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Abstract

We present a new Fast Marching algorithm for an eikonal equation with a velocity changing sign. This
first order equation models a front propagation in the normal direction. The algorithm is an extension of
the Fast Marching Method in two respects. The first is that the new scheme can deal with a time-dependent
velocity and the second is that there is no restriction on its change in sign. We analyze the properties of the
algorithm and we prove its convergence in the class of discontinuous viscosity solutions. Finally, we present
some numerical simulations of fronts propagating in R
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1 Introduction

The goal of this paper is to propose and analyze a numerical scheme to compute the evolution of a front
driven by its normal velocity c(x, t) under very general assumptions on c. In particular, we will remove
the usual assumption which assigns to c a constant sign during the evolution. This means that the front
can oscillate and pass several times over the same point. The initial front is the boundary of an open set
Ω0, which is represented by a characteristic function 1Ω0 − 1Ωc

0
, defined equal to 1 on Ω0 and −1 on its

complementary set. The use of characteristic functions instead of continuous functions has the advantage
to avoid the situation when the representation function of the front has a very low derivative around its
0-level set. In fact, in that situation it can be very difficult to compute the front by the level set due to
numerical errors and this is why some (rather expensive) re-initialization techniques have been proposed (see
f.e. [18, 26]) particularly in the framework of fluid dynamics. However it has been observed [14] that such re-
initialization is obviously a disagreement between the theory of the level set method and its implementation
and in many cases moves the front from its exact location. On the contrary the representation of the front
by characteristics functions has always a jump at the front and no re-initialization is needed, naturally we
pay a price in terms of accuracy (we will come back on this point in the Section 6). The above considerations
explain why we are interested in the discontinuous viscosity solution θ(x, t) of the following equation

(1.1)

{
θt(x, t) = c(x, t)|Dθ(x, t)| on R

N × (0, T )
θ(·, 0) = 1Ω0 − 1Ωc

0
.

Here the support of the discontinuities of the function θ localizes the front we are interested in. This work
is motivated by the applications to dislocations dynamics where the velocity of the front depends on an
integral term and can change sign (see Alvarez, Hoch, Le Bouar, Monneau [3]).

A very popular method to describe the evolution of a front is the Level Sets method (see the seminal
paper by Osher and Sethian [17] as well as the books [21, 22], [13]), where the discontinuous solution θ
is replaced by a continuous function, and the equation is discretized using finite difference method with a
CFL condition of the type ∆t‖c‖∞ ≤ ∆x for explicit schemes, where ∆x is the space step and ∆t is the
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time step. In the case when the normal velocity c depends on t and can change its sign it is absolutely
necessary to solve the evolutive problem like (1.1) and track the front by its 0-level set. On the other hand,
when the velocity c only depends on x and it is constant in sign (positive or negative) the evolution of the
front is monotone (increasing or decreasing, respectively) and the problem can be solved via an associated
stationary problem corresponding to a generalized eikonal equation (see [12] for more details and for the
relations with the minimum time problem). Once the problem is reduced to the stationay eikonal equation
we can use the Fast Marching Method (FMM) (see Sethian [23, 20]), where the unknown of the problem is
the time T (x) the front reaches the point x. This method works for non negative (non positive) velocities
and provides a very efficient scheme which concentrates the computational effort on a neighborhood of the
front. To be more precise, keeping in mind the viewpoint of discontinuous solutions, in the usual FMM we
define the Accepted region (A+) as the discretization of the region {θ = 1} and the Narrow Band (NB−) as
the discretization of the boundary ∂ {θ = 1}, which is at the discrete level contained in the region {θ = −1}.
The algorithm computes the new values only at the nodes belonging to the narrow band and accepts just
one of them, the one corresponding to the minimum value (see Kim [15] for a faster implementation). If c
cannot change sign we have a monotone (increasing or decreasing) evolution and the front passes just one
time on every point of the computational domain. The corresponding arrival time of the front is univalued
so that the evolutive problem reduces to a stationary problem (the eikonal equation). Note that in this
method, there is no time step, because the time is itself the unknown of the problem so that the original
evolutive problem (1.1) reduces to a stationary problem as remarked in [12] and [16], i.e.

(1.2) |∇T | =
1

c(x)
.

To set this paper into perspective, let us recall that the FMM was initially developed for (1.2) with time
independent velocities c(x) > 0 (see Sethian [20] and Tsitsiklis [27]). This FMM scheme has been proved
to be convergent, using a relation between the FMM solution and the numerical solution to finite difference
schemes for the Level Sets formulation, for which it is known that these schemes are convergent (see Sethian,
Vladimirsky [24] and Cristiani, Falcone [11]). More recently, the method has been extended to more general
Hamilton-Jacobi equation by Sethian and Vladimirsky [24, 25] and it has been also adapted to the case of
time-dependent non-negative velocities c(x, t) ≥ 0 by Vladimirsky [28]. We also refer to Chopp [9] for some
results for non-monotone propagation but with time-independent velocity. However, up to our knowledge,
no proof of convergence has been given for the variable sign velocity case.

As we said, the goal of this paper is to propose a Generalized Fast Marching Method (GFMM) which
works for general velocities c(x, t) without sign restrictions. This implies that the evolution is not necessarily
monotone and that the time of arrival of the front can be multivalued. Then, in our GFMM it is natural to
introduce two Accepted regions (A+) and (A−), and two Narrow bands (F+) and (F−) in order to be able
to take into account the changes of sign of the velocity. The typical picture is Fig. 1. We track two fronts :
one moving with positive velocity and one moving with negative velocity. A preliminary version of this new
scheme has been proposed in [8], however in that first version no proof was given and some small but very
important details, which make the scheme work in the general case, were missing.

Our GFMM has a great potential for several future developments. Let us mention the application to dis-
locations dynamics where the velocity depends on the front itself via a convolution term. The corresponding
level set model leads to a non-local Hamilton-Jacobi equation which has been analyzed in [3], a numerical
approximation has been proposed in [2].
Let us underline some differences between the classical FMM method and our algorithm. One feature of
the classical FMM algorithm is to generate a sequence of times tn. Let us observe that there are several
subtilities, that do not appear in the usual FMM for c(x) > 0. These new features seem necessary to make
the scheme work for general c(x, t). Let us list a few of them. First, where the velocity changes sign in space,
we need somehow to regularize it (see Definition 2.2) to avoid instabilities (in time) of the front. Second,
because the time step is the difference ∆tn = tn+1 − tn between two computed times, we need our algorithm
to ensure that this time step remains bounded from above by a given time step ∆t, i.e.

(1.3) ∆tn ≤ ∆t.

Indeed, this is not a CFL condition. Here ∆t can be much bigger than ∆x divided by the maximum of the
velocity. Condition (1.3) is only necessary to ensure the convergence of the scheme when ∆t and ∆x go
to 0 (especially in the region where the velocity is very close to zero). If bound (1.3) is not respected, the
algorithm may generate a sequence of time steps ∆tn non convergent to zero as ∆x goes to zero. Third, in
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Figure 1: The narrow bands F+ and F−.

the classical FMM, the computed time t̃n+1 associated to an accepted point satisfies t̃n+1 > tn and then we
can choose as useful time tn+1 = t̃n+1. One of the difficulties that we have to face in our GFMM is that it
may happen that t̃n+1 < tn (if for instance the velocity is always equal to zero except at time tn). In that
case, we can not choose tn+1 = t̃n+1 but we choose tn+1 = tn (see Step 8 of the algorithm). Fourth, when
the front is close to a given point we have to choose carefully if we update or not the value of the time at
this given point. This really depends on the position of the discrete front at time tn and at time tn+1 and
on the definition of the new accepted points (see Step 12 of the algorithm).
The main result of this paper is Theorem 2.5 which shows the convergence of our GFMM algorithm. When
the discontinuous solution is unique, this result states that the numerical solution converges to the discon-
tinuous viscosity solution as ∆x, ∆t go to zero. In the case where the discontinuous viscosity solution is not
unique, the result only claims that the upper semicontinuous envelope (obtained by a limsup∗, see (2.10)
for a definition) of the numerical solution is a discontinuous viscosity subsolution and, conversely, that the
lower semicontinuous envelope (obtained by the liminf∗) is a supersolution.
Another novelty is the proof of convergence of this GFMM algorithm. In fact, we can not use the relation
with the usual schemes for the eikonal equation as in the case of non-negative velocities c(x) > 0 and we
need a direct proof. It is interesting to remark that, even in the case of non-negative velocity, our proof is
new. However, the idea of our proof is inspired by the paper by Barles and Georgelin [5] on fronts driven
by Mean Curvature where they prove convergence for a scheme in the framework of discontinuous viscosity
solutions (we also refer to Barles, Souganidis [7] for convergence in the framework of continuous viscosity
solutions). Basically, it is sufficient to consider a test function touching the upper semicontinuous envelope
of the numerical solution (obtained as ∆x, ∆t go to zero) which violates the subsolution property and to
derive from this some properties of the discrete solution for non-zero ∆x, ∆t. This corresponds to consider
test functions touching the discrete analogue of the discontinuous function θ in order to get a contradiction
with the basic properties of the algorithm.

The paper is organized as follows. In Section 2 we introduce our notation, present our GFMM algorithm
and the main result of this paper, i.e. the convergence of the algorithm (Theorem 2.5). Section 3 is devoted
to prove comparison principles and symmetry for GFMM. In Section 4, several preliminary results are
presented, focusing on properties of discrete times and on the geometry of the level sets of test functions. In
Section 5, we use the results of Section 4 to prove the subsolution property of the limsup∗ envelope of the
numerical solution, while the comparison principle of Section 3 is used to prove this subsolution property at
the initial time. The main result of Section 5 is the proof of our main Theorem (Theorem 2.5). In Section 6
we present some numerical simulations and comment these results in connection with our theoretical results.
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2 The GFMM algorithm and the main result

In this section we give details for our GFMM algorithm for unsigned velocity. Let us start introducing our
definitions and notation.

Let us consider a lattice Q ≡ {xI = (xi1 , .., xiN
) = (i1∆x, .., iN∆x), I = (i1, .., iN) ∈ Z

N} with space
step ∆x > 0. We will also use a time step ∆t > 0 (which does not satisfy any CFL condition).

The following definitions will be useful in the following.

Definition 2.1. The neighborhood of the node I ∈ Z
N is the set

V (I) ≡ {J ∈ Z
N : |J − I| ≤ 1}.

Definition 2.2. Given the speed cn
I ≡ c(xI , tn) we define the function

ĉn
I ≡

{
0 if there exists J ∈ V (I) such that (cn

I cn
J < 0 and |cn

I | ≤ |cn
J |),

cn
I otherwise.

