFFUSION OF DISLOCATION DENSITY
AND SELF-SIMILAR SOLUTIONS

PIOTR BILER, GRZEGORZ KARCH, AND RÉGIS MONNEAU

Abstract. We study a nonlinear pseudodifferential equation describing the
dynamics of dislocations. The long time asymptotics of solutions is described
by the self-similar profiles.

1. Introduction

In this paper, we study the following initial value problem for the nonlinear and

nonlocal equation

ut = −|ux| Λαu on R× (0,+∞),(1.1)

u(x, 0) = u0(x) for x ∈ R,(1.2)

where the assumptions on the initial datum u0 will be precised later. Here, for

α ∈ (0, 2), Λα =
(
∂2/∂x2

)α/2 is the pseudodifferential operator defined via the

Fourier transform

(1.3) (̂Λαw)(ξ) = |ξ|αŵ(ξ).

For α = 1, equation (1.1) is an integrated form of a model studied by Head

[9] for the self-dynamics of a dislocation density represented by ux. This model is

a mean field model that has been derived rigorously in [7] as the limit of a system of

particles in interactions with forces in 1
x . In this model, dislocations can be of two

types, + or −, depending on the sign of their Burgers vector (see the book by Hirth

and Lothe [11] for a physical definition of the Burgers vector). Here, the density ux
means the positive density |ux| of dislocations of type of the sign of ux. Moreover,

the occurrence of the absolute value |ux| in the equation allows the vanishing of

dislocation particles of opposite sign. In the present paper, we study the general
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case α ∈ (0, 2) that could be seen as a mean field model of particles with repulsive

interactions in 1
xα .

Recall that the operator Λα has the Lévy-Khintchine integral representation for

every α ∈ (0, 2)

(1.4) −Λαw(x) = C(α)
∫

R

{
w(x+ z)− w(x)− zw′(x)1I{|z|≤1}

} dz
|z|1+α

,

where C(α) > 0 is a constant. This formula (discussed in, e.g., [6, Th. 1] for func-

tions w in the Schwartz space) allows us to extend the definition of Λα to functions

which are bounded and sufficiently smooth, however, not necessarily decaying at

infinity.

1.1. Main results. First note that equation (1.1) is invariant under the scaling

(1.5) uλ(x, t) = u(λx, λα+1t)

for each λ > 0 which means that if u = u(x, t) is a solution to (1.1), then uλ =

uλ(x, t) is so. Hence, our first goal is to construct self-similar solutions of equation

(1.1), i.e. solutions which are invariant under the scaling (1.5). By a standard

argument, any self-similar solution should have the following form

(1.6) uα(x, t) = Φα(y) with y =
x

t1/(α+1)
,

where the self-similar profile Φα has to satisfy the following equation

(1.7) −(α+ 1)−1 y Φ′α(y) = −(ΛαΦα(y)) Φ′α(y) for all y ∈ R.
In our first theorem, we construct solutions to equation (1.7).

Theorem 1.1 (Existence of self-similar profile). Let α ∈ (0, 2). There exists

a nondecreasing function Φα of the regularity C1+α/2 at each point and analytic

on (−yα, yα) for some yα > 0, which satisfies

Φα =
{

0 on (−∞,−yα),
1 on (yα,+∞),

and

(ΛαΦα)(y) =
y

α+ 1
for all y ∈ (−yα, yα).

Remark 1.2. We can obtain the self-similar solutions corresponding to different

boundary values at infinity, simply considering for any γ > 0 and b ∈ R the profiles

γΦα
(
γ−1/(α+1)y

)
+ b which are also solutions of equation (1.7).

Remark 1.3. The fact that ∂yΦα has compact support reveals a finite velocity

propagation of the support of the solution which is typical for solutions the porous

medium equation, cf. Remark 1.7, below.
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At least formally, the function Φα is the solution of (1.7), and the self-similar

function uα given by (1.6) is a solution of equation (1.1) with the initial datum

being the Heaviside function

(1.8) u0(x) = H(x) =
{

0 if x < 0,
1 if x > 0.

In order to check that uα given by (1.6) solves (1.1), we introduce a suitable notion

of viscosity solutions to the initial value problem (1.1)–(1.2), see Section 3. In this

setting, we show in Theorem 3.7 the existence and the uniqueness of a solution

for any initial condition u0 in BUC(R), i.e. the space of bounded and uniformly

continuous functions on R. Although, the initial datum (1.8) is not continuous, we

have the following result.

Theorem 1.4 (Uniqueness of the self-similar solution). Let α ∈ (0, 2). Then the

function uα defined in (1.6) with the profile Φα constructed in Theorem 1.1 is the

unique viscosity solution of equation (1.1) with the initial datum (1.8).

In Theorem 1.4, the uniqueness holds in the sense that if u is another viscosity

solution to (1.1), (1.8), then u = uα on (R× [0,+∞)) \ {(0, 0)}.
The self-similar solutions are not only unique, but are also stable in this frame-

work of viscosity solutions, as the following result shows.

Theorem 1.5 (Stability of the self-similar solution). Let α ∈ (0, 2). For any initial

data u0 ∈ BUC(R) satisfying

(1.9) lim
x→−∞

u0(x) = 0 and lim
x→+∞

u0(x) = 1,

let us consider the unique viscosity solution u = u(x, t) of (1.1)–(1.2) and, for each

λ > 1, its rescaled version uλ = uλ(x, t) given by equation (1.5). Then, for any

compact set K ⊂ (R× [0,+∞)) \ {(0, 0)}, we have

(1.10) uλ(x, t)→ Φα
( x

t1/(α+1)

)
in L∞(K) as λ→ +∞.

Theorem 1.5 contains a result on the long time behaviour of solution because,

first, choosing t = 1 in (1.10) and, next, substituting λ = t1/(α+1) we obtain the

convergence of u
(
xt1/(α+1), t

)
toward the self-similar profile Φα(x).

On the other hand, convergence (1.10) can be seen as a stability result when

we consider initial data which are perturbations of the Heaviside function. This is

a nonstandard stability result in the framework of discontinuous viscosity solutions.

It shows that the approach by viscosity solutions is a good one in the sense of

Hadamard, even if we consider here initial conditions which are perturbations of

the Heaviside function.
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Finally, we have the following result of independent interest.

