
A Generalized Fast Marching Method

for dislocation dynamics

Elisabetta Carlini1, Nicolas Forcadel2, Régis Monneau3

July 8, 2011

Abstract

In this paper, we consider a Generalized Fast Marching Method (GFMM) as a numerical method
to compute dislocation dynamics. The dynamics of a dislocation hyper-surface in RN (with N = 2 for
physical applications) is given by its normal velocity which is a non-local function of the whole shape of
the hyper-surface itself. For this dynamics, we show a convergence result of the GFMM as the mesh size
goes to zero. We also provide some numerical simulations in dimension N = 2.

AMS Classification: 65M06, 65M12, 49L25.

Keywords: Hamilton-Jacobi equations, fast marching scheme, convergence, viscosity solutions, dislocation dynam-

ics, non-local equations.

1 Introduction

In this paper, we present a numerical approach, called Generalized Fast Marching Method (GFMM), to
compute the dynamics of a dislocation. Dislocations are line defects in crystal and their motion is at the
origin of plastic properties of metals (we refer to Alvarez et al. [5] for more details on dislocations and for
a description of the mathematical model). A smooth dislocation can be represented as the boundary of an
open set Ωt (where t represents the time dependence). The evolution equation can then be written on the
characteristic function of Ωt, namely θ(x, t) which is defined by

θ(x, t) =

{
1 if x ∈ Ωt,
−1 if x 6∈ Ωt.

Moreover, θ is assumed to satisfy the following non-local equation (see Alvarez et al. [5] for an equivalent
formulation)

(1.1)

{
θt = ((c0 ? θ(·, t))(x) + c1(x, t)) |Dθ| in RN × (0,+∞),
θ(·, 0) = 1Ω0

− 1Ωc0
on RN .

Here and throughout the paper, θt denotes the time derivative of θ, Dθ its gradient in space, c1 is a given
function, c0 = c0(x) is a given kernel and ? denotes the convolution in space.

In [3, 4], the authors studied numerically a level set formulation of (1.1). They proposed a convergent
scheme and proved a Crandall-Lions [9] type error estimate. Nevertheless, the level set formulation used in
those paper is not completely satisfactory for numerical simulations for dislocation dynamics. This comes
from the fact that, on the dislocation line, the gradient of the level set function can get very small very
quickly, which creates some difficulties to localize precisely the numerical level set. In particular, this creates
numerical oscillations of the front as we point out in Section 8 (Test 2, Figure 5). Let us note that this
difficulty might be overcome by using techniques such as reinitialization or velocity extensions [11, 8, 1].

In the present paper, to overcome this problem and to get a better computational cost, we want to replace
the level set method by another method which avoids the difficulty of vanishing gradients. A first attempt

1Dipartimento di Matematica, Università di Roma ”La Sapienza”, P. Aldo Moro, 2, 00185 Roma
2CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
3Université Paris-Est, Cermics, Ecole des ponts, 6-8 avenue Blaise Pascal, 77455 Marne la Vallée Cedex 2, France.

1



in that direction was introduced in [12], and was one of our the main motivations to develop a new theory,
whose the conclusion is the present paper. The method we consider here is the Generalized Fast Marching
Method (GFMM). This algorithm can be seen as an extension of the well-known Fast Marching Method
(FMM), introduced independently by Sethian [13, 14] and Tsitsiklis [15]. The classical FMM is a single pass
scheme to compute the solution of a stationary eikonal equation with a positive and independent on time
velocity c(x). The solution computed gives the arrival time of the front propagating with normal velocity
c(x). Recently in [16], this method has been extended to the case of positive velocities c(x, t) depending
also on time. Later in [7], a generalization to the case of sign changing velocities c(x, t) has been proposed.
Precisely, a new scheme has been designed to compute numerically the discontinuous solution of the following
evolutive local equation

(1.2)

{
θt = c(x, t)|Dθ| in RN × (0,+∞),
θ(·, 0) = 1Ω0 − 1Ωc0

on RN .

In this problem the velocity c(x, t) is assumed to be a given function (contrarily to equation (1.1)). Here the
evolution of the front is given by the evolution of the interface between the two phases of θ and then the
problem of the vanishing gradient is automatically solved.

Even if an evolution equation is approximated by the GFMM, in the case where the velocity c(x, t) is
Lipschitz in time (with a reasonable Lipschitz constant), the computational complexity is O(Mlog(M)),
where M is the total number of grid points, as in the classical FMM (see [7]).

On the one hand, the main result of [7] is a convergence result of the method as the mesh size goes to zero.
On the other hand, one drawback of the scheme proposed in [7] is the fact that the method is not completely
monotone, which makes the analysis difficult for the application of this scheme to non-local equations like
for dislocation dynamics. One major progress has been very recently given in [10], where an improvement
of the GFMM has been proposed with a similar computational complexity O(Mlog(M)). This new version
of the GFMM is indeed truly monotone, and this is this version of GFMM that we will use in this paper to
perform our analysis. Let us mention that one originality of this scheme is that several different notions of
times can be defined at the same point of the front for the same step of the algorithm.

The main result that we get in the present paper is the following (presented here in very vague terms,
see Theorem 3.4 for a precise version):

Theorem (Convergence of the numerical method)
Under suitable assumptions, the numerical solution given by a suitable GFMM, is convergent as the mesh
size goes to zero, to the solution θ of equation (1.1) of dislocation dynamics.

This shows in particular that a GFMM can be considered as a good alternative to the level set method.
This conclusion is moreover supported by the numerical simulations presented at the end of the paper, which
are compared to analogous simulations obtained using the level set method (see Test 2).

Organization of the paper
In Section 2, we first recall the monotone GFMM given in [10] for the local equation and then we give its
extension to compute the numerical solution of the non-local equation of dislocation dynamics. In Section 3
we present our main results about the convergence of the numerical method to the solution of the non-local
equation. To prove the results we will use some known properties (monotonicity, convergence) about the
GFMM presented in [10] for local equations. These properties are recalled in Section 4.

In Section 5 we prove the general convergence result and in the two following sections, we apply the result
in two particular cases: smooth evolutions (Lipschitz curves in R2) with sign changing (non-local) velocities
in Section 6 and non-smooth evolutions (with the condition of interior ball in RN ) with positive (non-local)
velocities in Section 7.

In Section 8, we provide some numerical simulations for the non-local equation describing dislocation
dynamics. Finally, in Appendix A, we give the precise version of the GFMM, which has been used to
perform certain numerical simulations of Section 8. This version is not monotone in the general case of
speed changing sign in time, but it is simpler to implement in practice than the one presented in Section 2 .

2



2 GFMM algorithms for local and non-local equations

2.1 A monotone GFMM for the local equation

We present here the monotone GFMM algorithm studied in [10] (which appears to be a modified version of
the GFMM algorithm introduced in [7]).

2.1.1 Preliminaries

Let us consider a lattice Q = {xI = (xi1 , .., xiN ) = (i1∆x, .., iN∆x), I = (i1, .., iN ) ∈ ZN} with space step
∆x. We will also use a time step ∆t > 0 (which does not satisfy any CFL condition).
The following definitions will be useful in the following.