Definition 2.3. The numerical boundary ∂E of a set E ⊂ Z
N is

∂E ≡ V (E)\E

with
V (E) =

{
J ∈ Z

N , ∃I ∈ E, J ∈ V (I)
}

Definition 2.4. Given a field θn
I with values +1 and −1, we define the two phases

Θn
± ≡ {I : θn

I = ±1},

and the fronts Fn
± ≡ ∂Θn

∓, Fn ≡ Fn
+ ∪ Fn

−.

In the description of the algorithm we will use the following notations:

(2.4) ±g ≥ 0 for I ∈ F±

means

(2.5) +g ≥ 0 for I ∈ F+ and − g ≥ 0 for I ∈ F−.

Moreover,

(2.6) min
±

{0, g±} ≡ min{0, g+, g−} and max
±

{0, g±} ≡ max{0, g+, g−}.

2.1 The algorithm step-by-step

We describe now our GFMM algorithm for unsigned velocity. As in the classical FMM, our GFMM will
generate a non-decreasing sequence of times (tn)n∈N with t0 = 0. Contrarely to the FMM, we will need a
phase parameter θn

I with values +1 or −1 defined at each step n of the algorithm and for any I ∈ Z
N . This

θn
I should be thought as a discretisation of the solution θ of equation (1.1) at time tn and at point xI .

Similarly to the classical FMM, we will need to introduce a time un
I defined for I in the whole front Fn

at the n-th iteration of the algorithm. In the FMM, this time un
I can be interpreted as the time when the

front Fn reaches the point I (this interpretation is essentially true for our GFMM algorithm except in the
more delicate case where the velocity vanishes).

To write the details of the algorithm, we will need to introduce further variables:

ûn
I corresponds to the time un

I at which the front passes through I, or ∞ if I is not a ‘up-wind’ point, this
information is needed to compute the candidate time

ũn
I candidate time the front may reach the point I

4



t̃n is simply the minimum of such ũn
I for I in the front Fn. It is not a non decreasing sequence. In general

we accept t̃n as the time the front passes trought at least one grid point, i.e we have tn = t̃n, except if
t̃n < tn−1 (non increasing sequence ) or if t̃n is too large (speed close to zero), i.e, t̃n > tn−1 + ∆t for
some arbitrary (but given) time step ∆t > 0.

t̂n is an intermediate time to ensure that tn−1 − tn < ∆t

Initialization
1. Set n = 1
2. Initialize the field θ0 as

θ0
I =

{
1 for xI ∈ Ω0

−1 elsewhere

3. Initialize the time on F 0

u0
I = 0 for all I ∈ F 0, t0 = 0

Main cycle
4. Initialize ûn−1 everywhere on the grid

ûn−1
±,J =

{
un−1

J for J ∈ Fn−1
±

∞ elsewhere.

5. Compute ũn−1 on Fn−1 as
Let I ∈ Fn−1

± , then

1. if ±ĉn−1
I ≥ 0, ũn−1

I = ∞,

2. if ±ĉn−1
I < 0, we compute ũn−1

I as the solution of the following second order equation:

N∑

k=1

(
max
±

(
0, ũn−1

I − ûn−1
+,Ik,±

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
− ,

(2.7)

N∑

k=1

(
max
±

(
0, ũn−1

I − ûn−1
−,Ik,±

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
+ ,

where Ik,± = (i1, .., ik−1, ik ± 1, ik+1, .., iN ).

6. t̃n = min
{
ũn−1

I , I ∈ Fn−1
}
.

7. t̂n = min{t̃n, tn−1 + ∆t}.
8. tn = max(tn−1, t̂n)
9. if tn = tn−1 + ∆t and tn < t̃n, go to 4 with n := n + 1 and

{
un

I = un−1
I for all I ∈ Fn := Fn−1,

θn
I = θn−1

I for all I ∈ Z
N

10. Initialize the new accepted point
NAn

± = {I ∈ Fn−1
± , ũn−1

I = t̃n}, NAn = NAn
+ ∪ NAn

−
11. Reinitialize θn

θn
I =






−1 for I ∈ NAn
+

1 for I ∈ NAn
−

θn−1
I elsewhere

12. Reinitialize un on Fn

1. If I ∈ Fn\V (NAn), then un
I = un−1

I .

2. If I ∈ NAn then un
I = tn.

5



3. If I ∈ (Fn−1 ∩ V (NAn))\NAn, then un
I = un−1

I .

4. If I ∈ V (NAn)\Fn−1 then un
I = tn

13. Set n := n + 1 and go to 4

Let us describe a few features of this new algorithm:

1. We know, at each time step, the time un−1
I on the fronts, i.e. on both side of the front. This is

necessary to allow the changes of the velocity sign in time.

2. In step 5, we use the regularized velocity ĉ and not c in order to stabilize the front. Indeed, if we do
not do that, this typically leads to a duplication of the front.

3. step 7 avoids large jumps in time and guarantees that tn − tn−1 ≤ ∆t with ∆t small enough. Notice
that this restriction on ∆t is not a CFL condition, but is only here to insure that tn − tn−1 → 0 when
we refine the mesh (i.e. decrease ∆t). In particular, ∆t can be chosen completely independently of
∆x.

4. step 9 allows to increase the time. For example, if at time step n, we have ĉn−1
I = 0 for all I ∈ Fn−1,

then there will be no new accepted points, the time will not change and the algorithm will be blocked
without steps 7 and 9.

5. The sequence of time (t̃n) is not necessary non-decreasing in time. Indeed, if the velocity increases in
time, we can have t̃n < t̃n−1 and so we have to do something to have an increasing sequence of time.
In fact, step 8 guarantees that the physical time tn does not decrease.

6. In step 12, for the reinitialization of un
I , we change its value only if a point of the neighborhood of the

point I has been accepted. Moreover when un
I is updated, we use the physical time tn and not t̃n or

t̂n.

These choices, which can appear strange with respect to the classical FMM scheme, seems necessary to
guarantee the convergence of our algorithm.

2.2 The main result

The scheme approximates the evolution of the fronts by a double Narrow band and the physical time by the
sequence {tk, k ∈ N}, defined at the step 8 in the algorithm. Such sequence is non decreasing and we can
extract a subsequence {tkn

, n ∈ N} strictly increasing such that

tkn
= tkn+1 = ... = tkn+1−1 < tkn+1 .

We denote by Sn
I the square cell Sn

I = [xI , xI + ∆x[×[tkn
, tkn+1 [ with

[xI , xI + ∆x[= ΠN
α=1[xiα

, xiα
+ ∆x[

and by ε the couple
ε = (∆x, ∆t).

Let us define the following functions:

(2.8) θε(x, t) =






sup{θm
I : kn ≤ m ≤ kn+1 − 1} if (x, t) ∈ Sn

I and c(xI , tkn
) > 0

inf{θm
I : kn ≤ m ≤ kn+1 − 1} if (x, t) ∈ Sn

I and c(xI , tkn
) < 0

θm
I , ∀m : kn ≤ m ≤ kn+1 − 1 if (x, t) ∈ Sn

I and c(xI , tkn
) = 0.

This definition will be useful in the proof, but is indeed equivalent to the following

(2.9) θε(x, t) = θ
kn+1−1
I if (x, t) ∈ Sn

I .

We define the half-relaxed limits

(2.10) θ
0
(x, t) = lim sup

ε→0,y→x,s→t
θε(y, s), θ0(x, t) = lim inf

ε→0,y→x,s→t
θε(y, s).

We make the following assumption

(A) The velocity c ∈ W 1,∞(RN × [0, T ]), for some constant L > 0 we have |c(x′, t′) − c(x, t)| ≤ L(|x′ − x| +
|t′ − t|), and Ω0 is a C2 open set, with bounded boundary ∂Ω0.
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Theorem 2.5. (Convergence Result)

Under assumption (A), θ
0

(resp. θ0) is a viscosity sub-solution (resp. super-solution) of (1.1). In particular,

if (1.1) satisfies a comparison principle, then θ
0

= (θ0)∗ and (θ
0
)∗ = θ0 is the unique viscosity solution of

(1.1).

Remark 2.6. When the uniqueness holds, this is up to the upper and lower semi-continuous envelopes.

Remark 2.7. Note that when c > 0, our GFMM algorithm is a modified FMM algorithm where the time on
the narrow band is computed using only the accepted points. In this monotone case the viscosity solution of
(1.1) is unique and our result provides a convergence result (see also Test 3 in the last section).

Remark 2.8. The Lipschitz-continuity in time of the velocity could be relaxed to continuity, but is assumed
here to simplify the presentation of the proofs, which are already quite complicated.

2.3 Computational complexity and remarks on the implementation

In this subsection, we give some rough asymptotic bounds on the computational complexity of our GFMM
algorithm. Let us assume that the velocity is constant on each time interval [k∆T, (k +1)∆T ) for some ∆T .
Of course, the velocity is not Lipschitz in time, but can always be seen as the discretisation of some Lipschitz
velocity. We work on a (spatial) grid box of width M

1
N in dimension N , and therefore with a total number

of grid points equal to M . We assume that the velocity is normalized |c| ≃ 1 and then the time T for the
front to pass one times on the whole grid box is roughly T ≃ 1. Moreover, we normalize the space step with

∆x = 1. The typical size (as a number of grid points) of the front is M
N−1

N in the box. We can distinguish
several cases depending on the value of ∆T :

Case 1: Constant in time velocity (i.e. ∆T = +∞).
Here the situation is very similar to the one of the classical FMM and we can use a binary heap. Because
the velocity is independent on time, we only need to recompute the value of the time at the points I whose
neighbors have been accepted (i.e., I ∈ V (NAn)). This means in practice to slightly modify point 5b of our
algorithm GFMM. This implies that our GFMM is equivalent to two FMM algorithms and so we recover
the complexity in O(M log M).

Case 2: O( 1

M
1
N

) ≤ ∆T < +∞.

In the spirit, it is equivalent to Case 1 (indeed on the time interval [k∆T, (k + 1)∆T )). Since the time T
for the front to pass one times on the whole grid box is roughly T ≃ 1, we deduce that the number of time
interval [k∆T, (k + 1)∆T ) is T

∆T = 1
∆T . On each interval [k∆T, (k + 1)∆T ), the complexity is Mk log Mk

(as in Case 1) where Mk is the number of points crossed by the front during this interval of time (with∑
k Mk = M). This gives a complexity

1
∆T∑

k=1

Mk log Mk.

Moreover, at each k∆T , we have to recompute the candidate times and the binary heap (since the velocity

changes). The complexity for these operations is O(M
N−1

N log M). Therefore, the total complexity is then

1
∆T∑

k=1

Mk log Mk +

1
∆T∑

k=1

M
N−1

N log M ≤ M log M +
1

∆T
M

N−1
N log M.

If ∆T ≥ 1

M
1
N

, we then get a complexity in O(M log M) (as in the classical case).

Case 3: Variable velocity (i.e. ∆T = 0) or 0 < ∆T < O( 1

M
1
N

).