Theorem 1.6 (Optimal decay estimates). Let α ∈ (0, 1]. For any initial condition

u0 ∈ BUC(R) such that u0,x ∈ L1(R), the unique viscosity solution u of (1.1)–(1.2)

satisfies

‖u(·, t)‖∞ ≤ ‖u0‖∞ and ‖ux(·, t)‖∞ ≤ ‖u0,x‖∞ for any t > 0.

Moreover, for every p ∈ [1,+∞) we have

(1.11) ‖ux(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1
p(α+1)
1 t−

(p−1)
p(α+1) for any t > 0,

with some constant Cp,α > 0 depending only on p and α.

The decay given in (1.11) is optimal in the sense that the self-similar solution

satisfies ‖(uα)x(·, t)‖p = ‖(Φα)y(·)‖p t−
(p−1)
p(α+1) .

Remark 1.7. The equation satisfied by v = ux of the following form

(1.12) vt = (|v|Λα−1Hv)x

(with the Hilbert transform denoted by H) can be treated as the nonlocal coun-

terpart of the porous medium equation. Indeed, for α = 2 and for nonnegative v,

equation (1.12) reduces to vt = (vvx)x =
(
v2/2

)
xx
. As in the case of the porous

medium equation (see e.g. [23] and the references therein), estimates (1.11) show

a regularizing effect created by the equation, even for the anomalous diffusion: if

v0 ∈ L1(R) then v ∈ Lp(R) for each p > 1. Observe also that equation (1.12) has

the compactly supported self-similar solution v(x, t) = t−
1

α+1 Φ′α
(
x/t

1
α+1

)
, where

the profile Φα was constructed in Theorem 1.1. This function for α = 2 corresponds

to the well-known Barenblatt-Prattle solution of the porous medium equation.

Remark 1.8. For α ∈ (1, 2), we do not know how to define the product |ux| (Λαu)

in the sense of distributions, which is an obstacle for us to prove the result of

Theorem 1.6 in this case, see Section 6. Note, however, that the inequalities from

Theorem 1.6 are valid for α ∈ (1, 2] as well, provided the solution u = u(x, t) is

sufficiently regular.

1.2. Organization of the paper. In Section 2, we construct explicitly the self-

similar solution. In Section 3, we recall the necessary material about viscosity

solutions, which will be used in the remainder of the paper. In Section 4, we

prove the uniqueness of the self-similar solution. Under the additional assumption

that the solution is confined between its boundary values at infinity, we prove

the stability of the self-similar solution, namely Theorem 1.5. In Section 5, we

prove further decay properties of a solution with compact support. Applying these
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estimates, we finish the proof of Theorem 1.5 in the general case. In Section 6, we

introduce an ε-regularized equation, for which we prove both the global existence

of a smooth solution and the corresponding gradient estimates. Finally in Section

7, we deduce the gradient estimate in the limit case ε = 0, namely Theorem 1.6,

using the corresponding estimates for the approximate ε-problem.

2. Construction of self-similar solutions

Proof of Theorem 1.1. The crucial role in the construction of the self-similar profile

Φα is played by the function

(2.1) v(x) =

{
K(α)

(
1− |x|2)α/2 for |x| < 1,

0 for |x| ≥ 1,

with K(α) = Γ(1/2) [2αΓ(1 + α/2)Γ((1 + α)/2)]−1. This function (together with

its multidimensional counterparts) has an important probabilistic interpretation.

Indeed, if {X(t)}t≥0 denotes the symmetric α-stable process in R of order α ∈ (0, 2]

and if T = inf{t : |X(t)| > 1} is the first passage time of the process to the exterior

of the ball {x : |x| ≤ 1}, Getoor [8] proved that Ex(T ) = v(x), where Ex denotes

the expectation under the condition X(0) = x.

In particular, it was computed in [8, Th. 5.2] using a purely analytical argument

(based on definition (1.3) and on properties of the Fourier transform) that Λαv ∈
L1(R) and

(2.2) Λαv(x) = 1 for |x| < 1.

Now, for the function v, we define the bounded, nondecreasing, C1+α/2-function

u(x) =
∫ x

0

v(y) dy

which obviously satisfies u(x) = M(α) for all x ≥ 1 and u(x) = −M(α) for x ≤ −1

with

M(α) = K(α)
∫ 1

0

(
1− |y|2)α/2 dy =

π

2α(α+ 1)Γ
(

1+α
2

)2 .

Then, for any ϕ ∈ C∞c (R), we can introduce the following duality

〈Λαu, ϕ〉 =
∫

R
u(y)(Λαϕ)(y) dy.

This defines Λαu as a distribution, because we can check (using the Lévy-Khintchine

formula (1.4)) that there exists a constant C > 0 such that

|(Λαϕ)(x)| ≤ C‖ϕ‖W 2,∞(R)

1 + |x|1+α
.
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If, moreover, suppϕ ⊂ (−1, 1), it is easy to check using the properties of the function

v = v(x) that

〈∂x(Λαu), ϕ〉 = −〈u,Λα(∂xϕ)〉 = −〈u, ∂x(Λαϕ)〉 = 〈Λα(∂xu), ϕ〉 = 〈1, ϕ〉,

where the last inequality is a consequence of (2.2). From the symmetry of v, we

deduce the antisymmetry of u, and then (Λαu)(−x) = −(Λαu)(x). Therefore, we

get the equality (Λαu)(x) = x in D′(−1, 1), however by [12, Cor. 3.1.5], in the

classical sense for each y ∈ (−1, 1), too.

Finally, we define the nonnegative function

Φα(y) =
γ

α+ 1

{
u
(
γ−1/(α+1)y

)
+M(α)

}
with γ−1 =

2M(α)
α+ 1

.

Now, for yα = γ1/(α+1) = [2M(α)]−1/(α+1), we can check easily that Φα is exactly

as stated in Theorem 1.1, which ends the proof. �

Let us note that we will not use in the sequel the explicit form of the function

Φα, but only its properties listed in Theorem 1.1.

Remark 2.1. It is known since the work of Head and Louat [10] (see also [9]) that

the function v(x) = K
(
1− x2

)1/2 (with a suitably chosen constant K = K(1) > 0)

is the solution of the equation (Λ1v)(x) = 1 on (−1, 1). This result is a consequence

of an inversion theorem due to Muskhelishvili, see either [19, p. 251] or [22, Sec.

4.3].