Definition 2.1 The neighborhood of the node I ∈ ZN is the set

V (I) ≡ {J ∈ ZN : |J − I| ≤ 1}.

Definition 2.2 The numerical boundary ∂E of a set E ⊂ ZN is

∂E ≡ V (E)\E

with
V (E) =

⋃
I∈E

V (I)

Definition 2.3 Given a field θnI with values +1 and −1, we define the two phases

Θn
± ≡ {I : θnI = ±1},

and the fronts
Fn± ≡ ∂Θn

∓, Fn ≡ Fn+ ∪ Fn−.

As in [7, 10], we have to “regularize” the numerical velocity in space in order to avoid the duplication of
the front.

Definition 2.4 Given the speed cnI ≡ c(xI , tn) we define the function

ĉnI ≡
{

0 if there exists J ∈ V (I) such that (cnI c
n
J < 0 and |cnI | ≤ |cnJ |),

cnI otherwise.

We now describe the monotone GFMM algorithm for velocity changing sign. As in the classical FMM,
we define the Narrow Band (NB) which consists in the points I ∈ ZN that can be immediately reached by
the front:

NBn = {I ∈ ZN , ∃ J ∈ V (I), θnI = −θnJ and θnI ĉ
n
I < 0}, NBn± = NBn ∩ {I, θnI = ±1}.

We observe that the Narrow Bands NBn± are related with the previous definition of fronts set as follows:

NBn+ = Fn+ ∩ {I, ĉnI < 0}, NBn− = Fn− ∩ {I, ĉnI > 0}.

Fig.1 shows the Front and the Narrow Band, the white part of the picture represents the domain where
the speed is negative and the gray part the domain with positive speed.

As in the FMM, for all I ∈ NBn, we have to compute a tentative value (which we denote ũnI in the
sequel) of the arrival time of the front at point I. To compute this tentative value, we define the points that
are useful for I, i.e. that we will use in the computation of ũnI :

for I ∈ NBn, Un(I) = {J ∈ V (I), θnI = −θnJ}, Un =
⋃

I∈NBn
Un(I).

For all the points J that are useful for a point I ∈ NBn (i.e. J ∈ Un(I)) we will introduce a time unJ→I .
This time unJ→I can be interpreted as the time when the front Fn starts to go from point J to point I and

3



Figure 1: The Front F+ (white spot), the front F− (black spot), the Narrow Band NB+ (circled white
spot) and the Narrow Band NB−(circled black spot). In the white domain the speed is negative, in the gray
domain the speed is positive.

will be used to compute the tentative value at point I. One originality of the GFMM that we consider here,
is that we may have unJ→I 6= unJ→K for I 6= K with I,K ∈ NBn. This means that we may need a priori
several times at the same point J ∈ Un. This possibility of multiple values of the time at the same point J
is one of the key property to prove that the GFMM algorithm is monotone, see [10] and Section 4. Then
the monotonicity property of the GFMM allows us to obtain convergence.

Once we have computed the tentative value for all points of the Narrow Band, we denote by t̃n the
minimum of all these values. Unfortunately, this sequence of ”candidate” time is not necessarily non-
decreasing, so we have to truncate t̃n to define tn such that (see Step 6 of the algorithm):

0 ≤ tn − tn−1 ≤ ∆t

for a fixed ∆t (independent of ∆x). The algorithm is now very similar to the classical Fast Marching Method.
We accept (in most of the cases, see Step 7 of the algorithm) all the points that realize the minimum (i.e.,
we change the value of the θ), we update the Narrow Band NBn and the useful front Un, then we redefine
the value unJ→I and we iterate.

2.1.2 The monotone GFMM step-by-steps

We now give the precise formulation of the algorithm:

Initialization

1. Set n = 1

2. Initialize the field θ0 as

θ0
I =

{
1 for xI ∈ Ω0,
−1 elsewhere

3. Initialize the time for points I

u0
I→K =

{
t0 = 0 if K ∈ NB0 and I ∈ U0(K)
+∞ otherwise

Loop

4. Compute ũn−1 on NBn−1

Let I ∈ NBn−1, then we compute ũn−1
I as the solution of the following quadratic equation:

(2.1)

N∑
k=1

(
max
±

(
0, ũn−1

I − un−1
Ik,±→I

))2

=
(∆x)2

|ĉn−1
I |2

,

4



where
Ik,± = (i1, .., ik−1, ik ± 1, ik+1, .., iN ).

5. t̃n = min
{
ũn−1
I , I ∈ NBn−1

}
.

6. Truncate t̃n
tn = max(tn−1,min{t̃n, tn−1 + ∆t})

7. if tn < t̃n go to 10 with θn = θn−1.

8. Initialize the new accepted points
NAn± = {I ∈ NBn−1

± , ũn−1
I = t̃n}, NAn = NAn+ ∪NAn−

9. Reinitialize θn

θnI =

{
−θn−1

I for I ∈ NAn
θn−1
I elsewhere

10. Reinitialize unI→K

unI→K =

{
min(un−1

I→K , tn) if K ∈ NBn and I ∈ Un(K)
+∞ otherwise

11. Set n : +1 and go to 4

Remark 2.5 We refer to [7, Subsection 2.3] for a detailed discussion on the complexity and on the im-
plementation of an algorithm very similar to the present one. The only difference is that in the present
algorithm we may have local times uI→J for each neighbor J ∈ V (I)\ {I}, which in the worse case may
introduce a factor 2N (the number of nearest neighbors of a point in ZN ) in the computation of the total
complexity of the algorithm.

2.1.3 Reconstruction of the numerical solution

We now explain how to build the numerical solution, using the output of the monotone GFMM algorithm.
We first remark that the physical sequence of time {tn, n ∈ N}, defined at the Step 6 of the algorithm is

non-decreasing and we can extract a subsequence {tnk , k ∈ N} strictly increasing such that

(2.2) tnk = tnk+1 = ... = tnk+1−1 < tnk+1
.

Then we denote by SkI the square cell SkI = [xI , xI + ∆x[×[tnk , tnk+1
[ with

[xI , xI + ∆x[= ΠN
α=1[xiα , xiα + ∆x[

and by ε the couple
ε = (∆x,∆t).

We now define the following function:

(2.3) θε(x, t) = θ
nk+1−1
I if (x, t) ∈ SkI .

which can be interpreted as the numerical approximation of the solution θ of the local equation (1.2),
reconstructed using the monotone GFMM.

2.2 A non-local algorithm modeled on the monotone GFMM

Our aim is to adapt the previous algorithm to compute a numerical approximation of a solution of the
non-local equation (1.1).

Given a data θ = (θI)I∈ZN , we define its extension on RN by

(2.4) θ∆(x) =
∑
I∈ZN

θI1[xI ,xI+∆x[(x)

5



and the corresponding non-local velocity by

c[θ∆](x, t) = (c0 ? θ
∆)(x) + c1(x, t)

The non-local algorithm modeled on the monotone GFMM (in short the non-local GFMM algorithm) is then
defined from the local GFMM, adding an initializing step before step 3 and adding a new step before Step
10:

2b. Initialize the speed: c0I ≡ c[(θ0)∆](xI , t0), with t0 = 0.