From a complexity point of view, it is not interesting to use a binary heap to sort the time of the points on
the front. Because the velocity changes at each step n of the algorithm, it is much more efficient to recompute
all the times on the front and extract the minimum of these times at each iteration. The complexity for

these operations is O(M
N−1

N ). On the time necessary for the front to pass one times on the whole grid box,

we need to do this computation O(M) times. Therefore, the total complexity is O(M
2N−1

N ).
In this case, it seems that the Narrow Band Level Set Method can be more interesting from the com-

plexity point of view (see [1]) although it is rather difficult to make a precise statement on this point.
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We can then implement our algorithm depending on the variability of the velocity in time (see Case 1, 2,
3 above). Finally, we want to point out that Case 2, where ∆T is not so small, is acceptable in practice if the
velocity is Lipschitz in time with a reasonable Lipschitz constant (and this is what we assume theoretically
in our convergence theorem).

3 Comparison principles for the GFMM algorithm

As we said in the introduction, our convergence result will be proved in the framework of discontinuous
viscosity solutions. To this end the role of comparison principles is crucial.

In this Section, we first present a property of symmetry of the algorithm and then present some comparison
principles in some special cases.

3.1 Symmetry of the algorithm

The following lemma claims that if we change the sign of the velocity and the sign of the two phases at the
initial time, then the GFMM algorithm computes the same front.

Lemma 3.1. (Symmetry of the GFMM algorithm)

We denote by θ
0
[θ0, c] and θ0[θ0, c] the functions constructed by the GFMM algorithm with initial condition

θ0 and velocity c. Then we have

θ0[θ0, c] = −θ
0
[−θ0,−c].

Proof of Lemma 3.1
With the same kind of notation, we remark that θn

I [−θ0,−c] = −θn
I [θ0, c]. We then have, for x ∈ [xI , xI +

∆x[, t ∈ [tkn
, tkn+1 [ and c(xI , tkn

) > 0

θε[θ0, c](x, t) = sup{θk
I [θ0, c], kn ≤ k ≤ kn+1 − 1} = − inf{−θk

I [θ0, c], kn ≤ k ≤ kn+1 − 1}
= − inf{θk

I [−θ0,−c], kn ≤ k ≤ kn+1 − 1} = −θε[−θ0,−c].

The result is similar for c(xI , tkn
) ≤ 0. Therefore, θ0[θ0, c] = −θ

0
[−θ0,−c].

3.2 Comparison principles

Proposition 3.2. (Comparison principle for the time)
We denote by un

I (resp. vn
I ) the numerical solution at the point (xI , tn) of the GFMM algorithm with velocity

cu (resp. cv). We assume that there exists T > 0 such that for all (x, t) ∈ R
N × [0, T ]

inf
s∈[t−∆t,t], s≥0

cv(x, s) ≥ sup
s∈[t−∆t,t], s≥0

(cu(x, s))+

where (f)+ is the positive part of f . We assume that

{θ0
u = 1} ⊂ {θ0

v = 1} and v0 = u0 = 0.

We define m̄ and k̄ such that {
tm̄ ≤ T < tm̄+1

sk̄ ≤ T < sk̄+1

where (tm)m and (sm)m are respectively the sequence of time constructed by the GFMM algorithm with
velocity cu and cv. We then consider

vI =






v0
I if θ0

v,I = 1

vk
I if I ∈ NAk

v for some k ≤ k̄ + 1

sk̄+1 if θk̄
v,I = −1

Then, ∀l ≤ m̄, ∀I ∈ NAl
u, we have vI ≤ ul

I .
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Remark 3.3. Here the notation for θu, θv, NAl
u and further notation in the sequel are obvious and are not

explained. Moreover we also remark that the front for v passes at most one time at a given point because
cv ≥ 0.

Proof of Proposition 3.2

We argue by contradiction. We denote by m(u) the first index such that there exists I ∈ NA
m(u)
u such that

(3.11) u
m(u)
I < vI

We define k(v) such that I ∈ NA
k(v)
v with the convention that k(v) = k̄ + 1 if θk̄

v,I = −1. This implies

that tm(u) = u
m(u)
I < vI = sk(v) The proof distinguishes two cases:

1. I ∈ NA
m(u)
−,u ⊂ F

m(u)−1
−,u .

We claim that for all J ∈ V (I)\ {I}, we have

(3.12) û
m(u)−1
+,J ≥ v̂

k(v)−1
+,J

Indeed assume that û
m(u)−1
+,J < ∞ (if û

m(u)−1
+,J = ∞, then (3.12) holds), then J ∈ F

m(u)−1
+,u and we have

tm(u) ≥ û
m(u)−1
+,J ≥ vJ .

It just remains to show that vJ = v̂
k(v)−1
+,J . We argue by contradiction. Assume that v̂

k(v)−1
+,J = ∞, i.e

J ∈ {θk(v)−1
v = −1}. Then vJ ≥ sk(v). This contradicts the fact that vJ ≤ tm(u) < sk(v) and proves (3.12).

We define
k∗ := sup{k, sk ≤ tm(u)} < k(v).

In particular, we have tm(u) − ∆t ≤ sk∗ ≤ tm(u). Since for all J ∈ V (I) ∩ F
m(u)−1
+,u

tm(u) ≥ û
m(u)−1
+,J ≥ v̂

k(v)−1
+,J

we deduce that

(3.13) sk∗ ≥ v̂
k(v)−1
+,J .

Indeed, +∞ > v̂
k(v)−1
+,J > sk∗ would imply that there exists k′ > k∗ such that tm(u) ≥ v̂

k(v)−1
+,J = sk′ which

contradicts the definition of k∗.
Then we claim that for all J ∈ V (I) ∩ F

m(u)−1
+,u

(3.14) v̂
k(v)−1
+,J = v̂k∗

+,J .

We now prove the claim (3.14). First, because we have v̂
k(v)−1
+,J < +∞, we deduce that θ

k(v)−1
v,J = 1 and then

there exists k ≤ k(v) − 1 such that if k ≥ 1, then J ∈ NAk
v and v̂

k(v)−1
+,J = vk

J = sk, and if k = 0, then

θ0
v,J = 1 and v̂

k(v)−1
+,J = v0

J = 0.
Assume by contradiction that k > k∗. Then

v̂
k(v)−1
+,J = vk

J = sk ≥ sk∗+1 > sk∗

Contradiction with (3.13). Therefore k ≤ k∗. Now we have θ
k(v)
v,I = 1 and θm

v,I = −1 for m ≤ k(v) − 1.

Therefore J ∈ F k∗

+,v and

v̂
k(v)−1
+,J = vk

J = v̂k∗

+,J

which ends the proof of the claim (3.14). We deduce that

v̂
k(v)−1
+,J = v̂k∗

+,J ≤ û
m(u)−1
+,J ,
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where we have used (3.12). We define the following function

f2
bum(t) =

N∑

k=1

(
max
±

(
0, t − ûm

+,Ik,±

))2

.

We then have, using the fact that ṽk∗

I ≥ sk∗+1 > sk∗

fbvk∗ (sk∗+1) ≤ fbvk∗ (ṽk∗

I ) =

∣∣∣∣∣
∆x

ĉk∗

I,v

∣∣∣∣∣ ≤
∣∣∣∣∣

∆x

ĉ
m(u)−1
I,u

∣∣∣∣∣ = fbum(u)−1 (ũ
m(u)−1
I ) ≤ fbvk∗ (ũ

m(u)−1
I )

We then deduce that sk∗+1 ≤ ũ
m(u)−1
I ≤ u

m(u)
I = tm(u). This is absurd.

2. I ∈ NA
m(u)
+,u ⊂ F

m(u)−1
+,u .

We consider the following subcases

1. I ∈ {θ0
v = 1}. Then vI = v0

I = 0 = u0
I ≤ u

m(u)
I . This is absurd.

2. I ∈ {θ0
v = −1}. Then θ0

u,I = −1 and so there exists n < m(u) such that

θn−1
u,I = −1 and θn

u,I = 1.

This implies that un
I ≥ vI > u

m(u)
I ≥ un

I . This is absurd.

Remark 3.4. If we implicit the computation of the gradient, i.e. the computation of ũ in step 5, the situation
seems better and one could expect to prove a general comparison principle without restriction on the velocity.

We now rephrase this comparison principle for the functions θε and prove it.

Corollary 3.5. (Comparison principle with a non negative velocity)
Under the assumptions of Proposition 3.2, we have for all (x, t) ∈ R

N × [0, T ]

θε
u(x, t) ≤ θε

v(x, t).

Proof of Corollary 3.5
By contradiction, assume that there exist xI and t such that

(3.15) θε
u(xI , t) = 1 and θε

v(xI , t) = −1.

We denote by t the first time such that (3.15) holds. We then have, since cv ≥ 0,

θε
u(xI , s) = −1 if s < t.

We then deduce that there exists m(u) such that t = tm(u), I ∈ NA
m(u)
u and u

m(u)
I = tm(u) = t. Moreover,

since the index I has not been already accepted for v, we have vI > t = u
m(u)
I . This is absurd.

Corollary 3.6. (Comparison principle for a non positive velocity)
We denote by un

I (resp. vn
I ) the numerical solution at the point (xI , tn) of the GFMM algorithm with velocity

cu (resp. cv). We assume that there exists T > 0 such that for all (x, t) ∈ R
N × [0, T ]

sup
s∈[t−∆t,t], s≥0

cu(x, s) ≤ inf
s∈[t−∆t,t], s≥0

−(cv(x, s))−

where (f)− ≥ 0 is the negative part of f . We assume that

{θ0
v = −1} ⊂ {θ0

u = −1} and v0 = u0 = 0.

Then, for all (x, t) ∈ R
N × [0, T ], we have

θε
u(x, t) ≤ θε

v(x, t).

Proof of Corollary 3.6
This is a straightforward consequence of Corollary 3.5 and the fact that θε[−θ0,−c] = −θε[θ0, c] (with the
notation of Lemma 3.1).
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4 Preliminary results on the discrete time and on the level sets

of test functions

The GFMM algorithm described in Section 2 has several properties which fit the physics of the problem we
want to solve. We present in this Section several results that will be used in the proof of Proposition 5.1
which is crucial for the proof of our main result of convergence.

In a first subsection, we present some properties of the various times û, t, t̃ appearing in our algorithm,
and in a second subsection we give some geometrical consequences of the existence of test functions tangent
from above to our function θε.