3. Notion of viscosity solutions

Here, we consider equation (1.1) and its vanishing viscosity approximation, i.e.

the following initial value problem for α ∈ (0, 2) and η ≥ 0

ut = ηuxx − |ux| Λαu on R× (0,+∞),(3.1)

u(x, 0) = u0(x) for x ∈ R.(3.2)

In this section, we present the framework of viscosity solutions to problem (3.1)–

(3.2). To this end, we recall briefly the necessary material, which can be either

found in the literature or is essentially a standard adaptation of those results. We

also refer the reader to Crandall et al. [5] for a classical text on viscosity solutions

to local (i.e. partial differential) equations.

Let us first recall the definition of relaxed lower semi-continuous (lsc, for short)

and upper semi-continuous (usc, for short) limits of a family of functions uε which
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is locally bounded uniformly with respect to ε

lim sup
ε→0

∗uε(x, t) = lim sup
ε→0

y→x,s→t
uε(y, s) and lim inf

ε→0
∗uε(x, t) = lim inf

ε→0
y→x,s→t

uε(y, s).

If the family consists of a single element, we recognize the usc envelope and the lsc

envelope of a locally bounded function u

u∗(x, t) = lim sup
y→x,s→t

u(y, s) and u∗(x, t) = lim inf
y→x,s→t

u(y, s).

Now, we recall the definition of a viscosity solution for (3.1)–(3.2). Here, the

difficulty is caused by the measure |z|−1−α dz appearing in the Lévy-Khintchine

formula (1.4) which is singular at the origin and, consequently, the function has to

be at least C1,1 in space in order that Λαu(·, t) makes sense (especially for α close

to 2). We refer the reader, for instance, to [20, 3, 16] for the stationary case, and

to [15, 14] for the evolution equation where this question is discussed in detail.

Now, we are in a position to define viscosity solutions.

Definition 3.1 (Viscosity solution/subsolution/supersolution). A bounded usc

(resp. lsc) function u : R × R+ → R is a viscosity subsolution (resp. supersolu-

tion) of equation (3.1) on R × (0,+∞) if for any point (x0, t0) with t0 > 0, any

τ ∈ (0, t0), and any test function φ belonging to C2(R×(0,+∞))∩L∞(R×(0,+∞))

such that u − φ attains a maximum (resp. minimum) at the point (x0, t0) on the

cylinder

Qτ (x0, t0) := R× (t0 − τ, t0 + τ),

we have

∂tφ(x0, t0)− ηφxx(x0, t0) + |φx(x0, t0)| (Λαφ(·, t0))(x0) ≤ 0 (resp. ≥ 0),

where (Λαφ(·, t0))(x0) is given by the Lévy-Khintchine formula (1.4).

We say that u is a viscosity subsolution (resp. supersolution) of problem (3.1)–

(3.2) on R× [0,+∞), if it satisfies moreover at time t = 0

u(·, 0) ≤ u∗0 (resp. u(·, 0) ≥ (u0)∗) .

A function u : R×R+ → R is a viscosity solution of (3.1) on R× (0,+∞) (resp.

R × [0,+∞)) if u∗ is a viscosity subsolution and u∗ is a viscosity supersolution of

the equation on R× (0,+∞) (resp. R× [0,+∞)).

Other equivalent definitions are also natural, see for instance [3].

Remark 3.2. Any bounded function u ∈ C1+β (with some β > max{0, α−1}) which

satisfies pointwisely (using the Lévy-Khintchine formula (1.4)) equation (3.1) with

η = 0, is indeed a viscosity solution.
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Theorem 3.3 (Comparison principle). Consider a bounded usc subsolution u and

a bounded lsc supersolution v of (3.1)–(3.2). If u(x, 0) ≤ u0(x) ≤ v(x, 0) for some

u0 ∈ BUC(R), then u ≤ v on R× [0,+∞).

Proof. Recall that in [14, Th. 5], the comparison principle is proved for α = 1 and

η = 0 under the additional assumption that u0 ∈ W 1,∞(R). Looking at the proof

of that result, the regularity of the initial data u0 is only used to show that

(3.3) sup
x∈R

((u0)ε(x)− (u0)ε(x))→ 0 as ε→ 0,

where (u0)ε and (u0)ε are respectively sup and inf-convolutions. It is easy (and

classical) to check that (3.3) is still true for u0 ∈ BUC(R). The general case can

be done either considering a variation of the proof of [14] taking into account the

additional Laplace operator, or applying the “maximum principle” from [16], or

following, for instance, the lines of [3]. We skip here the detail of this adaptation.

This finishes the proof. �

Theorem 3.4 (Stability). Let {uε}ε>0 be a sequence of viscosity subsolutions (resp.

supersolutions) of equation (3.1) which are locally bounded, uniformly in ε. Then

u = lim sup∗ uε (resp. u = lim inf∗ uε) is a subsolution (resp. supersolution) of

(3.1) on R× (0,+∞).

Proof. A counterpart of Theorem 3.4 is proved in [3, Th.1]. Here, the result for

the time dependent problem is again a classical adaptation of that argument, so we

skip details. �

Remark 3.5. One can generalize directly Theorem 3.4 assuming that {uε}ε>0 are

solutions to the sequence of equations (3.1) with η = ε. Then, in the limit ε→ 0+,

we obtain viscosity subsolutions (resp. supersolutions) of equation (1.1). We use

this property in the proof of Theorem 1.6.

Remark 3.6. In Theorem 3.4, we only claim that the limit u is a supersolution on

R × (0,+∞), but not on R × [0,+∞). In other words, we do not claim that u

satisfies the initial condition. Without further properties of the initial data u0, it

may happen that u(·, 0) ≤ u∗0 is not true.

Theorem 3.7 (Existence). Consider u0 ∈ BUC(R). Then there exists the unique

bounded continuous viscosity solution u of (3.1)–(3.2).

Proof. Applying the argument of [13] (already adapted from the classical argu-

ments), we can construct a solution by the Perron method, if we are able to con-

struct suitable barriers.
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Case 1: First, assume that u0 ∈W 2,∞(R). Then the following functions

(3.4) u±(x, t) = u0(x)± Ct
are barriers for C > 0 large enough (depending on the norm ‖u0‖W 2,∞(R)), and we

get the existence of solutions by the Perron method.