9b. Compute the speed cnI :
Given tn−1 ∈ [p∆T, (p+ 1)∆T ) for some p ∈ N, we set

cnI ≡

 cn−1
I if tn < (p+ 1)∆T

c[(θn−1)∆](xI , tn) if tn ≥ (p+ 1)∆T

Here ∆T > 0 is a time step that has been introduced to avoid to recompute the non-local velocity at
each step of the algorithm. This time step ∆T is not connected to the time step ∆t (nor to the space step
∆x). Indeed, we can choose ∆t� ∆T � 1 or for instance ∆t > ∆T .

When we deal with the non-local equation, we redefine the parameter of discretization ε as

ε = (∆x,∆t,∆T )

that will be required to converge to zero, to insure the convergence of the numerical method in that case.

Remark 2.6 Indeed, we could choose “∆T = 0”, which means to recompute the velocity at each iteration
of the algorithm such that tn > tn−1.

Remark 2.7 The fact that we use θn−1 to recompute the velocity at time tn (even if we know θn) could
seem curious. The reason is that, once we have computed the solution (θnI )n,I to the non-local GFMM and
then constructed θε, it is possible to interpret the non-local GFMM as the local GFMM with a velocity which
is now recomputed using the solution θε only.

More technically, this is due to the fact that we can write (see (5.3)) the velocity as a convolution with
the function θε. Indeed, let us consider a sequence {nk, k ∈ N} with the following time iterations

tnk = tnk+1 = ... = tnk+1−1 < tnk+1
.

Since tn ≥ (p + 1)∆T and tn−1 < (p + 1)∆T , then n − 1 = nk+1 − 1 for some index k. Using now the
definition (2.3), we get

θε(x, t) = θ
nk+1−1
I = θn−1

I if (x, t) ∈ SkI .
and this fact allows us to write the speed as in (5.3):

cnI = c[θε(·, tnk)](xI , tnk+1
).

3 Main results

We consider an open set Ω0 ⊂ RN and the non-local eikonal equation

(3.1)

{
θt(x, t) = c[θ(·, t)](x, t)|Dθ(x, t)| on RN × (0,+∞)
θ(·, 0) = 1Ω0

− 1Ωc0
.

where
c[θ(·, t)](x, t) = (c0 ? θ(·, t))(x) + c1(x, t).

We make the following assumption:

(A1) Regularity of the velocity:
c1 ∈W 1,∞(RN × [0,+∞)), c0 ∈W 1,1(RN ) ∩ L∞(RN ).

We denote by Lc1 the time Lipschitz constant of c1 such that

(3.2) |c1(x, t′)− c1(x, t)| ≤ Lc1 |t′ − t| for any x ∈ RN , t′, t ≥ 0

6



3.1 First main results

Then our first main result concerns the case of a dislocation curve in dimension N = 2, for which a short
time existence and uniqueness result is known (see [5]).

Theorem 3.1 (Dislocation loop for short time with non-signed velocity)
Assume (A1) and that Ω0 ⊂ R2 is a C3 bounded connected and simply connected open set. Then there exists
T ∗ > 0 such that for ε = (∆x,∆t,∆T ) converging to zero, we have

θε → θ in L∞([0, T ∗);L1(RN ))

where θε is given in (2.3) using the non-local GFMM algorithm given in Subsection 2.2 and θ is the unique
solution of (3.1) on the time interval [0, T ∗).

In higher dimensions, in the case where the non-local velocity is positive, a global existence result is
known under suitable assumptions (see [2]). In that case, we get the following result

Theorem 3.2 (Large time dislocation dynamics with nonnegative velocity)
Assume that c0 ∈W 2,1(RN )∩L∞(RN ), c1 ∈W 2,∞(RN × [0,+∞)) and c1(x, t) ≥ |c0|L1(RN ) + δ with δ > 0.

Assume also that Ω0 ⊂ RN is a bounded C2 open set. Then for ε = (∆x,∆t,∆T ) converging to zero, we
have

θε → θ in L∞([0,+∞);L1(RN ))

where θε is given in (2.3) using the non-local GFMM algorithm given in Subsection 2.2 and θ is the unique
solution of (3.1).

3.2 A general convergence result

In this subsection, we will present a general convergence result whose Theorems 3.1 and 3.2 will be seen as
consequences. To this end, we recall the following definition, of upper semi-continuous envelope

θ∗(x, t) = lim sup
(y,s)→(x,t)

θ(y, s)

and of lower semi-continuous envelope

θ∗(x, t) = lim inf
(y,s)→(x,t)

θ(y, s).

Then we introduce the following assumptions:

(A2) Existence, uniqueness and Lipschitz in time non-local velocity:
There exists a finite time T ∗ > 0 and a unique solution θ ∈ C([0, T ∗), L1(RN )) which is a discontinuous
viscosity solution of equation (3.1). Moreover, the velocity is Lipschitz in time, i.e.

(3.3) |c[θ(·, t′)](x, t′)− c[θ(·, t)](x, t)| ≤ Lc|t′ − t|

for any x ∈ RN and t′, t ∈ [0, T ∗)

Remark 3.3 Here the uniqueness of the discontinuous viscosity solution θ has to be understood as the
fact that all the solutions has the same upper (resp. lower) semi-continuous envelopes.

(A3’) L1 stability estimate for a perturbed local problem:
For a given local velocity c ∈ W 1,∞(RN × [0, T ∗)), there exists e0 > 0, such that for any function
e ∈ C([0, T ∗)) satisfying |e|L∞([0,T∗)) ≤ e0, the solution θe of the following perturbed problem,

(3.4)

{
θet (x, t) = ce(x, t)|Dθe(x, t)| on RN × (0, T ∗) with ce(x, t) = c(x, t) + e(t)
θe(·, 0) = 1Ω0

− 1Ωc0
on RN ,

exists, is unique and satisfies

|(θe)∗(·, t)− (θe)∗(·, t)|L1(RN ) = 0 for any 0 ≤ t < T ∗.

7



We also assume that there exists some constants C0 > 0, T̄ > 0 such that for every 0 ≤ T0 < T ∗, if
moreover |(θe − θ)(·, T0)|L1(RN ) ≤ e0, then

(3.5) |θe − θ|L∞([T0,T0+T );L1(RN )) ≤ C0

(
|e|L∞([T0,T0+T ))T + |(θe − θ)(·, T0)|

1
N

L1(RN )

)
for any 0 < T ≤ min(T̄ , T ∗ − T0).

(A3) L1 stability estimate for a perturbed non-local problem:
For θ the solution given in assumption (A2), we assume that (A3’) holds with the velocity c(x, t) :=
c[θ(·, t)](x, t).

Theorem 3.4 (General convergence result for non-local dynamics)
Let us consider problem (3.1) with a C2 bounded open set Ω0 ⊂ RN , under assumptions (A1)-(A2)-(A3).
Then for ε = (∆x,∆t,∆T ) converging to zero, we have

θε → θ in L∞([0, T ∗);L1(RN ))

where θε is given in (2.3) using the non-local GFMM algorithm given in Subsection 2.2 and θ is the unique
solution of (3.1) on the time interval [0, T ∗).