4.1 Preliminary results on the discrete time

Lemma 4.1. (Time character of the û)
Assume there exists δ > 0 and (I, n) ∈ Z

N × N such that c(xI , tn) ≥ δ > 0, θn−1
I = −1 and θn

I = 1 (resp.
c(xI , tn) ≤ −δ < 0, θn−1

I = 1 and θn
I = −1), then for any J ∈ V (I) ∩ Fn−1

+ (resp. J ∈ V (I) ∩ Fn−1
− ), we

have for ∆x ≤ δ2

16L

ûn−1
+,J = sup{tm ≤ tn−1, θm−1

J = −1, θp
J = 1, for m ≤ p ≤ n − 1} > tn − 4∆x

δ

with the convention that ûn−1
+,J = 0 if θp

J = 1 for 0 ≤ p ≤ n − 1

(resp. ûn−1
−,J = sup{tm ≤ tn−1, θm−1

J = 1, θp
J = −1, for m ≤ p ≤ n − 1} > tn − 4∆x

δ
.

with the convention that ûn−1
+,J = 0 if θp

J = −1 for 0 ≤ p ≤ n − 1).

This lemma claims in fact that the ûn−1
+,J is defined as the last time at which the front passed through J .

Intuitively, this comes from the fact that, since the velocity is locally non-negative and since the front has
crossed the node xI at time tn, it has crossed the node xJ at a time closed to tn.

Proof of Lemma 4.1
We only do the proof in the case c > 0 (the case c < 0 is similar). By assumptions, c is Lipschitz-continuous
with constant L, and there exists δ0 ≤ δ/(4L) such that for all (xJ , tm) ∈ Bδ0(xI) × [tn − δ0, tn + δ0], we
have

ĉm
J ≥ δ

2
.

This implies that

(4.16) θm
I = −1 for all m such that tn − δ0 ≤ tm ≤ tn−1.

Let J ∈ V (I) ∩ Fn−1
+ . We define mJ = sup{m ≤ n − 1, θm−1

J = −1, θm
J = 1}. We claim that for all

J ∈ V (I) ∩ Fn−1
+ , we have tmJ

> tn − δ0 for ∆x small enough. Indeed, by contradiction, assume that there

exists J ∈ V (I)∩Fn−1
+ such that tmJ

≤ tn − δ0. Let us define p ≥ 0 such that tn = ... = tn−p > tn−p−1. We

then have ûn−p−1
+,J ≤ tn − δ0 and ũn−p−1

I ≥ tn−p = tn. Using the fact that

N∑

k=1

(
max
±

(
0, ũn−p−1

I − ûn−p−1
+,Ik,±

))2

=

(
∆x

ĉn−p−1
I

)2

we then deduce that

δ0 = tn−p − (tn − δ0) ≤ ũn−p−1
I − ûn−p−1

J ≤ 2∆x

δ
.

This is absurd for the choice δ0 =
4∆x

δ
≤ δ

4L
which is valid for ∆x small enough. Moreover, using (4.16),

we deduce that J ∈ Fm for all mJ ≤ m ≤ n − 1. This implies that ûn−1
+,J = un−1

J = umJ

J = tmJ
.

The following lemma is concerned with the fact that we can control the decay of the time t̃n given by
the GFMM algorithm, by the variations in time of the velocity.
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Lemma 4.2. (Error estimate between tn and t̃n)
Assume that there exists I ∈ NAn such that |ĉn−1

I | ≥ δ > 0. Then, the following estimate holds

(
tn − t̃n

)+ ≤ 2L

δ2
∆x∆t if ∆t ≤ δ

2L

Proof of Lemma 4.2
We only treat the case cn−1

I ≥ δ > 0 (the other case is similar). Assume that t̃n < tn, then necessarily
tn = tn−1. We define p > 0 such thattn−p−1 < tn−p = ... = tn−1 = tn. In particular, we have

tn−p ≤ t̃n−p ≤ ũn−p−1
J ∀J ∈ Fn−p−1

and
t̃n = ũn−1

I ≤ ũn−1
J ∀J ∈ Fn−1.

We claim that I ∈ Fn−p−1
− . Indeed, assume that I 6∈ Fn−p−1

− . Using the fact that θn−p−1
I = −1 (since

ĉI > 0), we deduce that for all J ∈ V (I) ∩ Fn−1
+ , we have θn−p−1

J = −1 and so ûn−1
+,J = tn, this means that

also the node J has been accepted at the physical time tn . This implies that ũn−1
I > tn and this is absurd.

Moreover, because tn−p − tn−p−1 ≤ ∆t, we have ĉn−p−1
I ≥ δ

2 for ∆t ≤ δ

2L
. We then have

(4.17)

N∑

k=1

(
max
±

(
0, ũn−p−1

I − ûn−p−1
+,Ik,±

))2

=

(
∆x

ĉn−p−1
I

)2

and

(4.18)
N∑

k=1

(
max
±

(
0, ũn−1

I − ûn−1
+,Ik,±

))2

=

(
∆x

ĉn−1
I

)2

.

Let us compare ûn−1
+,J and ûn−p−1

+,J for J ∈ V (I) ∩ Fn−1
+ . If J 6∈ Fn−p−1

+ , then uJ changes values during the

iterations n − p ≤ m ≤ n − 1, and for such m we have ûn−1
+,J = um

J = tm = tn. Since t̃n < tn, then this node
J ∈ V (I) does not contribute to the evaluation of (4.18) and

(4.19)

N∑

k=1

(
max
±

(
0, t̃n − ûn−p−1

+,Ik,±

))2

=

N∑

k=1

(
max
±

(
0, t̃n − ûn−1

+,Ik,±

))2

.

Let us denote by

fq(v) =

{
N∑

k=1

(
max
±

(
0, v − ûq

+,Ik,±

))2
}1/2

.

The function fq verifies for any q ∈ N such that I ∈ F q
−:

fq(ũ
q
I) =

∆x

|ĉq
I |

, f ′
q(v) ≥ 1.

Then

tn − t̃n ≤ ũn−p−1
I − t̃n ≤ fn−p−1(ũ

n−p−1
I ) − fn−p−1(t̃n)

= fn−p−1(ũ
n−p−1
I ) − fn−1(t̃n) = ∆x

(
1

|ĉn−p−1
I |

− 1

|ĉn−1
I |

)

≤ ∆x
|ĉn−p−1

I − ĉn−p
I |

|ĉn−p−1
I ||ĉn−p

I |
≤ ∆x|∂tc|L∞ |tn−p − tn−p−1|

|ĉn−p−1
I ||ĉn−p

I |
≤ 2∆x|∂tc|L∞∆t

δ2
.
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Figure 2: Test function from below
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Figure 3: Test function from above

4.2 Preliminary results on the level sets of test functions

Lemma 4.3. (Separation of the phases of θε by the level set of a test function)
Let ϕ ∈ C2 in a neighborhood V of (x0, t0) such that ϕt(x0, t0) > 0 (resp. ϕt(x0, t0) < 0). There exist δ0 >
0, r > 0, τ > 0 such that if max

V̄
((θε)∗ − ϕ) is reached at (xε, tε) ∈ Bδ0(x0, t0) ⊂ V with (θε)∗(xε, tε) = 1,

then there exists Ψε ∈ C2(Br(x0), (t0 − τ, t0 + τ)) such that

(i) For all (xJ , tm) ∈ Qr,τ(x0, t0) = Br(x0) × (t0 − τ, t0 + τ)

θε(xJ , tm) = 1 =⇒ tm ≥ Ψε(xJ ) (resp. tm ≤ Ψε(xJ )).

(ii) There exists (I, n) ∈ Z
N × N such that

(xε, tε) ∈ Q̄n
I = [xI , xI + ∆x] × [tkn

, tkn+1 ], (θε)∗(xI , tkn
) = 1, tkn

= Ψε(xI)

and θn
I = 1, θm

I = −1 m0 ≤ m ≤ n − 1
(
resp. θn

I = −1, θm
I = 1 m0 ≤ m ≤ n − 1

)
where n =

inf
{
k, kn ≤ k ≤ kn+1 − 1, θk

I = 1 (resp. θk
I = −1)

}
and m0 = inf{m, tm ≥ t0 − τ}.

(iii) The following Taylor expansion holds

Ψε(xJ ) = Ψε(xI) −
Dϕ(x0, t0)

ϕt(x0, t0)
(xJ − xI) + (∆x) O (∆x + |xI − x0| + |tkn

− t0|) .

(iv) If ϕt(x0, t0) < 0, then for all (xJ , tkn
) ∈ Qr,τ (x0, t0) = Br(x0) × (t0 − τ, t0 + τ)

θε(xJ , tkn−1) = 1 and θε(xJ , tkn
) = −1 =⇒ tkn

≤ Ψε(xJ ).

Proof of Lemma 4.3
We consider the case ϕt(x0, t0) > 0. The other case can be treated in a similar way. We define
ϕε = ϕ + ((θε)∗ − ϕ)(xε, tε). In particular, we have (θε)∗ ≤ ϕε and (θε)∗(xε, tε) = ϕε(xε, tε) = 1. We
start by proving (i) and (ii). The proof is decomposed in several steps.

Step 1.We have tε = tkn
.

Indeed, assume that tε ∈ (tkn
, tkn+1). Using the fact that (θε)∗(xε, tε) = 1, we deduce that (θε)∗(xε, t) = 1

for tkn
≤ t ≤ tkn+1 and so ϕt(xε, tε) = 0. This is absurd for δ0 small enough since ϕt(x0, t0) > 0.

Step 2.We have (θε)∗ = −1 on all Q
n−1
J =]xJ , xJ + ∆x[×]tk

n−1
, tkn

[ such that (xε, tkn
) ∈ Q̄

n−1
J .

Indeed, since ϕε(xε, tkn
) = 1 and (ϕε)t > 0, we deduce that ϕε(xε, t) < 1 if t < tkn

. Using the fact that
(θε)∗ − ϕε reaches a maximum in (xε, tkn

), yields

(θε)∗(xε, t) ≤ ϕε(xε, t) < 1 if t < tkn

and so
(θε)∗(xε, t) = −1 if t < tkn

.
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Using the semi-continuity of (θε)∗, one deduce that

(θε)∗ = −1 on all Qn−1
J such that (xε, tkn

) ∈ Q̄n−1
J .

Step 3. There exists I ∈ Z
N , such that (xε, tkn

) ∈ Q̄n
I

and (θε)∗ = 1 on Qn
I
.

By contradiction, assume that on all cubes Qn
J such that (xε, tkn

) ∈ Q̄n
J , we have (θε)∗ = −1. Then, using

Step 2, we deduce that (θε)∗ = −1 in a neighborhood of (xε, tkn
). This is absurd since (θε)∗(xε, tkn

) = 1.
Before continuing the proof, we need a few notation. We set

n = inf{k, kn ≤ k ≤ kn+1 − 1, θk
I = 1}.

In particular, we have θn
I = 1 and θn−1

I = −1.
Since (ϕε)t(xε, tkn

) > 0 for ε small enough, by Implicit Function Theorem, there exists a neighborhood
Vε of (xε, tε) and a function Ψ̄ε such that

{ϕε(x, t) < 1} ⇔ {t < Ψ̄ε(x)}

in Vε. Using the fact that (θε)
∗ ≤ ϕε yields

(4.20) {(θε)∗ = 1} ⊂ {t ≥ Ψ̄ε(x)}.