Case 2: Let u0 ∈ BUC(R). For any ε > 0, we can regularize u0 by a convolution,

and get a function uε0 ∈W 2,∞(R) which satisfies, moreover,

(3.5) |uε0 − u0| ≤ ε.
Let us call uε the solution of (3.1)–(3.2) with the initial condition uε0 instead of

u0. Then, from the fact that the equation does not see the constants and from the

comparison principle (Theorem 3.3), we have for any ε, δ > 0

|uε − uδ| ≤ ε+ δ.

Therefore, {uε}ε>0 is the Cauchy sequence which converges in L∞(R× [0,+∞)) to

some continuous function u (because all the functions uε are continuous). By the

stability result (Theorem 3.4), we see that u is a viscosity solution of equation (3.1)

on R× (0,+∞). To recover the initial boundary condition, we simply remark that

uε(x, 0) = uε0(x) satisfies (3.5), and then passing to the limit, we get u(x, 0) = u0(x).

This shows that u is a viscosity solution of problem (3.1)–(3.2) on R× [0,+∞), and

ends the proof of Theorem 3.7. �

4. Uniqueness and stability of the self-similar solution

Lemma 4.1 (Comparison with the self-similar solution). Let v be a subsolution

(resp. a supersolution) of equation (1.1) with the Heaviside initial datum given in

(1.8). Then we have v∗ ≤ (uα)∗ (resp. (uα)∗ ≤ v∗).

Proof. Using Remark 3.2 and properties of Φα gathered in Theorem 1.1, it is

straightforward to check that the self-similar solution uα(x, t) given in (1.6) is a

viscosity solution of equation (3.1)–(3.2) with the initial condition (1.8).

Now, we show the inequality (uα)∗ ≤ v∗. Let v be a viscosity supersolution

of (3.1)–(3.2) with the Heaviside initial datum (1.8). Given a > 0 and va(x, t) =

v(a+ x, t), we have

(uα)∗(x, 0) ≤ (u0)∗(x) ≤ (u0)∗(a+ x) ≤ va(x, 0).

Because of the translation invariance of the equation (1.1), we see that va is still

a supersolution. Moreover, for any a > 0, we can always find an initial condition

ua ∈ BUC(R) such that

uα(x, 0) ≤ ua(x) ≤ va(x, 0).
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Therefore, applying the comparison principle (Theorem 3.3), we deduce that

uα ≤ va.
Because this is true for any a > 0, we can take the limit as a→ 0 and get (uα)∗ ≤ v∗.

For a subsolution v, we proceed similarly to obtain v∗ ≤ (uα)∗. This finishes the

proof of Lemma 4.1. �

Proof of Theorem 1.4. We consider a viscosity solution v of equation (1.1) with the

Heaviside initial datum (1.8). Using the both inequalities of Lemma 4.1, and the

fact that (uα)∗ = (uα)∗ on (R× [0,+∞))\ {(0, 0)}, we deduce the equality v = uα

on (R× [0,+∞)) \ {(0, 0)} , which ends the proof of Theorem 1.4. �

We will now prove the following weaker version of Theorem 1.5.

Theorem 4.2 (Convergence for suitable initial data). The convergence (1.10) in

Theorem 1.5 holds true under the following additional assumption

(4.1) lim
y→−∞

u0(y) = 0 ≤ u0(x) ≤ 1 = lim
y→+∞

u0(y).

Proof. Step 1: Limits after rescaling of the solution. Consider a solution u of (1.1)–

(1.2) with an initial condition u0 satisfying (4.1). Recall that for any λ > 0, the

rescaled solution is given by uλ(x, t) = u(λx, λα+1t). Let us define

u = lim sup
λ→+∞

∗uλ and u = lim inf
λ→+∞ ∗

uλ.

From the stability result (Theorem 3.4), we know that u (resp. u) is a subsolution

(resp. supersolution) of (1.1) on R× (0,+∞).

Step 2: The initial condition. We now want to prove that

(4.2) u(x, 0) = u(x, 0) = H(x) for x ∈ R\ {0} ,
where H is the Heaviside function. To this end, we remark that u0 satisfies for

some γ > 0 the inequality |u0(x)| ≤ γ (note that γ = 1 under assumption (4.1)),

and for each ε > 0, there exists M > 0 such that |u0(x)| < ε for x ≤ −M .

In particular, we get

u0(x) < ε+ γH(x+M),

and then from the comparison principle, we deduce

(4.3) u(x, t) ≤ ε+ (uγα)∗ (x+M, t)

with

(4.4) uγα(x, t) = Φγα
( x

t1/(α+1)

)
and Φγα(y) = γΦα

(
γ−1/(α+1)y

)
.
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Here Φγα is the self-similar profile solution of (1.7) with the boundary conditions 0

and γ at infinity. Moreover, because uγα is continuous off the origin, we can simply

drop the star ∗ , while we are interested in points different from the origin. This

implies

uλ(x, t) ≤ ε+ Φγα

(
x+Mλ−1

t1/(α+1)

)
,

and then

u(x, t) ≤ ε+ Φγα
( x

t1/(α+1)

)
.

Therefore, for every x < 0 we have

u(x, 0) ≤ ε+ Φγα(−∞) = ε.

Because this is true for every ε > 0, we get u(x, 0) ≤ 0 for every x < 0. We get

the other inequalities similarly, and finally conclude that (4.2) is valid.

Step 3: Initial condition at the origin, using assumption (4.1). We now make

use of (4.1) to identify the initial values of the limits u and u. We deduce from the

comparison principle that

0 ≤ u(x, 0) ≤ u(x, 0) ≤ 1,

and then for every x ∈ R we have

u(x, 0) ≤ H∗(x) and u(x, 0) ≥ H∗(x).

Step 4: Identification of the limits after rescaling. From Lemma 4.1, we obtain

u ≤ (uα)∗ = (uα)∗ ≤ u on (R× [0,+∞))\ {(0, 0)} .

We have by the construction u ≤ u, hence we infer

u = u = uα on (R× [0,+∞))\ {(0, 0)} .

Step 5: Conclusion for the convergence. Then for any compact K ⊂ (R ×
[0,+∞))\ {(0, 0)}, we can easily deduce that

sup
(x,t)∈K

|uλ(x, t)− uα(x, t)| → 0 as λ→ +∞,

which finishes the proof of Theorem 4.2. �

5. Further decay properties and end of the proof of Theorem 1.5

Theorem 5.1 (Decay of a solution with compact support). Let u be the solution

to (1.1)–(1.2) with the initial datum u0 ∈ BUC(R) satisfying for some A > 0

(5.1) u0(x) ≤ 0 for |x| ≥ A.
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Let also γ > 0 be such that u0(x) ≤ γ for all x ∈ R. Then, there exist β, β′ > 0

(depending on α, but independent of A, γ) such that

u(x, t) ≤ Ct−β ,
and

u(x, t) ≤ 0 for |x| ≥ C ′tβ′

with some constants C = C(α,A, γ) and C ′ = C ′(α,A, γ).