4 Preliminary results for the monotone GFMM for the local equa-
tion

In this Section, we recall some key properties of the monotone GFMM for the local equation (for which we
refer the reader to [10]) and also present some consequences.

The following result is stated in Theorem 3.4 of [10].

Theorem 4.1 (Comparison principle for the θε)
Let T > 0. Let two velocities cu and cv. Given θ0

u,J (resp. θ0
v,J) for all J ∈ ZN , we denote by (tnk) and (smp)

the increasing sequences of times defined as in (2.2) for the GFMM associated to cu and cv respectively. We
assume that for all tnk < T, smp < T , such that [tnk , tnk+1

)∩ [smp , smp+1
) 6= ∅, then the two velocities satisfy

for all x ∈ RN

(4.1) cv(x, smp) ≥ cu(x, tnk).

If θ0
v,J ≥ θ0

u,J for all J ∈ ZN , then
θεv(x, t) ≥ θεu(x, t)

for all (x, t) ∈ RN × [0, T ).

Remark 4.2 The assumption on the comparison of the velocities is slightly different from the one of [10],
but this is in fact what is used in the proof. Indeed, the algorithm used only the velocity at the time of the
form tnk < T and smp < T . Hence, it suffices to compare the velocities at those times.

We now give the convergence result for the monotone GFMM (presented in Subsection 2.1). To do this,
we have to define the half-relaxed limits of θε:

(4.2) θ
0
(x, t) = lim sup

ε→0,y→x,s→t
θε(y, s), θ0(x, t) = lim inf

ε→0,y→x,s→t
θε(y, s).

Then the following result is stated in Theorem 3.6 of [10].

Theorem 4.3 (Convergence)

Let c ∈W 1,∞(RN × [0, T ∗)) and Ω0 be a C2 bounded open set. Then, θ
0

(resp. θ0) is a viscosity sub-solution

(resp. super-solution) of (1.2). In particular, if (1.2) satisfies a comparison principle, then θ
0

= (θ0)∗ and

(θ
0
)∗ = θ0 is the unique discontinuous viscosity solution of (1.2).

8



For simplicity of notation, given a constant e0 > 0, we now define

(4.3) E = {e ∈W 1,∞([0, T ∗)), |e|W 1,∞([0,T∗)) ≤ e0}.

We then have the following result which is a straightening of the convergence result Theorem 4.3 and
whose proof is exactly the same and therefore is skipped:

Lemma 4.4 (Uniform convergence)
Let Ω0 be a C2 bounded open set and c ∈ W 1,∞(RN × [0, T ∗)) be such that assumption (A3’) holds for c.
Let us consider two sequences (en)n∈N ⊂ E and (εn)n∈N and a function e ∈ E such that εn → 0 and en → e
in L∞([0, T ∗)) as n→∞. We call θe the solution of problem (3.4) and θεn,en the numerical solution given
in (2.3)(with ε = εn) using the GFMM algorithm ( see Subsection 2.1) with speed cen(x, t) = c(x, t) + en(t).
Then we have for all (x, t) ∈ RN × [0, T ∗)

lim sup
y→x, s→t, n→∞

θεn,en(y, s) ≤ (θe)∗(x, t) lim inf
y→x, s→t, n→∞

θεn,en(y, s) ≥ (θe)∗(x, t).

Then we have the following result:

Proposition 4.5 (Uniform error estimate for the perturbed local dynamics)
Let Ω0 be a C2 bounded open set and c ∈ W 1,∞(RN × [0, T ∗)) be such that assumption (A3’) holds for c.
Let e ∈ E where the set E is build with the constant e0 given in assumption (A3’). Let θe be the solution of
(3.4). Let us consider θε,e the numerical approximation of θe given in (2.3) using the GFMM algorithm (see
Subsection 2.1) with speed ce(x, t) = c(x, t) + e(t).

Then, there exists a modulus of continuity ω1(ε) such that:

(4.4) |θe − θε,e|L∞([0,T∗);L1(RN )) ≤ ω1(ε) uniformly in e ∈ E .

Proof of Proposition 4.5
Let us consider two sequences (en)n∈N ⊂ E and (εn)n∈N and a function e ∈ E such that εn → 0 and en → e
for n → ∞. We call θe the solution of problem (3.4) and θεn,en the numerical solution given in (2.3)(with
ε = εn) using the GFMM algorithm (see Subsection 2.1) with speed cen(x, t) = c(x, t) + en(t). We will prove
that for n→∞

|θεn,en − θe|L∞([0,T∗);L1(RN )) → 0.

We define

θ
e
(x, t) = lim sup

y→x, s→t, n→∞
θεn,en(y, s) and θe(x, t) = lim inf

y→x, s→t, n→∞
θεn,en(y, s).

From Lemma 4.4, we have for all (x, t) ∈ RN × [0, T ∗)

(θe)∗(x, t) ≤ θe(x, t) ≤ θ
e
(x, t) ≤ (θe)∗(x, t).

Using Assumption (A3′), we deduce that for any fixed t ∈ [0, T ∗) and tn → t, we have for n→∞

(4.5) |θεn,en(x, tn)− θe(x, tn)| → 0 for a.e x ∈ RN .

From the boundedness of Ω0 and the finite velocity property of the eikonal equation, we deduce that
there exists R > 0 (depending on T ∗) such that

supp(θe(·, tn) + 1) ⊂ BR(0).

Moreover, using the barrier functions as in [7, Proposition 5.2], we get also (up to increase R independently
on ε and e bounded):

supp(θεn,en(·, tn) + 1) ⊂ BR(0).

Therefore
supp(θεn,en(·, tn)− θe(·, tn)) ⊂ BR(0)

and since |θεn,en − θe| ≤ 2, we conclude, using (4.5) and Lebesgue’s Theorem, that for any fixed t ∈ [0, T ∗)
and tn → t

|θεn,en(·, tn)− θe(·, tn)|L1(RN )) → 0.

Proceeding by contradiction, we see that this proof gives the existence of a modulus of continuity ω1(ε)
such that (4.4) holds. This ends the proof of the lemma.

9



5 Proof of Theorem 3.4

We first recall that a function ω : [0,+∞] → [0,+∞] is said to be a modulus of continuity, if ω is non
decreasing and if ω(r)→ 0+ as r → 0+. More generally, a function ω : Rd → [0,+∞] is said to be a modulus
of continuity if r 7→ sup|ε|≤r ω(ε) is a modulus of continuity.

Before to give the proof of Theorem 3.4, we need some preliminaries. First, we define

ω0(r) =

 C0r
1
N + r if r ≤ e0

+∞ if r > e0

such that estimate (3.5) in assumption (A3) could be replaced by (for any 0 < T ≤ min(T̄ , T ∗ − T0))

(5.1) |θe − θ|L∞([0,T0+T );L1(RN )) ≤ C0|e|L∞([T0,T0+T ))T + ω0

(
|θe − θ|L∞([0,T0];L1(RN ))

)
.

We also have the following global in time estimate between θe and θ whose proof is postponed.