Moreover, for δ0 small enough, i.e. for (xε, tε) closed enough to (x0, t0), we can assume that Vε ⊃
Qr,τ (x0, t0) = Br(x0) × (t0 − τ, t0 + τ). We define ν = xε − xI ∈ [0, ∆x)N and Ψε(x) = Ψ̄ε(x + ν). In
particular, we have Ψε(xI) = tkn

.

Step 4. For all (xJ , tkm
) ∈ Qr,τ (x0, t0) = Br(x0) × (t0 − τ, t0 + τ)

θε(xJ , tkm
) = 1 =⇒ tkm

≥ Ψε(xJ).

To prove this, we consider the collection of nodes

C = {(xJ , tkm
) ∈ Qr,τ (x0, t0) ∩ {θε = 1}} .

By inclusion (4.20), we then have tkm
≥ Ψ̄ε(xJ ), ∀(xJ , tkm

) ∈ C. We deduce ∀(xJ , tkm
) ∈ C

Q̄m
J = [xJ , xJ + ∆x] × [tkm

, tkm+1 ] ⊂ {t ≥ Ψ̄ε(x)}.

This implies that
(xJ + (xε − xI), tkm

) ∈ {t ≥ Ψ̄ε(x)}
and so

(xJ , tkm
) ∈ {t ≥ Ψε(x)}

which implies i) because any tm′ can be written tkm
for a suitable m.

Step 5. We have θm
I

= −1 for m0 ≤ m ≤ n − 1 where m0 = inf{m, tm ≥ t0 − τ}.
By contradiction, suppose that there exists m0 ≤ m ≤ n − 1 such that θm

I = 1. We then define m1 as

m1 = sup{m ≤ n − 1, θm
I = 1}.

In particular, we have θm1+1
I = −1 (since θn−1

I = −1). Two cases may occur:

1. tm1 = tkn
= tn.

In this case, we have ĉm1

I = ĉn−1
I > 0 (since θn−1

I = −1 and θn
I = 1). This contradicts the fact that

θm1

I = 1 and θm1+1
I = −1.

2. tm1 < tkn
= tn.

In this case, we have θε(xI , tm1) = 1 and tm1 < tkn
= Ψε(xI). This contradicts Step 4.
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We now prove (iii).
By Implicit Functions Theorem, we have ϕε(x, Ψ̄ε(x)) = 1. Deriving yields

ϕt(x, Ψ̄ε(x))DΨ̄ε(x) + Dϕ(x, Ψ̄(x)) = 0.

Taking x = xε yields

DΨε(xI) = −Dϕ(xε, Ψ̄ε(xε))

ϕt(xε, Ψ̄ε(xε))
= −Dϕ(xI , tkn

)

ϕt(xI , tkn
)

+ O(∆x)

and so

DΨε(xI) = −Dϕ(x0, t0)

ϕt(x0, t0)
+ O(|xI − x0| + |tkn

− t0| + ∆x).

Moreover, by Taylor expansion, we get, if |ϕ(xε, tε) − 1| is small enough, for all J ∈ V (I)

Ψε(xJ ) =Ψε(xI) + (xJ − xI) · DΨε(xI) + O(|∆x|2)

=Ψε(xI) −
Dϕ(x0, t0)

ϕt(x0, t0)
· (xJ − xI) + (∆x) O (∆x + |xI − x0| + |tkn

− t0|) .

where “the O is uniform in ε”. This ends the proof of (iii).
It just remains to show that if ϕt(x0, t0) < 0, then for all (xJ , tkn

) ∈ Qr,τ (x0, t0) = Br(x0)×(t0−τ, t0+τ)

θε(xJ , tkn−1) = 1 and θε(xJ , tkn
) = −1 =⇒ tkn

≤ Ψε(xJ ).

In this case, inclusion (4.20) is replaced by

{(θε)∗ = 1} ⊂ {t ≤ Ψ̄ε(x)}.

By definition of θε, for all y ∈ [xJ , xJ + ∆x], we have (θε)∗(y, tkn
) = 1. Taking y = xJ + ν, we then deduce

that
tkn

≤ Ψ̄ε(y) = Ψ̄ε(xJ + ν) = Ψε(xJ ).

Lemma 4.4. (Approximate horizontal level set in the i-direction for negative velocity)
Under the notation and assumptions of Lemma 4.3 with ϕt(x0, t0) < 0, let us suppose that there exists δ0 > 0
such that c < −δ < 0 on Bδ0(x0, t0).
Let us assume moreover that (xI , tn) ∈ Bδ0(x0, t0), θn−1

I = 1 and θn
I = −1. If for some fixed i ∈ {1, ..., N}

we have
ũn−1

I − ûn−1
−,Ii,+ < 0 and ũn−1

I − ûn−1
−,Ii,− < 0

then ∣∣∣∣
Dϕ(x0, t0)

ϕt(x0, t0)
· ei

∣∣∣∣ ≤ o(1).

Proof
We first prove that if ũn−1

I − ûn−1
−,J < 0 for some J ∈ V (I)\ {I}, then

Ψε(xI) − Ψε(xJ ) ≤ o(∆x).

There are two cases: ûn−1
−,J = ∞ or ûn−1

−,J < ∞.

If ûn−1
−,J < ∞ then J ∈ Fn−1

− . By Lemma 4.1 it results

ûn−1
−,J = sup{tm ≤ tn−1, θm−1

J = 1, θp
J = −1, for m ≤ p ≤ n − 1}

and by Lemma 4.3 (iv) we have ûn−1
−,J ≤ Ψε(xJ ).

We then deduce that

0 > ũn−1
I − ûn−1

−,J ≥ t̃n − Ψε(xJ ) = Ψε(xI) − Ψε(xJ ) − (tn − t̃n).

We apply Lemma 4.2 and we obtain

Ψε(xI) − Ψε(xJ ) ≤ o(∆x).
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If ûn−1
−,J = ∞ then necessarily θn−1

J = 1, now either θn
J = 1, respectively either θn

J = −1. Then we can apply
Lemma 4.3 (i), respectively (iv), and we get tn ≤ Ψε(xJ ). We deduce then

Ψε(xI) − Ψε(xJ ) ≤ tn − tn ≤ 0.

Using Lemma 4.3 (iii) for J = Ii,±, we deduce that

±∆x
Dϕ(x0, t0)

ϕt(x0, t0)
· ei ≤ o(∆x).

Lemma 4.5. (Decay of θε in the gradient direction of a test function)
Let ϕ be C2 in a neighborhood V of (x0, t0) and let us suppose there exist δ0 > 0 such that max

V
((θε)∗ − ϕ) =

(θε)∗(xε, tε) − ϕ(xε, tε) with (xε, tε) ∈ Bδ0(x0, t0) ⊂ V and (θε)∗(xε, tε) = 1. Then, there exists a node

(I, n) ∈ Z
N × N such that θ

kn+1−1
I = 1 with (xε, tε) ∈ ∂Qn

I = ∂(]xI , xI + ∆x[×]tkn
, tkn+1 [) such that if

∓ei · Dϕ(x0, t0) > 0 then

θε(x, t) = −1 in Qn
Ii,± =]xIi,± , xIi,± + ∆x[×]tkn

, tkn+1 [.

Proof of Lemma 4.5
Since (θε)∗(xε, tε) = 1, there exists a node (I, n) ∈ Z

N × N such that θ
kn+1−1
I = 1 with (xε, tε) ∈ ∂Qn

I =
∂(]xI , xI + ∆x[×]tkn

, tkn+1 [).
Assume for example that

ei · Dϕ(x0, t0) < 0

and let us suppose by contradiction that θε = 1 in Qn
Ii,+ =]xIi,+ , xIi,+ + ∆x[×]tkn

, tkn+1 [.
We define ϕε = ϕ + ((θε)∗ − ϕ)(xε, tε). In particular, we have (θε)∗ ≤ ϕε and (θε)∗(xε, tε) = ϕε(xε, tε) = 1.
Since (θε)∗ ≤ ϕε, the following inclusion holds

{(θε)∗ = 1} ⊂ {ϕε ≥ 1}.

We define xi,λ
ε = xε + λei with 0 ≤ λ ≤ ∆x such that (θε)∗(xi,λ

ε , tε) = 1. Then ϕε(x
i,λ
ε , tε) ≥ 1 and

ϕε(x
i,λ
ε , tε) − ϕε(xε, tε)

λ
≥ 0.

Taking the limit for λ → 0, we obtain

ei · Dϕ(xε, tε) = ei · Dϕε(xε, tε) ≥ 0.

This ends the proof, since it contradicts the assumption.

Lemma 4.6. (Bound on |tε − tm0 | for negative velocity)
Under the notation and assumptions of Lemma 4.5, if we suppose there exists δ > 0 and δ0 > 0 such that
c(x, t) < −δ < 0 in (x, t) ∈ B2δ0(x0, t0) ⊂ V then the following estimate holds

|tε − tm0 | ≤
∆x

δ

with
tm0

= sup{tm ≤ tkn
: θm−1

Ii,+ = 1, θm
Ii,+ = −1} if we assume − ei · Dϕ(x0, t0) > 0

(resp. tm0
= sup{tm ≤ tkn

: θm−1
Ii,− = 1, θm

Ii,− = −1} if we assume + ei · Dϕ(x0, t0) > 0)

where I is defined in Lemma 4.5.

Proof of Lemma 4.6
Let us define

m0 = sup{ m ≤ kn+1 − 1, θm−1
Ii,± = 1, θm

Ii,± = −1}.
For ∆x, ∆t small enough, we can assume that (xK , tm) ∈ B2δ0(x0, t0) for K = I, Ii,± and m0 ≤ m ≤ kn+1.

Since c < 0 in B2δ0(x0, t0), θ
kn+1−1
I = 1 implies θm

I = 1 for all m0 ≤ m ≤ kn+1 − 1, and by definition of m0,
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θm
Ii,± = −1 for all m0 ≤ m ≤ kn+1 − 1.

This means that Ii,± ∈ Fm
− for all m0 ≤ m ≤ kn+1 − 1 and so

(4.21) ûm
−,Ii,± = tm0

for m0 ≤ m ≤ kn+1 − 1.

In particular, û
kn+1−1

−,Ii,± = tm0 and by the definition of the t̂kn+1 it results ũ
kn+1−1
I ≥ t̂kn+1 with t̂kn+1 = tkn+1 ,

since tkn+1 > tkn
.

By the equation
N∑

k=1

(
max
±

(
0, ũ

kn+1−1
I − û

kn+1−1

−,Ik,±

))2

=

(
∆x

ĉ
kn+1−1
I

)2

,

we conclude that

tε − tm0
≤ tkn+1 − tm0

≤ ũ
kn+1−1
I − û

kn+1−1

−,Ii,± ≤ (∆x)

|ĉkn+1−1
I |

≤ ∆x

δ
.