First, we need the following

Lemma 5.2 (Decay after the first interaction). Consider Φα and yα defined in

Theorem 1.1. Let ν ∈ (1/2, 1) and ξν ∈ (0, yα) be such that Φα(ξν) = ν. Let T > 0

be defined by

(5.2)
A

γ1/(α+1)T 1/(α+1)
= ξν .

Then, under the assumptions of Theorem 5.1, we have

(5.3) u(x, t) ≤ νγ for all t ≥ T, x ∈ R,
and

(5.4) u(x, t) ≤ 0 for all 0 ≤ t ≤ T and |x| ≥ A
(

1 +
yα
ξν

)
.

Proof. Let us denote Φγα(y) = γΦα
(
γ−1/(α+1)y

)
. Then we have

γH(x+A) ≥ u0(x) for x ∈ R,
where

γH(x+A) = lim
t→0+

Φγα

(
x+A

t1/(α+1)

)
for x+A 6= 0.

Now, we apply the comparison principle to deduce that

Φγα

(
x+A

t1/(α+1)

)
≥ u(x, t) for (x, t) ∈ R× (0,+∞).

This argument can be made rigorous, simply, by replacing the function γH(x+A)

by Φγα
(

(x+A+ δ)/(t1/(α+1)
ε )

)
for δ > 0 and some sequence tε → 0+, and then

taking the limit δ → 0+.

Therefore we have

γΦα

(
x+A

γ1/(α+1)t1/(α+1)

)
≥ u(x, t) for (x, t) ∈ R× (0,+∞).

From the properties of the support of Φα, we also deduce that

u(x, t) ≤ 0 for x ≤ −
(
A+ yα(γt)1/(α+1)

)
,

and then, by symmetry,

u(x, t) ≤ 0 for |x| ≥ A+ yα(γt)1/(α+1).
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Moreover, it follows from the monotonicity of Φα that

γΦα

(
A

(γt)1/(α+1)

)
≥ u(x, t)

for x ≤ 0, and by symmetry we can prove the same property for x ≥ 0. Then for

T > 0 defined in (5.2) we easily deduce (5.3) and (5.4). This ends the proof of

Lemma (5.2). �

Proof of Theorem 5.1. We apply recurrently Lemma 5.2. Define A0 = A, γ0 = γ,

and

An+1 = An

(
1 +

yα
ξν

)
, γn+1 = νγn, and

An
(γnTn)1/(α+1)

= ξν .

This gives

An = A0

(
1 +

yα
ξν

)n
, γn = νnγ0, Tn = Kµn,

with

K =
1
γ0

(
A0

ξν

)α+1

, 1 < µ =
1
ν

(
1 +

yα
ξν

)α+1

,

and therefore

u(x, t) ≤ γn for t ≥ T0 + ...+ Tn−1 = K
µn − 1
µ− 1

.

In particular, we get for any n ∈ N
u(x, t) ≤ γ0ν

n for t ≥ K0µ
n

with K0 = K/(µ− 1). This implies

u(x, t) ≤ γ0K
β
0 t
−β for any t > 0, x ∈ R,

with

β = − ln ν
lnµ

> 0.

Similarly, we have

u(x, t) ≤ 0 for |x| ≥ An if t ≤ T0 + ...+ Tn−1 = K
µn − 1
µ− 1

.

In particular, we get for any n ∈ N\ {0}

u(x, t) ≤ 0 for |x| ≥ A0

(
1 +

yα
ξν

)n
, if t ≤ K ′0µn

with K ′0 = K/µ. This implies

u(x, t) ≤ 0 for |x| ≥ A0(K ′0)−β
′
tβ
′

for t ≥ 0,

with

β′ =
ln
(

1 + yα
ξν

)

lnµ
> 0.

This ends the proof of Theorem 5.1. �
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As a corollary, we can now remove assumption (4.1) in Theorem 4.2 and complete

the proof of Theorem 1.5.

Proof of Theorem 1.5. We simply repeat Step 3 of the proof of Theorem 4.2, but

here without assuming (4.1). Then, for any ε > 0 there exists A > 0 such that

u0(x) ≤ 1 + ε for |x| ≥ A.
By Theorem 5.1 applied to the solution u(x, t)−1−ε, this implies that there exists

a constant C > 0 (depending on ε) such that

u(x, t) ≤ 1 + ε+ Ct−β .

Therefore, for any for λ > 0 the following inequality

uλ(x, t) ≤ 1 + ε+ Ct−βλ−β

holds true, which implies that u = lim sup
λ→+∞

∗uλ satisfies

u(x, t) ≤ 1 + ε for (x, t) ∈ R× (0,+∞).

Since this is true for any ε > 0, we deduce that

u(x, t) ≤ 1 for (x, t) ∈ R× (0,+∞).

Let us now define ũ = min (1, u) . By the construction,

ũ(x, t) = u(x, t) for (x, t) ∈ R× [0,+∞)\ {(0, 0)} ,
and, by (4.2), we have ũ(x, 0) ≤ H∗(x) for all x ∈ R. Therefore, ũ is a subsolution

of (1.1)–(1.2) on R× [0,+∞) with the initial datum being the Heaviside function.

Similarly, we can show that u = lim sup
λ→+∞

∗uλ satisfies

u ≥ 0 for (x, t) ∈ R× (0,+∞).

Hence, the function ũ = max (0, u) , which is a supersolution of (1.1)–(1.2) on

R× [0,+∞) with the Heaviside initial datum.