Proposition 5.1 (Global estimate between θe and θ)
Let 0 < T ≤ T ∗ and assume (A1)-(A2)-(A3). Then there exists a modulus of continuity ω̃ (depending only
on T ∗) such that

|θe − θ|L∞([0,T );L1(RN )) ≤ ω̃(|e|L∞([0,T ))).

To simplify the notation, we will set

|c0|∞ = |c0|L∞(RN ).

To prove Theorem 3.4, we need the following proposition.

Proposition 5.2 (Iterative estimate)

Under the assumptions of Theorem 3.4, up to decrease T̄ , we assume that T̄ ≤ min
(

1
4C0|c0|∞ , 1

)
and that

there exists a integer K∗ ≥ 2 such that K∗

2 T̄ = T ∗. We also assume that ∆t ≤ T̄
6 and that there exists an

integer m ≥ 0 and a modulus of continuity ωm such that

(5.2)


|θε(·, 0)− θ(·, 0)|L1(RN )) ≤ ω0(ε) if m = 0

|θε − θ|L∞([0,m2 T̄ );L1(RN )) ≤ ωm(ε) if 1 ≤ m ≤ K∗ − 1

Then there exists εm+1 > 0 such that we can define the following modulus of continuity

ω̂m+1(ε) =


4

(
ω1(ε) + C0ω2(ε) + ω0

(
ω̃
(
|c0|∞ωm(ε) + ω2(ε)

)))
if |ε| ≤ εm+1

+∞ if |ε| > εm+1

and
ωm+1(ε) = max (ωm(ε), ω̂m+1(ε))

where ω1, ω0, ω̃ and C0 are defined respectively in Proposition 4.5, in (5.1), in Proposition 5.1 and in
assumption (A3), and ω2(ε) = Lc(∆T + 2∆t) + Lc1∆t. Then we have

|θε − θ|L∞([0,m+1
2 T̄ );L1(RN )) ≤ ωm+1(ε).

Proof of Theorem 3.4
First remark that by our assumptions on the C2 regularity of the bounded set Ω0, there exists a modulus of
continuity ω0(ε) such that (5.2) holds for m = 0. Then we deduce from Proposition 5.2 that

|θε − θ|L∞([0,T∗);L1(RN )) ≤ ωK∗(ε).

This ends the proof of the theorem.

10



Before to do the proof of Proposition 5.2, let us explain the main idea, which is to use a barrier argument.
To this aim, we have to introduce, for e which will be chosen later, the function θε,e (resp. θε,−e) given in (2.3)
using the solution of the GFMM algorithm in Subsection 2.1 with a given local velocity c[θ(·, t)](x, t) + e(t)
(resp. c[θ(·, t)](x, t) − e(t)) where θ is the solution of (3.1) given in Assumption (A2). We also define θe

(resp. θ−e) the exact solution of (3.4) with speed c[θ(·, t)](x, t) + e(t) (resp. c[θ(·, t)](x, t)− e(t)).
The idea is to choose e such that

θε,−e ≤ θε ≤ θε,e.

To show this result (see Lemma 5.3 below for a precise statement), we will use the comparison principle of
the monotone GFMM (Theorem 4.1). To estimate the difference between θ and θε, we will then use the fact
that θε,±e is closed to θ±e (by the convergence result of the monotone GFMM, see Lemma 4.5) and the fact
that θ±e is closed to θ (by Assumption (A3)).

For simplicity of notation we define c(x, t) = c[θ(·, t)](x, t). We also need to define the velocity cε that
is used in the non-local GFMM (see Step 10b of the non-local GFMM). To do this, we define iteratively
cε(x, tnk), where (tnk)k is the increasing sequence defined in (2.2) for the non-local GFMM given in Subsection
2.2, by setting the initial velocity

cε(x, 0) ≡ c[θε(·, 0)](x, 0)

and if tnk−1
∈ [p∆T, (p+ 1)∆T ) for some p ∈ N, then

(5.3) cε(x, tnk) =

{
cε(x, tnk−1

) if tnk < (p+ 1)∆T
c[θε(·, tnk−1

)](x, tnk) if tnk ≥ (p+ 1)∆T

We extend the velocity in time by considering

cε(x, t) = cε(x, tnk) for t ∈ [tnk , tnk+1
).

Using the definition (2.3) of θε, we see that the function θε is also given by the (local) GFMM algorithm
with the new velocity cε.

Before to give the proof of Proposition 5.2, we need the following lemma whose proof is postponed.

Lemma 5.3 (Barriers on θε)
Let ẽ : [0,+∞) 7→ [0,+∞) be a non-decreasing function.
We assume that

ẽ(0) ≥ |(θε − θ)(·, 0)|L1(RN )

Moreover if tnk > 0, we assume that

(5.4) ∀tnl ∈ (0, tnk), ẽ(max(tnl −∆t, 0)) ≥ |θε − θ|L∞([0,tnl );L
1(RN ))

We define
e(t) = |c0|∞ẽ(t) + ω2(ε) with ω2(ε) = Lc(∆T + 2∆t) + Lc1∆t.

Then for all (x, t) ∈ RN × [0, tnk+1
), we have

(5.5) θε,−e(x, t) ≤ θε(x, t) ≤ θε,e(x, t).

Proof of Proposition 5.2
Let us denote by (tnk)k the sequence of increasing time corresponding to the non-local GFMM for θε defined
in (2.2). For any integer m satisfying 0 ≤ m ≤ K∗ − 1, we define p and k such that

0 ≤ tnk ≤
m

2
T̄ < tnk+1

< · · · < tnk+p ≤
m+ 1

2
T̄ < tnk+p+1

.

In particular, we have tnk+p+1
∈ (m+1

2 T̄ , m+1
2 T̄ + ∆t].

We proceed by recurrence. We assume that there exists l ∈ {0, . . . , p} such that

(5.6) |θε − θ|L∞([0,tnk+l );L
1(RN )) ≤ ωm+1(ε) if tnk+l > 0

11



We exclude the case m = l = 0, because we recall that tn0 = 0 = t0. Remark also that inequality (5.6) is
always satisfied for l = 0 when m ≥ 1, because of our assumption (5.2), the fact that tnk ≤ m

2 T̄ and the fact
that by definition of ωm+1(ε), we have ωm(ε) ≤ ωm+1(ε).

Then we will show that

(5.7) |θε − θ|L∞([0,tnk+l+1
);L1(RN )) ≤ ωm+1(ε)

where in the special case where m = K∗−1, we redefine tnk+p+1
to be equal to K∗

2 T̄ = T ∗, in order to insure
that for any integer 0 ≤ m ≤ K∗ − 1, we have tnk+p+1

≤ T ∗.
We define εm+1 such that for all |ε| ≤ εm+1, we have

(5.8)



ωm+1(ε) ≤ e0T̄

6|c0|∞

|c0|∞ωm+1(ε) + ω2(ε) ≤ e0

ω̃(|c0|∞ωm(ε) + ω2(ε)) ≤ e0

The proof is decomposed into two cases.
Case 1: m ≥ 1.
In that case, remark that tnk > 0 (otherwise tnk+1