5 Proof of Theorem 2.5

This section is dedicated to the proof of the main theorem, which is preceded by two important propositions.

The first proposition will show that the limit function θ
0

is a sub-solution in all the domain excepted

for the initial time, whereas the second proposition will show that the limit function θ
0

is a sub-solution at
the initial time. The reason why we need to treat a part the initial condition is that the proof of the first
proposition is based on the definition of discontinuous viscosity sub-solution (see Barles [4] and Crandall,
Ishii, Lions [10]) consisting in testing the equation by smooth functions, but this definition does not hold at
the initial time. Then we treat the initial condition using the technique of barriers.

At the end of this section, we give the main proof using both results.

Proposition 5.1. (Sub-solution property of the limit)

The function θ
0

is a sub-solution of the equation

θt(x, t) = c(x, t)|Dθ(x, t)|

on R
N × (0, T ).

Proof of Proposition 5.1

By contradiction, assume that there are (x0, t0) and ϕ ∈ C2 such that θ
0 − ϕ reaches a strict maximum at

(x0, t0) with θ
0
(x0, t0) = ϕ(x0, t0) and

(5.22) ϕt(x0, t0) = α + c(x0, t0)|Dϕ(x0, t0)|

with α > 0. Since the maximum of θ
0 − ϕ is strict, there exists (xε, tε) → (x0, t0) as ∆x → 0 such that

max((θε)∗ − ϕ) = ((θε)∗ − ϕ)(xε, tε).

In particular, we have (θε)∗(xε, tε) = 1 for ∆x, ∆t small enough. Indeed, by contradiction, suppose that
(θε)∗(xε, tε) = −1. Using the fact that (θε)∗ is upper semi-continuous, we obtain (θε)∗ = −1 a neighborhood
of (xε, tε). We then deduce that ϕt(xε, tε) = Dϕ(xε, tε) = 0 and so

0 = ϕt(xε, tε) − c(xε, tε)|Dϕ(xε, tε)| → ϕt(x0, t0) − c(x0, t0)|Dϕ(x0, t0)| = α

This is absurd.
If |Dϕ(x0, t0)| 6= 0, we note that we can rewrite inequality (5.22) as

(5.23) ϕt(x0, t0) = c̄|Dϕ(x0, t0)| with c̄ > c(x0, t0)

We denote by

(5.24) ~n0 =
Dϕ(x0, t0)

|Dϕ(x0, t0)|
.
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To continue the proof, we have to distinguish several cases:

1. c(x0, t0) > 0.

In this case, we have in particular, ϕt(x0, t0) > 0. Then we can apply Lemma 4.3 and we deduce that there
exist Ψε ∈ C2 and (I, n) ∈ Z

N × N such that (xI , tkn
) → (x0, t0) as ε = (∆x, ∆t) → 0,

(θε)∗(xI , tkn
) = 1, tkn

= Ψε(xI)

and θn
I = 1, θn−1

I = −1, where n̄ is defined in Lemma 4.3. Using Lemma 4.1 and Lemma 4.3 (i), we deduce
also that for all J ∈ V (I)\ {I} such that θn−1

J = 1, we have

ûn−1
+,J ≥ Ψε(xJ ).

This implies for all J ∈ V (I) ∩ Fn−1
+ , using also the (general) fact that ũn−1

I ≤ tn = tkn
,

(5.25) ũn−1
I − ûn−1

+,J ≤ tn − ûn−1
+,J = Ψε(xI) − ûn−1

+,J ≤ Ψε(xI) − Ψε(xJ ).

By the GFMM algorithm (Step 5), ũn−1
I is solution of the equation

(
∆x

c(xI , tn−1)

)2

=

N∑

i=1

(
max
±

(
0, ũn−1

I − ûn−1
+,Ii,±

))2

If |Dϕ(x0, t0)| 6= 0, by adding (5.25) for J = Ii,± on all direction i ∈ C ⊂ {1, .., N} such that

ũn−1
I − ûn−1

+,Ii,+ ≥ 0 or ũn−1
I − ûn−1

+,Ii,− ≥ 0

and by using Lemma 4.3 (iii), we can estimate

(
∆x

c(xI , tn−1)

)2

=
∑

i∈C

(
max
±

(
ũn−1

I − ûn−1
+,Ii,±

))2

≤
∑

i∈C
max
±

(Ψε(xI) − Ψε(xIi,±))
2

≤(∆x)2

c̄2

∑

i∈C
( ~n0 · ei)

2 + (∆x)2O(∆x + |xI − x0| + |tkn
− t0|)

≤(∆x)2

c̄2
+ (∆x)2O(∆x + |xI − x0| + |tkn

− t0|)

where c̄ and ~n0 are defined in (5.23) and (5.24) respectively.
It follows that

1

c2(xI , tn−1)
− 1

c̄2
≤ O(∆x + |xI − x0| + |tkn

− t0|).

Taking the limit ε = (∆x, ∆t) → 0, we obtain a contradiction.
If Dϕ(x0, t0) = 0, we get in the same way

1

c2(xI , tn−1)
≤ O(∆x + |xI − x0| + |tkn

− t0|).

Taking the limit ε → 0, since we have assumed c(x0, t0) > 0, we obtain a contradiction.

2. c(x0, t0) < 0.

In this case, we have no information on the sign of ϕt, so we have to distinguish several cases:

1. ϕt(x0, t0) < 0.

Note that, in this case, |Dϕ(x0, t0)| 6= 0 and (5.23) holds with 0 > c̄ > c(x0, t0).
Then we can apply Lemma 4.3 and we deduce that there exist Ψε ∈ C2 and (I, n) ∈ Z

N ×N such that

(θε)∗(xI , tkn
) = 1, tkn

= Ψε(xI)

and
θn

I = −1, θn−1
I = 1,
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where n̄ is defined in Lemma 4.3. Using Lemma 4.1 and Lemma 4.3 (iv), we deduce also that for all
J ∈ V (I)\ {I} such that θn−1

J = −1, we have

ûn−1
−,J ≤ Ψε(xJ ).

This implies that for all J ∈ V (I) ∩ Fn−1
−

ũn−1
I − ûn−1

−,J ≥ t̃n − Ψε(xJ ) = tn − Ψε(xJ ) + (t̃n − tn) = Ψε(xI) − Ψε(xJ ) + (t̃n − tn)

Since c(x0, t0) 6= 0, there exists δ, δ0 > 0 such that |c| ≥ δ > 0 on Bδ0(x0, t0) and we can apply Lemma
4.2 to get

ũn−1
I − ûn−1

−,J ≥ Ψε(xI) − Ψε(xJ ) + o(∆x).

Using Lemma 4.3 (iii) yields

ũn−1
I − ûn−1

−,J ≥ 1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tkn

− t0|) + o(∆x).

By adding the previous equation for J = Ii,± on all direction i ∈ C ⊂ {1, .., N} such that

ũn−1
I − ûn−1

−,Ii,+ ≥ 0 or ũn−1
I − ûn−1

−,Ii,− ≥ 0

we obtain, since |Dϕ(x0, t0)| 6= 0

(
∆x

c(xI , tn−1)

)2

=

N∑

i=1

(
max
±

(
0, ũn−1

I − ûn−1
−,Ii,±

))2

=
∑

i∈C

(
ũn−1

I − ûn−1
−,Ii,±

)2

≥ (∆x)2

c̄2

∑

i∈C
( ~n0 · ei)

2 + (∆x)2 O(∆x + |xI − x0| + |tkn
− t0|) + o(∆x)2(5.26)

If i 6∈ C (i.e. ũn−1
I − ûn−1

−,Ii,+ < 0 and ũn−1
I − ûn−1

−,Ii,− < 0), then by Lemma 4.4, we deduce that

(5.27)

∣∣∣∣
1

c̄
∆x ~n0 · ei

∣∣∣∣ = o(∆x).

By combining (5.26) and (5.27), we get

(
∆x

c(xI , tn−1)

)2

≥ (∆x)2

c̄2

N∑

i=1

( ~n0 · ei)
2 + (∆x)2 O(∆x + |xI − x0| + |tkn

− t0|) + o(∆x2)

=
(∆x)2

c̄2
+ (∆x)2 O(∆x + |xI − x0| + |tkn

− t0|) + o(∆x2)

This implies
1

c2(xI , tn−1)
− 1

c̄2
≥ O(∆x + |xI − x0| + |tkn

− t0|) + o(1).

Taking the limit ε = (∆x, ∆t) → 0, we get the contradiction since |c(x0, t0)| > |c̄|.

2. ϕt(x0, t0) > 0.

Since c(x0, t0) < 0, we have by the algorithm that
∂(θε)∗

∂t
≤ 0.

We define ϕε = ϕ + ((θε)∗ − ϕ)(xε, tε). In particular, we have (θε)∗ ≤ ϕε and

(θε)∗(xε, tε) = ϕε(xε, tε) = 1.

We have tε = tkn
. Indeed, assume that tε ∈ (tkn

, tkn+1). Using the fact that (θε)∗(xε, tε) = 1, we
deduce that (θε)∗(xε, t) = 1 for tkn

≤ t ≤ tkn+1 and so ϕt(xε, tε) = 0. This is absurd for ε small enough
since ϕt(x0, t0) > 0.

Using the fact that (ϕε)t > 0, we deduce that (θε)∗(xε, t) ≤ ϕε(xε, t) < 1 for t < tkn
. This is absurd

since
∂(θε)∗

∂t
≤ 0.
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3. ϕt(x0, t0) = 0.

Since the equation (5.22) holds with α > 0, we have, in particular, |Dϕ(x0, t0)| 6= 0. Then, there
exists a direction ±ei such that ∓ei · Dϕ(x0, t0) > 0. Using Lemma 4.5, we deduce that there exists

(I, n) ∈ Z
N × N such that θ

kn+1−1
I = 1 and θε = −1 on Qn

Ii,± =]xIi,± , xIi,± + ∆x[×]tkn
, tkn+1 [. We

define tm0
such that

m0 = sup{m : tm ≤ tkn
, θm−1

Ii,± = 1, θm
Ii,± = −1}.

In particular, (θε)∗(x, tm0
) = 1 for all x ∈ [xIi,± , xIi,± + ∆x].

We define ϕε = ϕ + ((θε)∗ − ϕ)(xε, tε). In particular, we have (θε)∗ ≤ ϕε and

(θε)∗(xε, tε) = ϕε(xε, tε) = 1.

Since the following inclusion {(θε)∗ = 1} ⊂ {ϕε ≥ 1} holds, ϕε(x, tm0
) ≥ 1 for all x ∈ [xIi,± , xIi,±+∆x].

Let ν ∈ [0, ∆x]N be such that xε = xI + ν and let us define y ≡ xIi,± + ν and ϕ(·, ·) ≡ ϕε(· + ν, ·).
Then it yields ϕ(xI , tε) = ϕε(xε, tε) = 1, and ϕ(xIi,± , tm0

) = ϕε(y, tm0
) ≥ 1.