Finally, the conclusion of the proof is the same as in the proof of Theorem 4.2

where u (resp. u) is replaced by ũ (resp. ũ). This ends the proof of Theorem 1.5. �

6. Approximate equation and gradient estimates

In this section, in order to prove our gradient estimates of viscosity solutions

stated in Theorem 1.6, we replace equation (1.1) by an approximate equation for

which smooth solutions do exist. Indeed, with ε > 0, we consider the following

initial value problem

ut = εuxx − |ux|Λαu on R× (0,+∞),(6.1)

u(x, 0) = u0(x) for x ∈ R.(6.2)
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We have added to this equation an auxiliary viscosity term which is stronger than

Λαu and ux. In the case α ∈ (0, 1], we will see later (in Section 7) that it is possible

to pass to the limit ε → 0+ in L∞(R), which is the required convergence for the

framework of viscosity solutions. The difficulty in the case α ∈ (1, 2) comes from

the fact that, for the limit equation with ε = 0, we are not able to give a meaning

to the product |ux| (Λαu) in the sense of distributions, while it is possible when

α ∈ (0, 1].

Our results on qualitative properties of solutions to the regularized problem

(6.1)–(6.2) are stated in the following two theorems.

Theorem 6.1 (Approximate equation – existence of solutions). Let α ∈ (0, 1] and

ε > 0. Given any initial datum u0 ∈ C2(R) such that u0,x ∈ L1(R) ∩ L∞(R), there

exists a unique solution u ∈ C(R × [0,+∞)) ∩ C2,1(R × (0,+∞)) of (6.1)–(6.2).

This solution satisfies

(6.3) ux ∈ C([0, T ], Lp(R)) ∩ C((0, T ]; W 1,p(R)) ∩ C1((0, T ], Lp(R))

for every p ∈ (1,∞) and each T > 0.

Theorem 6.2 (Approximate equation – decay estimates). Under the assumptions

of Theorem 6.1, the solution u = u(x, t) of (6.1)–(6.2) satisfies

(6.4) ‖u(·, t)‖∞ ≤ ‖u0‖∞, ‖ux(·, t)‖∞ ≤ ‖u0,x‖∞,

and

(6.5) ‖ux(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1
p(α+1)
1 t−

1
α+1 (1− 1

p ),

for every p ∈ [1,∞), all t > 0, and constants Cp,α > 0 (see, (6.20) below), inde-

pendent of ε > 0, t > 0 and u0.

6.1. Existence theory.

Proof of Theorem 6.1. Note first that

(6.6) Λαu = −Λα−1Hux,

whereH denotes the Hilbert transform defined in the Fourier variables by (̂Hv)(ξ) =

i sgn(ξ) v̂(ξ). We recall that the Hilbert transform is bounded on the Lp-space for

any p ∈ (1,+∞) (see [21, Ch. 2, Th. 1]), i.e. it satisfies for any function v ∈ Lp(R)

the following inequality

(6.7) ‖Hv‖p ≤ Cp‖v‖p
with a constant Cp independent of v.
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For α ∈ (0, 1), the operator Λα−1 defined analogously as in (1.3) corresponds

to the convolution with the Riesz potential Λα−1v = Cα| · |−α ∗ v. Hence, by [21,

Ch. 5, Th. 1], for any p > 1/α with α ∈ (0, 1] and any function v ∈ Lq(R), we have

(6.8) ‖Λα−1v‖p ≤ Cp,α‖v‖q with
1
q

=
1
p

+ 1− α.

Now, if u = u(x, t) is a solution to (6.1)–(6.2), using identity (6.6), we write the

initial value problem for v = ux

vt = εvxx + (|v|Λα−1Hv)x on R× (0,+∞),(6.9)

v(·, 0) = v0 = u0,x ∈ L1(R) ∩ L∞(R)(6.10)

as well as its equivalent integral formulation

(6.11) v(t) = G(εt) ∗ v0 +
∫ t

0

∂xG(ε(t− τ)) ∗ (|v|Λα−1Hv) dτ,

with the Gauss-Weierstrass kernel G(x, t) = (4πt)−1/2 exp(−x2/(4t)).

The next step is completely standard and consists in applying the Banach con-

traction principle to equation (6.11) in a ball in the Banach space

XT = C([0, T ]; L1(R) ∩ L∞(R))

endowed with the usual norm ‖v‖T = supt∈[0,T ](‖v(t)‖1 + ‖v(t)‖∞). Using well

known estimates of the heat semigroup and inequalities (6.7)–(6.8) combined with

the imbedding L1(R) ∩ L∞(R) ⊂ Lp(R) for each p ∈ [1,∞], we obtain a solution

v = v(x, t) to equation (6.11) in the space XT provided T > 0 is sufficiently small.

We refer the reader to, e.g., [1, 4] for examples of such a reasoning.

This solution satisfies (6.3) for every p ∈ (1,∞) and each T > 0, by standard

regularity estimates of solutions to parabolic equations. Moreover, following the

reasoning from [1], one can show that the solution is regular.

Finally, this local-in-time solution can be extended to global-in-time (i.e. for all

T > 0) because of the estimates ‖v(t)‖p ≤ ‖v0‖p for every p ∈ [1,∞] being the

immediate consequence of inequalities (6.17), (6.18), and (6.21) below. �

6.2. Gradient estimates. In the proof of the decay estimates of ux, we shall

require several properties of the operator Λα. First, we recall the Nash inequality

for the operator Λα.

Lemma 6.3 (Nash inequality). Let 0 < α. There exists a constant CN > 0 such

that

(6.12) ‖w‖2(1+α)
2 ≤ CN‖Λα/2w‖22‖w‖2α1
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for all functions w satisfying w ∈ L1(R) and Λα/2w ∈ L2(R).

The proof of inequality (6.12) is given, e.g., in [17, Lemma 2.2].

Our next tool is the, so called, Stroock–Varopoulos inequality.

Lemma 6.4 (Stroock–Varopoulos inequality). Let 0 ≤ α ≤ 2. For every p > 1, we

have

(6.13)
∫

R
(Λαw)|w|p−2w dx ≥ 4(p− 1)

p2

∫

R

(
Λ
α
2 |w| p2

)2

dx

for all w ∈ Lp(R) such that Λαw ∈ Lp(R). If Λαw ∈ L1(R), we obtain

(6.14)
∫

R
(Λαw) sgnw dx ≥ 0.

Moreover, if w, Λαw ∈ L2(R), it follows that

(6.15)
∫

R
(Λαw)w+ dx ≥ 0 and

∫

R
(Λαw)w− dx ≥ 0,

where w+ = max{0, w} and w− = max{0,−w}.