≤ ∆t ≤ T̄
6 < m

2 T̄ ). We claim that for |ε| ≤ εm+1, |θε −
θ|L∞([0,tnk+l+1

);L1(RN )) satisfies (5.7). To show this, let us define a non-decreasing function ẽ ∈W 1,∞([0,∞))

such that in the case l = 0
ẽ(t) = |θε − θ|L∞([0,tnk );L1(RN )) if t ≥ 0

and we set in the case l ≥ 1

ẽ(t) =

{
|θε − θ|L∞([0,m2 T̄ );L1(RN )) if t ≤ (m2 −

1
3 )T̄

|θε − θ|L∞([0,tnk+l );L
1(RN )) if t ≥ (m2 −

1
6 )T̄

with ẽ linear on [(m2 −
1
3 )T̄ , (m2 −

1
6 )T̄ ]. We also define e(t) = |c0|∞ẽ(t) + ω2(ε). Using estimate (5.8), we

easily check that e ∈ E (where E is defined in (4.3) with e0 given in assumption (A3)).
Using Lemma 5.3 and the fact that tnk+l+1

≤ min
(
(m2 + 2

3 )T̄ , T ∗
)
, we then get

|(θε − θ)+|L∞([0,tnk+l+1
);L1(RN )) ≤|(θε,e − θ)+|L∞([0,tnk+l+1

);L1(RN ))

≤|(θε,e − θe)+|L∞([0,T∗);L1(RN )) + |(θe − θ)+|L∞([0,min((m2 + 2
3 )T̄ ,T∗));L1(RN ))

≤ω1(ε) + C0|e|L∞([0,∞))T̄ + ω0(|θe − θ|L∞([0,(m2 −
1
3 )T̄ ];L1(RN )))(5.9)

where, in the last line, we have used Proposition 4.5 to bound the first term and estimate (5.1) (implied by
Assumption (A3)) to bound the second term.

In the same way we obtain

(5.10) |(θε − θ)−|L∞([0,tnk+l+1
);L1(RN )) ≤ ω1(ε) + C0|e|L∞([0,∞))T̄ + ω0(|θe − θ|L∞([0,(m2 −

1
3 )T̄ ];L1(RN )))

Summing (5.9) and (5.10), we get

|θε − θ|L∞([0,tnk+l+1
);L1(RN )) ≤2C0(|c0|∞|θε − θ|L∞([0,tnk+l );L

1(RN )) + ω2(ε))T̄

+ 2ω1(ε) + 2ω0(|θe − θ|L∞([0,(m2 −
1
3 )T̄ ];L1(RN )))

≤1

2
|θε − θ|L∞([0,tnk+l );L

1(RN )) + 2

(
C0ω2(ε) + ω1(ε)

+ ω0

(
ω̃
(
|c0|∞|θε − θ|L∞([0,m2 T̄ );L1(RN )) + ω2(ε)

)))
≤1

2
|θε − θ|L∞([0,tnk+l );L

1(RN )) +
1

2
ωm+1(ε)

≤ωm+1(ε)

12



where we have used the fact that T̄ ≤ min( 1
4C0|c0|∞ , 1) and Proposition 5.1 for the second inequality, the

fact that |θε− θ|L∞([0,m2 T̄ );L1(RN )) ≤ ωm(ε) joint to the definition of ωm+1 for the third one and (5.6) for the

last one. This proves (5.7)

Case 2: m = 0.
The proof is completely similar to the previous one. The only difference is that we take the constant function
ẽ = |θε − θ|L∞([0,tnk+l );L

1(RN )) (or the constant function ẽ = |θε(·, 0) − θ(·, 0)|L1(RN ) if tnk+l = 0) and that

(5.9) is replaced by

|(θε − θ)+|L∞([0,tnk+l+1
);L1(RN )) ≤ ω1(ε) + C0eT̄ + ω0(|θe(·, 0)− θ(·, 0)|L1(RN )) = ω1(ε) + C0eT̄ .

Hence, we will get

|θε − θ|L∞([0,tnk+l+1
);L1(RN )) ≤2C0(|c0|∞ω1(ε) + ω2(ε))T̄ + 2ω1(ε)

≤1

2
ω1(ε) + 2

(
C0ω2(ε) + ω1(ε)

)
≤ω1(ε)

This proves (5.7) and ends the proof of the theorem.

Proof of Lemma 5.3
Let x ∈ RN and 0 ≤ tnl ≤ tnk . We define p such that tnl ∈ [p∆T, (p+ 1)∆T ).

We claim that

(5.11) cε(x, tnl) ≤ inf
s∈[max(tnl−∆t,0),min(tnl+∆t,tnk+1

)]
ce(x, s).

In the case p = 0, we extend θε for negative times as

θε(x, t) = θ0
I if (x, t) ∈ [xI , xI + ∆x)× (−∞, 0)

Then, by definition of cε, there exists two times t∗ ∈ [p∆T − ∆t, p∆T ) and t∗∗ ∈ [t∗, t∗ + ∆t] with
t∗∗ ≥ p∆T such that

cε(x, tnl) = c0 ? θ
ε(·, t∗)(x) + c1(x, t∗∗).

We define s̄ such that infs∈[max(tnl−∆t,0),min(tnl+∆t,tnk+1
)](c(x, s) + e(s)) = c(x, s̄) + e(s̄), then we have

cε(x, tnl) =c0 ? (θε(·, t∗)− θ(·, t∗))(x) + c[θ(·, t∗)](x, t∗)
+ c1(x, t∗∗)− c1(x, t∗)− c[θ(·, s̄)](x, s̄) + c[θ(·, s̄)](x, s̄)

≤|c0|∞|θε(·, t∗)− θ(·, t∗)|L1(RN ) + Lc|t∗ − s̄|
+ Lc1 |t∗ − t∗∗|+ c[θ(·, s̄)](x, s̄)

≤|c0|∞ẽ(max(t∗ −∆t, 0)) + Lc(∆T + 2∆t) + Lc1∆t+ c(x, s̄)

≤|c0|∞ẽ(s̄) + Lc(∆T + 2∆t) + Lc1∆t+ c(x, s̄)

=e(s̄) + c(x, s̄) = inf
s∈[max(tnl−∆t,0),min(tnl+∆t,tnk+1

)]
(c(x, s) + e(s))

where we have used for the fourth inequality the fact max(t∗ − ∆t, 0) ≤ max(tnl − ∆t, 0) ≤ s̄ and the
monotonicity of the function ẽ, and for the third inequality the fact that 0 ≤ s̄− t∗ ≤ |t∗ − p∆T |+ |p∆T −
tnl | + |tnl − s̄| ≤ ∆T + 2∆t, that |t∗ − t∗∗| ≤ ∆t and that t∗ < tnl ≤ tnk to apply (5.4). This proves the
desired result (5.11).

13



We can then apply the comparison principle Theorem 4.1 to the couple (θε,e, θε), and we get for all
(x, t) ∈ RN × [0, tnk+1

):
θε(x, t) ≤ θε,e(x, t).

Similarly, we prove that

cε(x, tnl) ≥ sup
s∈[max(t−∆t,0),min(t+∆t,tnk )]

c−e(x, s)

and then that θε,−e ≤ θε.

This ends the proof of the lemma.