To obtain the contradiction, we consider the expansion of ϕ up to the first order

0 ≤ ϕ(xIi,± , tm0
) − ϕ(xI , tε)

≤ (xIi,± − xI) · Dϕ(xI , tε) + (tm0
− tε)∂tϕ(xI , tε) + O((∆x)2 + |tε − tm0

|2).

Now by Lemma 4.6 and using the fact that ∂tϕ(x0, t0) = 0 we obtain

±ei · Dϕ(xI , tε)∆x + o(∆x) ≥ 0,

that is absurd, since by assumption ±ei · Dϕ(x0, t0) < 0.

3. c(x0, t0) = 0.

In this case, we have
ϕt = α > 0

and we can apply Lemma 4.3. Hence, there exists r, τ > 0, a function Ψε ∈ C2(Br(x0), (t0 − τ, t0 + τ)) and
a node (I, n) ∈ Z

N × N such that

(θε)∗(xI , tkn
) = 1, tkn

= Ψε(xI)

and for all J ∈ V (I), tm ∈ (t0 − τ, t0 + τ), we have

(5.28) θε(xJ , tm) = 1 =⇒ tm ≥ Ψε(xJ )

We define m0 such that tm0−1 < t0 − τ ≤ tm0 .
For all J ∈ (V (I)\ {I}) ∩ {θn−1 = 1} (with n̄ defined in Lemma 4.3), we define

mJ = sup{k ≤ n, θk−1
J = −1}

We distinguish two cases:

1. There exists J ∈ (V (I)\ {I}) ∩ {θn−1 = 1} such that mJ < m0.
Using the fact that θk

I = −1 for m0 ≤ k ≤ n − 1 (see Lemma 4.3 (ii)), we have that J ∈ F k
+, ∀ m0 ≤

k ≤ n − 1 and we deduce that

ûn−1
+,J = un−1

J ≤ tm0 and θε(xJ , tm0) = 1.

By (5.28), we then have tm0 ≥ Ψε(xJ ).
We now assume that |Dϕ| 6= 0 (the case |Dϕ| = 0 can be treated in a similar way). Using Lemma 4.3,
we deduce that

tm0 ≥ Ψε(xJ ) = tkn
− 1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tkn

− t0|),
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and so

tkn
− tm0 ≤1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tkn

− t0|)

≤∆x

c̄
+ (∆x) O(∆x + |xI − x0| + |tkn

− t0|).

Sending ∆x, ∆t to 0, yields t0 − (t0 − τ) = τ ≤ 0. This is absurd.

2. For all J ∈ (V (I)\ {I}) ∩ {θn−1 = 1}, mJ ≥ m0.
We then have θε(xJ , tmJ

) = 1 and so by (5.28) we have ûn−1
+,J = tmJ

≥ Ψ(xJ).

We now assume that |Dϕ| 6= 0 (the case |Dϕ| = 0 can be treated in a similar way). Using Lemma 4.3,
we deduce that

ûn−1
+,J ≥ Ψ(xJ ) = tkn

− 1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tkn

− t0|),

and so

ũn−1
I − ûn−1

+,J ≤ tkn
− ûn−1

+,J ≤1

c̄
~n0 · (xJ − xI) + (∆x) O(∆x + |xI − x0| + |tkn

− t0|)

By adding for J = Ii,± on all directions i ∈ C ⊂ {1, .., N} such that

ũn−1
I − ûn−1

+,Ii = max(ũn−1
I − ûn−1

+,Ii,+ , ũn−1
I − ûn−1

+,Ii,−) ≥ 0,

we deduce that

(
∆x

ĉn−1
I

)2

=
∑

i∈C

(
ũn

I − ûn−1
+,Ii

)2

≤
(

∆x

c̄

)2

+ (∆x)2 O(∆x + |xI − x0| + |tkn
− t0|).

i.e.
1

|ĉn−1
I |2

≤ 1

c̄2
+ O(∆x + |xI − x0| + |tkn

− t0|)

Sending ∆x, ∆t to 0, yields a contradiction since c̄ > c(x0, t0) = 0.

We construct a barrier sub-solution and we prove that θ
0

defined by (2.10) satisfies the initial condition
of (1.1):

Proposition 5.2. (Initial condition)
We have the following inequality:

(5.29) θ
0
(·, 0) ≤

(
1Ω0 − 1Ωc

0

)∗
.

Proof of Proposition 5.2
For α > 0 which will be precised later, we consider the following function

(5.30) v(x) = α dist(x, Ω0).

and we define, for all I ∈ Z
N

vI = v(xI).

We then define for xI ∈ Ωc
0 a velocity ∞ > cv,I > 0 by solving

N∑

k=1

(max
±

(0, vI − v̂Ik,±))2 =

(
∆x

cv,I

)2

,

where

v̂J =

{
vJ if vJ ≤ vI

∞ if vJ > vI .
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This define a GFMM with velocity cv,I and whose solution is vI . On the one hand, using the fact that
|vI − vJ | ≤ α∆x, yields for J ∈ V (I)

(5.31) cv,I ≥ 1

α
√

N

On the other hand, the C2 regularity of ∂Ω0 implies that cv,I is uniformly bounded as ∆x → 0 in a
neighborhood of ∂Ω0.

Moreover, we can define θε
v in the following way

θε
v(x, t) =

{
1 if x ∈ [xI , xI + ∆x[ and t ≥ vI

−1 if x ∈ [xI , xI + ∆x[ and t < vI .

We denote by u the solution of the GFMM algorithm with velocity c(x, t). We then have

θ0
u,I = 1 ⇒ xI ∈ Ω0 ⇒ vI = 0 ⇒ θ0

v,I = 1.

and so {θ0
u = 1} ⊂ {θ0

v = 1}. Moreover, using (5.31), we deduce that for α small enough, we have, for all
t ≥ 0 cv,I ≥ (c(xI , t))+. Using the comparison principle Corollary 3.5, we deduce that θε

v(x, t) ≥ θε(x, t). We
denote by vε(x) = sup

y∈[x−∆x,x]

v(y) and θvε(x, t) = 1{vε(x)≥t} − 1{vε(x)<t}. It is easy to check that

(θvε)∗(x, t) ≥ (θε
v)∗(x, t) ≥ (θε)∗(x, t).

Passing to the limit ε → 0, we then obtain for t > 0

1{v(x)≥t} − 1{v(x)<t} = θv(x, t) ≥ θ
0
(x, t)

and so
(
1Ω0 − 1Ωc

0

)∗ ≥ θ
0
(x, 0). This implies that θ

0
satisfies the initial condition (5.29).

Proof of Theorem 2.5 The proof of Theorem 2.5 is now quite simple. Indeed, using Theorem 5.1 and

Proposition 5.2, we get that θ
0

is a viscosity sub-solution of (1.1).

For the super-solution property of θ0, it suffices to use the symmetry of θ
0

and θ0 (see Lemma 3.1).
Indeed, by contradiction, assume that there are (x0, t0) and ϕ ∈ C2 such that θ0 − ϕ reaches a strict
minimum at (x0, t0) with

ϕt(x0, t0) = −α + c(x0, t0)|Dϕ(x0, t0)|

with α > 0 and t0 > 0. Let us define c1 = −c, ϕ1 = −ϕ and θ
0

1 = θ
0
[−θ0,−c]. Then, using Lemma 3.1, we

get that θ
0

1 − ϕ1 reaches a strict maximum at (x0, t0) with θ
0

1(x0, t0) = ϕ1(x0, t0) and

(ϕ1)t(x0, t0) = α + c1(x0, t0)|Dϕ(x0, t0)|.

This contradicts the sub-solution property of θ
0

1. For the initial condition, we use the same arguments of
those of Proposition 5.2.

Moreover, if (1.1) satisfies a comparison principle, then θ
0 ≤ (θ0)∗ and (θ

0
)∗ ≤ θ0. Since, by definition,

θ
0 ≥ θ0, we get that θ

0
= (θ0)∗ and (θ

0
)∗ = θ0 is a solution of (1.1). This exactly means that θ

0
and θ0 are

solutions, which is then unique (when the comparison principle holds for a special choice of the initial data),
up to the upper and the lower semi-continuous envelopes.

6 Numerical tests

We are going to verify our algorithm by some numerical tests in dimension N = 2.
First we will give in two cases the representation formula of the solution so that we will be able to obtain
numerical errors comparing it with the numerical solution obtained by the GFMM algorithm.

Representation formulas for hyperplanes and spheres propagating with linear speed
We verify that hyperplanes and spheres in R

N , that propagate with a linear speed along the normal direction,
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keep their shapes during the evolution remaining respectively hyperplanes and spheres.
These manifolds can be characterized by the level set of a polynomial P (x) : R

N → R of degree 1 and 2. We
denote by P (x, t) the polynomials with coefficients depending on t.
Each point x s.t. P (x, t0) = 0 verifies the following dynamics:

{
ẏ(t) = −c(y(t), t) DP (y(t),t)

|DP (y(t),t)| ,

y(t0) = x

since they propagate with speed c along the unit normal to the manifold. These trajectories are known as
characteristics. Then we just need to check that the evolution of each point of the manifold verifies the
equation P (y(t), t) = 0, i.e. deriving with respect to t

(6.32) Pt(y(t), t) − |DP (y(t), t)|c(y(t), t) = 0,

for any linear speed c(x, t) = a(t)x + b(t) and for any P (x, t) representing hyperplanes or spheres.

Hyperplanes: P (x, t) = α(t)x + β(t)
It results Pt(x, t) = α̇(t)x + β̇(t) and |DP (x(t), t)| = |α(t)| then P (x, t) verifies (6.32) with coefficients such
that: {

α̇(t) = |α(t)|a(t)

β̇(t) = |α(t)|b(t)

Spheres: P (x, t) = R(t)2 − |x − x0(t)|2
It results Pt(x, t) = 2(x−x0(t))ẋ0(t)+2R(t)Ṙ(t) and |DP (x(t), t)| = 2|x−x0(t)| then P (x, t) verifies (6.32)
with coefficients such that: {

ẋ0(t) = a(t)R(t)

Ṙ(t) = x0(t)a(t) + b(t)

Test 1 : a rotating line
We choose as initial data a line P (x, 0) = x2 + 1.5x1 and then as representing function:

(6.33) θ(x, 0) =

{
1 if x2 + 1.5x1 > 0

−1 otherwise.