Inequality (6.13) is well known in the theory of sub-Markovian operators and its

statement and the proof is given, e.g., in [18, Th. 2.1 combined with the Beurling–

Deny condition (1.7)]. Inequality (6.14), called the (generalized) Kato inequality, is

used, e.g., in [6] to construct entropy solutions of conservation laws with a Lévy dif-

fusion. It can be easily deduced from [6, Lemma 1] by an approximation argument.

The proof of (6.15) can be found, for example, in [18, Prop. 1.6].

Remark 6.5. Remark that inequality (6.14) appears to be a limit case of (6.13)

for p = 1. Inequality (6.15) for w+ follows easily from (6.14), by a comparison

argument, if for instance w ∈ C∞c (R). Finally, remark that the constant appearing

in (6.13) is the same as for the Laplace operator ∂2/∂x2 = −Λ2.

Our proof of the decay of v(t) = ux(t) is based on the following Gagliardo–

Nirenberg type inequality

Lemma 6.6 (Gagliardo–Nirenberg type inequality). Assume that p ∈ (1,∞) and

α > 0 are fixed and arbitrary. For all v ∈ L1(R) such that Λα/2|v|(p+1)/2 ∈ L2(R),

the following inequality is valid

(6.16) ‖v‖ap ≤ CN
∥∥∥Λα/2|v|(p+1)/2

∥∥∥
2

2
‖v‖b1,

where

a =
p(p+ α)
p− 1

, b =
pα+ 1
p− 1

,

and CN is the constant from the Nash inequality (6.12).
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Proof. Without loss of generality, we can assume that ‖v‖1 6= 0. Substituting

w = |v|(p+1)/2 in the Nash inequality (6.12) we obtain

‖v‖(p+1)(1+α)
p+1 ≤ CN

∥∥∥Λα/2|v|(p+1)/2
∥∥∥

2

2
‖v‖α(p+1)

(p+1)/2.

Next, it suffices to apply two particular cases of the Hölder inequality
(
‖v‖p
‖v‖1/p2

1

)p2/(p2−1)

≤ ‖v‖p+1 as well as ‖v‖(p+1)/2 ≤ ‖v‖p/(p+1)
p ‖v‖1/(p+1)

1 ,

and compute carefully all the exponents which appear on the both sides of the

resulting inequality. �

Proof of Theorem 6.2. The first inequality in (6.4) is the immediate consequence of

the comparison principle from Theorem 3.3, because classical solutions are viscosity

solutions, as well. Maximum principle and an argument based on inequalities (6.15)

(cf. [17] for more detail) lead to the second inequality in (6.4). We also discuss this

inequality in Remark 6.7 below.

For the proof of the L1-estimate

(6.17) ‖ux(t)‖1 ≤ ‖u0,x‖1
(i.e. (6.5) with p = 1 and Cp,α = 1), we multiply equation (6.9) by sgn v = sgnux
and we integrate with respect to x to obtain

d
dt

∫

R
|v| dx = ε

∫

R
vxxsgn v dx+

∫

R

(
(Λα−1Hv)|v|)

x
sgn v dx.

The first term on the right hand side is nonpositive by the Kato inequality (i.e.

(6.14) with α = 2) hence we skip it. Remark that (formally)∫

R

(
(Λα−1Hv)|v|)

x
sgn v dx =

∫

R
(Λα−1Hv)vx(sgn v)2 + (Λα−1Hvx)v dx

=
∫

R

(
(Λα−1Hv)v

)
x

dx = 0.

Now, approximating the sign function in a standard way by sgnδ(z) = z/
√
z2 + δ,

integrating by parts, and passing to the limit δ → 0+, one can show rigorously that

the second term on right hand side of the above inequality is nonpositive. This

completes the proof of (6.17) with p = 1.

Next, we multiply equation in (6.9) by |v|p−2v with p > 1 to get
1
p

d
dt

∫

R
|v|p dx = ε

∫

R
vxx|v|p−2v dx+

∫

R

(
(Λα−1Hv)|v|)

x
|v|p−2v dx.

We drop the first term on the right hand side, because it is nonpositive by (6.13)

with α = 2. Integrating by parts and using the elementary identity

|v| (|v|p−2v
)
x

=
p− 1
p

(|v|p−1v
)
x
,
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we transform the second quantity on the right hand side as follows∫

R

(
(Λα−1Hv)|v|)

x
|v|p−2v dx = −p− 1

p

∫

R
(Λαv)|v|p−1v dx.

Consequently, by the Stroock–Varopoulos inequality (6.13) (with the exponent p

replaced by p+ 1), we obtain

(6.18)
d
dt
‖v(t)‖pp ≤ −

4p(p− 1)
(p+ 1)2

∥∥∥Λα/2|v|(p+1)/2
∥∥∥

2

2
.

Hence, the interpolation inequality (6.16) combined with (6.17) lead to the following

inequality for ‖v(t)‖pp

(6.19)
d
dt
‖v(t)‖pp ≤ −

4p(p− 1)
(p+ 1)2

(
CN‖v0‖(pα+1)/(p−1)

1

)−1 (‖v(t)‖pp
)(p+α)/(p−1)

.

Recall now that if a nonnegative (sufficiently smooth function) f = f(t) satisfies,

for all t > 0, the inequality f ′(t) ≤ −Kf(t)β with constants K > 0 and β > 1,

then f(t) ≤ (K(β − 1)t)−1/(β−1). Applying this simple result to the differential

inequality (6.19), we complete the proof of the Lp-decay estimate (6.5) with the

constant

(6.20) Cp,α =
(
C−1
N

4p(α+ 1)
(p+ 1)2

)− 1
α+1 (1− 1

p )
,

where CN is the constant from the Nash inequality (6.12). �

Remark 6.7. Note that, for every fixed α, we have limp→∞ Cp,α = +∞. By this

reason, we are not allowed to pass directly to the limit p → +∞ in inequalities

(6.5) (as was done in, e.g., [17, Th. 2.3]) in order to obtain a decay estimate of v(t)

in the L∞-norm. Nevertheless, using (6.19) we immediately deduce the inequality

‖v(·, t)‖p ≤ ‖v0(·)‖p valid for every p ∈ (1,∞). Hence, passing to the limit p→ +∞
we get

(6.21) ‖v(·, t)‖∞ ≤ ‖v0(·)‖∞.
In general, we cannot hope to get a decay estimate of ‖v(·, t)‖∞ better than that

in (6.21), because each constant is a solution of equation (1.1). Moreover, one can

show that if v is constant on an interval at the initial time, then it will stay equal to

the same constant on an interval depending on t, because of the finite propagation

phenomenon that can be seen for the self-similar profile.