We finish this section by the proof of Proposition 5.1.
Proof of Proposition 5.1
Up to decrease T̄ , we assume that there exists an integer K ≥ 3 such that K

2 T̄ = T with T̄ ≤ 1 (remark
that K can be bounded by a constant depending only on T ∗ and T̄ ).

We argue by recurrence. First using (A3), we get that

|θe − θ|L∞([0,T̄ );L1(RN )) ≤C0|e|L∞([0,T̄ ))T̄

≤C0|e|L∞([0,T )) =: ω̃2(|e|L∞([0,T ))).

where we have used the fact that T̄ ≤ 1.
Now, let us assume that there exists k ∈ {2, . . . ,K − 1} and a modulus of continuity ω̃k such that

|θe − θ|L∞([0, k2 T̄ );L1(RN )) ≤ ω̃k(|e|L∞([0,T )))

and we will prove that

(5.12) |θe − θ|L∞([0, k+1
2 T̄ );L1(RN )) ≤ ω̃k+1(|e|L∞([0,T )))

where

ω̃k+1(r) =

 C0r + ω0(ω̃k(r)) if r ≤ ek+1

+∞ if r > ek+1.

for some constant ek+1 ≤ e0 chosen such that

r ≤ ek+1 =⇒ ω̃k(r) ≤ e0.

The results will then follow taking
ω̃(r) := ωK(r)

To show (5.12), we use assumption (A3) and (5.1), and we get for 2 ≤ k ≤ K − 1 that

|θe − θ|L∞([0, k+1
2 T̄ );L1(RN )) ≤ C0|e|L∞([0,T ))T̄ + ω0(|θe − θ|L∞([0, k−1

2 T̄ ];L1(RN )))

≤ C0|e|L∞([0,T ))T̄ + ω0(|θe − θ|L∞([0, k2 T̄ );L1(RN )))

≤ ω̃k+1(|e|L∞([0,T ))).

where we have used the fact that T̄ ≤ 1 to get the last line.
This proves (5.12) and ends the proof of the proposition.

14



6 Proof of Theorem 3.1: short time evolution with non-signed
velocity

We consider the case of a closed dislocation loop which is a smooth curve ∂Ω0 in R2 at the initial time. For
short time evolution, it is known that the curve stays Lipschitz (see [5]). In this subsection, we prove that
under an additional regularity assumption on ∂Ω0, (A1) implies (A2)-(A3).

Lemma 6.1 (Checking assumption (A2))
Assume (A1) and that Ω0 ⊂ R2 is a C3 bounded connected and simply connected open set. Then there
exists T ∗1 > 0 (depending only on Ω0 and on bounds on |c1|L∞(R2×[0,+∞)) + |∇c1|L∞(R2×[0,+∞)) and on
|c0|L∞(R2) + |c0|W 1,1(R2)) for which the following holds:

i) (Existence and uniqueness)
There exists a unique function θ ∈ C([0, T ∗1 );L1(R2)) which is a discontinuous viscosity solution of equation
(3.1).

The function θ can be written as
θ(·, t) = 1Ωf(·,t) − 1Ωc

f(·,t)

where Ωf(·,t) is an open set of boundary Γf where Γf(·,t)(s) = Γ(s) + f(s, t)n(s) with Γ(s) a parametrization
of ∂Ω0 with unit normal n(s). Here the function f satisfies the equation:
(6.1)

ft(s, t) =

(
c1 −

∫
R2

c0 + 2c0 ? 1Ωf(·,t)

)
(Γf(·,t)(s), t)

√
1 +

((
1

1− fK(s)

)
fs

)2

on R× (0, T ∗1 )

f(s+ L, t) = f(s, t) on R× (0, T ∗1 )
f(·, 0) = 0 on R

where fs = ∂f
∂s , K(s) is the curvature of ∂Ω0 at the point Γ(s) and L is the length of ∂Ω0. Moreover

|f |L∞(R×[0,T∗1 )) ≤
1

2|K|L∞(R)

and there exists a constant L1 > 0 (depending only on Ω0 and on the bounds on c1 and c0) such that

(6.2) |f |W 1,∞(R×[0,T∗1 )) ≤ L1

ii) (Velocity Lipschitz in time)

The speed c[θ(·, t)] satisfies (3.3).

Before to prove Lemma 6.1, let us write the following result whose the proof is postponed (and which
will be used in the proofs in the sequel):

Lemma 6.2 (L∞ versus L1 estimate)
We use the notation of Lemma 6.1.
i) L∞-L1 estimate
There exists a constant C0 > 0 such that for any functions f1, f2 satisfying

|f i|L∞(R) ≤
1

2|K|L∞(R)
for i = 1, 2

we have

(6.3) |1Ωf2
− 1Ωf1

|L1(R2) ≤ C0|f2 − f1|L∞(R)

ii) L1-L∞ estimate
Given a constant L1 > 0, there exists a constant C1 > 0 such that if we have

|f is|L∞(R) ≤ L1 and |f i|L∞(R) ≤
1

2|K|L∞(R)
for i = 1, 2

then
|f2 − f1|L∞(R) ≤ C1|1Ωf2

− 1Ωf1
|
1
2

L1(R)

15



Proof of Lemma 6.1
Proof of point i)
Let us define c0(x) = supy∈B1(y) |c0(y)|. Under the additional assumption

(6.4) c0 ∈ L1(R2)

and

(6.5) c1 ∈W 1,∞(R2 × [0,+∞))

then point i) follows from the statement of Theorem 1.3 in [5] (and estimate (6.2) follows from the proofs
of Theorem 3.7 and Theorem 4.3 of [5]). Assumption (6.4) was introduced in [5] to be able to deal with
unbounded open set Ω0. But looking at the proof of Theorem 1.3 in [5] (see in particular the proof of
Theorem 4.3), we see that the result is still true without assumption (6.4) (for a bounded open set Ω0).

Looking more carefully at the proof of [5], we see that we only use the weaker condition

c1 ∈ C(R2 × [0,+∞)) and ∇c1 ∈ L∞(R2 × [0,+∞)).

This shows point i) for some T ∗1 > 0.
Proof of point ii)
Using moreover Corollary 4.4 of [5], we see that f ∈ W 1,∞(R × (0, T ∗1 )), and then we have with θ(x, t) =
2 1Ωf(·,t)(x)− 1 and s > 0

|c[θ(·, t+ s)](x, t+ s)− c[θ(·, t)](x, t)| ≤ |c1(x, t+ s)− c1(x, t)|+ 2|c0|L∞(R2)|1Ωf(·,t+s) − 1Ωf(·,t) |L1(R2)

≤ Lcs

with
Lc = |(c1)t|L∞(R2×(0,T∗1 )) + 2|c0|L∞(R2)C0L1

where L1 is given in (6.2) and we have used estimate (6.3). This shows that c[θ(·, t)] satisfies (3.3) and ends
the proof of point ii).