We choose as velocity c(x, t) = x1. We have proved that a line propagating with linear speed stays a line.
Applying the result of the previous section, we obtain that P (x, t) = α(t)x+β(t) has coefficients solving the
following o.d.e. {

α̇1(t) =
√

1 + α1(t)2

α1(0) = 1.5,

{
α̇2(t) = 0

α2(0) = 1,

then we get P (x, t) = sinh(t + arcsinh(α1(0)))x1 + x2.
We compute the discrete solution in the numerical domain D = [−1, 1] × [−1, 1]. The evaluation of the
error is a delicate point. We decided to evaluate the error at the final time T = 1 in terms of the difference
between the area A(·) of the set Ω+

T = {x ∈ R
2 : P (x, T ) > 0} and its numerical approximation Ω+

m =
{x ∈ R

2 : I[θm](x) > 0}, where m is the number of iterations to reach the final time T and I[θm] is the
linear interpolation of the discrete numerical solution (θm

I )I . In both cases we were able to compute the area
exactly.
Note that a-priori a small error on the areas does not guarantee that the two fronts (exact and approximated)
are close each other since, for example, positive errors in the area on one piece of the boundary can be
compensated by negative errors on another piece of the boundary. Naturally, the more accurate way to
evaluate the error at T = 1 is to compute the Hausdorff distance H(·, ·) between the exact front C = {x ∈
R

2 : P (x, T ) = 0} and the approximated front C̃ = {x ∈ R
2 : I[θm](x) = 0}. Although that distance cannot

be computed exactly, a good approximation can be obtained computing it on only a finite number of points
belonging to the fronts.
We measure the amount of inhomogeneity of the speed by the ratio

max
I∈F n

+

|ĉn
I |/ min

I∈F n
−

|ĉn
I |.
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Since in this test there are points in the front with speed 0, the coefficient results to be infinity.

The speed is constant in time, then we are in the situation described in Case 1 Sec. 2.3 and we can
implement the algorithm without updating the values of ũ on each node of the front at each iteration. We
only need to recompute the value of ũ at the node I whose neighbors have been accepted ( I ∈ V (NAn)),
i.e. after one iteration the algorithm should be modified in the Step 5 as following :
for n ≥ 2
5. Compute ũn−1 on Fn−1

± as follows

1. if I 6∈ V (NAn−1), then ũn−1
I = ũn−2

I

2. if I ∈ V (NAn−1), then

(a) if ±ĉn−1
I ≥ 0, ũn−1

I = ∞,

(b) if ±ĉn−1
I < 0, compute ũn−1

I as the solution of the (2.7).

We compare the GFMM method with the iterative Finite Difference (FD) scheme described in [17], in
term of complexity and accuracy. In this case the approximated set is Ω+

n = {x ∈ R
2 : I[vn](x) > 0}

where (vn
I )I is the solution of the FD scheme approximating the continuous solution P (x, T ), I[vn] its linear

interpolation and C̃ = {x ∈ R
2 : I[vn](x) = 0} the approximated front.

Table 1 shows the error for the tests run with 50, 100, 200, 400 number of nodes for each side of the square
domain.
Table 1 show a better performance in term of accuracy for the FD scheme, this can be explained observing
that in the scheme the front is represented by the zero level set of a continuous function and this convergence
is uniform. On the other hand, the GFMM algorithm represents the front by the interface of a discontinuous
function (i.e. the front is where there is a jump between -1 and 1). The advantage here to use the GFMM
scheme is in term of CPU time, the GFMM results approximately 10 time faster than the full matrix
approach.

GFMM FD

∆x |A(Ω+
T ) −A(Ω+

m)| H(C, C̃) CPU |A(Ω+
T ) −A(Ω+

n )| H(C, C̃) CPU
0.04 1.62 · 10−1 5.08 · 10−2 0.19s 1.15 · 10−1 4.10 · 10−2 1.82s
0.02 8.26 · 10−2 2.72 · 10−2 0.73s 5.16 · 10−2 2.05 · 10−2 13.2s
0.01 4.05 · 10−2 1.35 · 10−2 3.98s 2.80 · 10−2 1.03 · 10−2 102s
0.005 2.05 · 10−2 6.80 · 10−3 76s 9.00 · 10−3 2.60 · 10−3 810s

Table 1: Area and Hausdorff distances: GFMM-case 1 versus Finite Difference (FD), for test 1 with constant
time speed
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Figure 4: A rotating line by the GFMM algorithm (left) and by DF algorithm (right)

24



Fig.4 left shows the interface between {θε = 1} and {θε = −1} at each time interval 0.1. The line is
rotating clockwise and it will reach in infinite time the x2 axis. Fig.4 right shows the same test computed
by the FD scheme, here the lines are the 0-level set of the discrete function (vn

I )I,n. In both cases the test
has computed with ∆x = 0.01 and the line has been plotted at times tn = n0.1, n = 1, 2, 3....
Now let us consider a speed depending on time and changing sign during the evolution c(x, t) = sin(2πt)x1.
This means that we are in the Case 2 of Sec. 2.3. We obtain the exact solution solving (6.32). The line
is rotating around the origin, changing its direction of rotation after every time interval of length 1/2. We
compute the discrete solution in the numerical domain D = [−1, 1] × [−1, 1], we evaluate the error at final
time T = 1 and we choose ∆T = 4∆x > 1√

M
as time step to update the speed and the values of the time

on the front, i.e. Step 5 in the algorithm is computed only on Fn ∩ V (NAn) and each ∆T time step on all
the nodes of Fn.
Measuring the amount of inhomogeneity as before, we still get infinity for the coefficient, since also in this
test there are points in the front with zero speed.
Table 2 shows an increase of the CPU time for the GFMM method with respect to the previous test. This

GFMM FD

∆x |A(Ω+
T ) −A(Ω+

m)| H(C, C̃) CPU |A(Ω+
T ) −A(Ω+

n )| H(C, C̃) CPU
0.04 1.60 · 10−1 5.21 · 10−2 0.52s 9.76 · 10−2 4.82 · 10−2 1.82s
0.02 8.66 · 10−2 3.07 · 10−2 1.71s 4.76 · 10−2 2.46 · 10−2 13.3s
0.01 4.27 · 10−2 1.54 · 10−2 10.5s 2.37 · 10−2 1.35 · 10−2 102s
0.005 2.14 · 10−2 9.00 · 10−3 130s 6.88 · 10−3 7.00 · 10−3 842s

Table 2: Area and Hausdorff distances: GFMM-case 2 versus Finite Difference (FD) for Test 1 with time
dependent speed

was expected since we update all the values of ũ on the fronts after every time interval ∆T . The FD scheme
is still more accurate, but in terms of CPU time the GFMM method wins since it is 6 time faster (in the last
test) than the FD scheme. All tables show that for smooth speed the GFMM algorithm has approximately
order of convergence 1.
All the tests have been computed on a laptop with a processor Intel Centrino Duo.

Test 2 : propagation of a circle
We choose as initial data a circle P (x, 0) = x2

1 + x2
2 − 1 and then as representing function:

(6.34) θ(x, 0) =

{
1 x2

1 + x2
2 − 1 < 0

−1 otherwise.

We choose as velocity c(x, t) = 0.1t−x1. We have proved that a circle propagating with linear speed stays a
circle. Applying the result of the previous section, we obtain that P (x, t) = (x1−x0,1(t))

2 +(x2−x0,2(t))
2−

R(t)2 has coefficients solving the following o.d.e.

{
ẋ0,1(t) = −R(t)

x0,1(0) = 0

{
ẋ0,2(t) = 0

x0,2(0) = 0

{
Ṙ(t) = −x0,1(t) + 0.1t

R(0) = 1

Solving, we obtain x0,1(t) = 1/20(2t+11(exp(−t)− exp(t)) and R(t) = 1/20(−2+11(exp(t)+exp(−t))).

We compute the discrete solution in the numerical domain D = [−2, 2] × [−2, 2]. The amount of inho-
mogeneity as in the previous test is infinity, because again in this test there are points in the front with zero
speed.
We evaluate the error at the final time T = 0.5 by comparing the areas A(·) of the sets Ω+

T and Ω+
m and

computing the approximated Hausdorff distance between the exact and approximated fronts, as defined in
the previous test.
Table 3 shows the error for the tests run with 50, 100, 200, 400 number of nodes for each side of the square
domain. As it can be seen in the table, the order of convergence is approximately 1 which seems to be a
very good result for an algorithm which adopt a discontinuous representation of the front.
Fig.5 shows the interface between {θε = 1} and {θε = −1} at each time interval 0.1 obtained with space
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∆x |A(Ω+
T ) −A(Ω+

m)| H(C, C̃)
0.08 1.26 · 10−1 8.52 · 10−1

0.04 6.56 · 10−2 4.42 · 10−2

0.02 3.34 · 10−2 2.41 · 10−2

0.01 1.41 · 10−2 1.24 · 10−2

Table 3: Area and Hausdorff distances for test 2, with GFMM
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Figure 5: A propagating circle

step 0.01, the circle is expanding and its centre is propagating on the left.

Test 3: comparison between the FMM and GFMM algorithm
When the evolution is monotone (with time independent velocity), i.e. c(x) > 0, there exists a link between
the evolutive and the stationary equation(see [12] and [16]):

{
c(x)|DT (x)| = 1 x ∈ Ω,

T (x) = 0 x ∈ ∂Ω.

In this case the discrete function un
I , computed by the GFMM algorithm, approximates the solution T (x)

outside the set Ω.
The two schemes, the FMM and the GFMM, are run in the case the speed is c(x, t) = 1 with initial set Ω a
circle centred in the origin with radius 0.5. The amount of inhomogeneity is obviously one, because in this
test the speed is a constant.
For this choice of speed, the solution T (x) corresponds at the distance function of the point x from the set
Ω.
We compare the two schemes computing the errors in the || · ||∞ discrete norm:

‖T (xI) − uI‖∞ ≡ sup
{I:xI∈D}

|T (xI) − uI |.

As one can see in Table 4, the GFMM scheme produces in this particular case almost the same results of
the FMM scheme (as implemented in the HJpack library [29]). The results are slightly different in particular
because the time computed in the narrow band in the classical FMM uses not only the accepted points but
also the points of the narrow band.

Test 4: two collapsing circles
We choose as initial data two circles and as velocity c(x, t) = 1 − t. The amount of inhomogeneity is one,
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∆x FMM GFMM
0.08 6.5 · 10−2 7.8 · 10−2

0.04 3.3 · 10−2 3.9 · 10−2

0.02 2.0 · 10−2 1.8 · 10−2

0.01 1.0 · 10−2 1.0 · 10−2

Table 4: Numerical errors for test 3
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Figure 6: The discrete time u of a propagating circle with positive constant speed

since the speed is not depending on space variables.
The two circles grow as far as the speed is positive. At t = 1, when the velocity changes sign, they start to
decrease. Fig.7 on the left shows the interface between {θε = 1} and {θε = −1} obtained with ∆x = 0.01 at
each time interval 0.2 until t = 1 and Fig.7 on the right shows the interface between {θε = 1} and {θε = −1}
at each time interval 0.2 for the time interval [1.2, 2.4].
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Figure 7: Two propagating circles
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