7. Passage to the limit and proof of Theorem 1.6

Now, we are in a position to complete the proof of the gradient estimates (1.11).

First, we show that form the sequence {uε}ε>0 of solutions to the approximate

problem (6.1)–(6.2) one can extract, via the Ascoli–Arzelà theorem, a subsequence
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converging uniformly. Theorem 3.4 on the stability and Remark 3.5 imply that the

limit function is a viscosity solution to (1.1)–(1.2). Passing to the limit ε→ 0+ in

inequalities (6.4) and (6.5) we complete our reasoning.

Proof of Theorem 1.6. First, let us suppose that u0 ∈ C∞(R) ∩ W 2,∞(R) with

u0,x ∈ L1(R) ∩ L∞(R). Denote by uε = uε(x, t) the corresponding solution to the

approximate problem with ε > 0.

Step 1: Modulus of continuity in space. Under this additional assumption, we

have

(7.1) ‖uεx(·, t)‖p ≤ Cpt−γp

with Cp = Cp,α‖u0,x‖
pα+1
p(α+1)
1 and γp = 1

α+1

(
1− 1

p

)
. The Sobolev imbedding theo-

rem implies that there exist some β ∈ (0, 1) and C0 > 0 such that

(7.2) |uε(x+ h, t)− uε(x, t)| ≤ |h|βC0Cpt
−γp .

Step 2: Modulus of continuity in time. Let us consider a nonnegative function

ϕ ∈ C∞(R) with suppϕ ⊂ [−1, 1] such that
∫
R ϕ(x) dx = 1, and for any δ > 0 set

ϕδ(x) = δ−1ϕ(δ−1x). Then, multiplying (6.1) by ϕδ and integrating in space, we

get

d
dt

(∫

R
uε(x, t)ϕδ(x) dx

)
= ε〈uε(·, t), (ϕδ)xx〉

−
∫

R
ϕδ(x) |uεx(x, t)|(H Λα−1 uεx(x, t)) dx,

and then with 1/p+ 1/p′ = 1∣∣∣∣
d
dt

(∫

R
uε(x, t)ϕδ(x) dx

)∣∣∣∣ ≤ ε‖uε(·, t)‖∞‖(ϕδ)xx‖1
+ ‖ϕδ‖∞‖uεx(·, t)‖p‖‖H Λα−1 uεx(·, t)‖p′ .

(7.3)

Here, we have used relation (6.6). Combining inequalities (6.7) and (6.8) with

estimate (7.1), we get for p′ > 1/α

‖H Λα−1 uεx(·, t)‖p′ ≤ Cp′Cp′,αCqt−γq .
Then for any bounded time interval I ⊂ (0,+∞) there exists a constant CI,δ such

that for all t ∈ I, we have for any ε ∈ (0, 1]∣∣∣∣
d
dt

(∫

R
uε(x, t)ϕδ(x) dx

)∣∣∣∣ ≤ CI,δ.

Now, for any t, t+ s ∈ I, we get∣∣∣∣
∫

R
uε(x, t+ s)ϕδ(x) dx−

∫

R
uε(x, t)ϕδ(x) dx

∣∣∣∣ ≤ |s|CI,δ.
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Therefore, the following estimate

|uε(0, t+ s)− uε(0, t)|

≤ |s|CI,δ +
∫

R
ϕδ(x) dx · sup

x∈[−δ,δ]

(|uε(x, t+ s)− uε(0, t+ s)|+ |uε(x, t)− uε(0, t)|)

holds true. Using the Hölder estimate (7.2), we deduce that there exists a constant

CI depending on I, but independent of δ and of ε ∈ (0, 1], such that

|uε(0, t+ s)− uε(0, t)| ≤ |s|CI,δ + CIδ
β .

Since the above inequality is true for any δ, this shows the existence of a modulus

of continuity ωI satisfying

|uε(0, t+ s)− uε(0, t)| ≤ ωI(|s|) for any t, t+ s ∈ I.

By the translation invariance of the problem, this estimate is indeed true for any

x ∈ R, i.e.

(7.4) |uε(x, t+ s)− uε(x, t)| ≤ ωI(|s|) for any t, t+ s ∈ I, x ∈ R.

Step 3: Convergence as ε → 0+. From estimates (7.2) and (7.4), and using

the Ascoli–Arzelà theorem and the Cantor diagonal argument, we deduce that

there exists a subsequence (still denoted {uε}ε) which converges to a limit u ∈
C(R× (0,+∞)). By the stability result in Theorem 3.4 (see also Remark 3.5), we

have that u is a viscosity solution of (1.1) on R× (0,+∞).

Step 4: Checking the initial conditions for u0 smooth. Remark that for u0 ∈
W 2,∞ we can use the barriers given in (3.4) with some constant C > 0 uniform in

ε ∈ (0, 1]. This ensures that u is continuous up to t = 0 and satisfies u(·, 0) = u0,

so this proves the result under additional assumptions.

Step 5: General case. The proof in the case of less regular initial conditions

simply follows by an approximation argument as was in the proof of Theorem 3.7.

Step 6: Gradient estimates. To pass to the limit ε → 0+ in estimates (6.5), we

use the inequality

(7.5) h−1‖uε(·+ h, t)− uε(·, t)‖p ≤ ‖uεx(·, t)‖p
with fixed h > 0. Hence, by the Fatou lemma combined with the pointwise conver-

gence of uε toward u, we deduce from (7.5) and (6.5) that

h−1‖u(·+ h, t)− u(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1
p(α+1)
1 t−

1
α+1 (1− 1

p )

for all h > 0. For every fixed t > 0, the sequence {h−1(u(· + h, t) − u(·, t))}h>0

is bounded in Lp(R) and converges (up to a subsequence) weakly in Lp(R) toward



22 PIOTR BILER, GRZEGORZ KARCH, AND RÉGIS MONNEAU

ux(·, t) (see, e.g., [21, Ch. V, Prop. 3]). Using the well-known property of a weak

convergence in Banach spaces we conclude

‖ux(·, t)‖p ≤ lim inf
h→0+

h−1‖u(·+ h, t)− u(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1
p(α+1)
1 t−

1
α+1 (1− 1

p ).

This finishes the proof of Theorem 1.6. �
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