Proof of Lemma 6.2
Proof of i)
Estimate (6.3) is simple to prove (see estimate (4.44) in the proof of Theorem 4.3 in [5]).
Proof of ii)
Let δ = |f2 − f1|L∞(R). Up to exchange the role of f2 and f1, we can assume that δ = f2(s0)− f1(s0) for
some point s0 ∈ R. Then for any |h| ≤ h∗ := δ/(2L1), we have

f2(s0 + h) ≥ f2(s0)− L1|h| ≥ f1(s0) + L1|h| ≥ f1(s0 + h)

Then it is natural to define the set

E =
{

(r, h), h ∈ (−h∗, h∗), r ∈ (f1(s0) + L1|h|, f2(s0)− L1|h|)
}

and the map Ψ(r, h) := Γ(s0 + h) + rn(s0 + h). Therefore, we see that by assumption we have

(6.6) Ψ(E) ⊂ Ωf2\Ωf1

On the other hand the set E is a losange of diagonals of length 2h∗ and δ, which implies

|E| = δh∗.

Therefore, we have with C2 = inf
E
|Jac Ψ|:

|Ψ(E)| ≥ C2|E| = C2δh
∗ = (δ/C1)2

which defines the constant C1. Then the result follows from (6.6). This ends the proof of the lemma.

16



Lemma 6.3 (Checking assumption (A3))
Given Ω0 as in Lemma 6.1 and a velocity c ∈W 1,∞(R2×[0, T ∗1 )), for any function e, we consider the velocity

ce(x, t) = c(x, t) + e(t)

Then there exists e0 > 0 and T ∗ ∈ (0, T ∗1 ] such that for any e ∈ C([0, T ∗)) satisfying |e|L∞([0,T∗)) ≤ e0, there
exists a unique viscosity solution θe of the local equation

(6.7)

{
θet (x, t) = ce(x, t)|Dθe(x, t)| in R2 × (0, T ∗)
θe(·, 0) = 1Ω0

− 1Ωc0
on R2

Moreover

(6.8) |(θe)∗(·, t)− (θe)∗(·, t)|L1(R2) = 0 for all t ∈ [0, T ∗)

and there exists constants C0 > 0 and T̄ > 0 such that for every 0 ≤ T0 < T ∗, if |(θe − θ)(·, T0)|L1(R2) ≤ e0,
then we have

(6.9) |θe − θ|L∞([T0,T0+T );L1(R2)) ≤ C0

(
|e|L∞([T0,T0+T ))T + |(θe − θ)(·, T0)|

1
2

L1(R2)

)
with 0 < T ≤ min(T̄ , T ∗ − T0).

Proof of Lemma 6.3
Step 1: Existence and uniqueness
We simply apply Lemma 6.1 in the case c0 = 0, i.e. a local equation, and c1 = ce. This gives the existence and
uniqueness of a solution on a time interval [0, T ∗) with T ∗ ∈ (0, T ∗1 ] which only depends on Ω0 and on bounds
on |ce|L∞(R2×[0,T∗)) + |∇ce|L∞(R2×[0,T∗)), i.e. on bounds on |c|W 1,∞(R2×[0,T∗)) and on e0 ≥ |e|L∞([0,T∗)). Then
(6.8) follows from the fact that

θe = 1Ωfe(·,t) − 1Ωc
fe(·,t)

Here the function fe(s, t) is solution of

(6.10)

 fet = He(s, t, fe, fes ) on R× (0, T ∗)
fe(s+ L, t) = fe(s, t) on R× (0, T ∗)
fe(·, 0) = 0 on R

with

He(s, t, f, p) = ce(Γf (s), t)

√
1 +

(
p

1− fK(s)

)2

and
Γf (s) = Γ(s) + fn(s)

where Γ(s), n(s),K(s) and f are defined in Lemma 6.1. Moreover, up to redefine the constant L1, we have

|fe|W 1,∞(R×[0,T∗)) ≤ L1

for all |e|L∞([0,T∗)) ≤ e0.
Step 2: Bound on |fe − f |L∞(R×[T0,T0+T )) for any 0 ≤ T0 < T ∗ and 0 < T ≤ min(T̄ , T ∗ − T0)
Let us define

f̂e(s, t) = f(s, t) + Cē(t− T0) + a with ē = |e|L∞([T0,T0+T ) + a and a = |fe(·, T0)− f(·, T0)|L∞(R)

For |f2|, |f1| ≤ δ0 :=
1

2|K|L∞(R)
, we have with H := H0

(6.11) |H(s, t, f2, p)−H(s, t, f1, p)| ≤ L2(1 + |p|)|f2 − f1|

for some constant L2 (see for instance in [5], both the end of the proof of theorem 4.3 and inequality (3.27)).
Up to reduce respectively T ∗ and e0, we can assume that

(6.12) |f |L∞(R×[0,T∗)) ≤ δ0/3 and e0 ≤ δ0/3

17



Finally, assuming that
a ≤ e0 and 2e0CT̄ ≤ δ0/3

we compute for T ∗ ≥ T0 + T > t ≥ T0

f̂et ≥ H(s, t, f, fs) + Cē

≥ H(s, t, f̂e, fs) + Cē− L2(1 + L1) (Cē(t− T0) + a)

≥ He(s, t, f̂e, fs)− |e|L∞([T0,T0+T ))(1 + 2L1) + Cē(1− (t− T0)L2(1 + L1))− aL2(1 + L1)

≥ He(s, t, f̂e, f̂es ) + Cē/4

where we have used (6.11) for the second line, (6.12) and the fact that |e|L∞([0,T∗)) ≤ e0 for the third line, and

we have assumed T̄ ≤ (2L2(1 + L1))
−1

and C > 0 large enough for the last line (C ≥ 4 max(1 + 2L1, L2(1 +
L1))). This is a classical exercise to check that we have in the viscosity sense

f̂et ≥ He(s, t, f̂e, f̂es ) on R× (T0, T0 + T )

Then from the comparison principle, we deduce that

fe ≤ f̂e on R× [T0, T0 + T )

Similarly, we can prove that

fe ≥ f̂−e with f̂−e(s, t) = f(s, t)− Cē(t− T0)− a

which implies for |e|L∞([0,T∗)) ≤ e0:

(6.13) |fe − f |L∞(R×[T0,T0+T )) ≤ CēT + a for any 0 ≤ T0 < T0 + T ≤ T ∗ with 0 < T ≤ T̄

Step 3: Conclusion
Estimate (6.13) joint to (6.3) and Lemma 6.2 ii) implies estimate (6.9) with another constant C > 0.

Proof of Theorem 3.1
By Lemmata 6.1 and 6.3, assumptions (A2)-(A3) are verified, and then the result follows from Theorem 3.4.

7 Proof of Theorem 3.2: large time evolution with positive veloc-
ity

In this section, we consider the case of dislocation dynamics with positive velocity. In this case, under a
strengthened assumption (A1), we prove that (A2) and (A3) hold.

Lemma 7.1 (Checking assumption (A2))
Assume that c0 ∈ W 2,1(RN ) ∩ L∞(RN ), c1 ∈ C(RN × [0,+∞)) with ∇c1, D2c1 ∈ L∞(RN × [0,+∞)) and
c1(x, t) ≥ |c0|L1 . Assume also that Ω0 ⊂ RN is a bounded C2 open set. Then the following holds:

(Existence and uniqueness) There exists a unique discontinuous viscosity solution θ ∈ C([0,∞);L1(RN ))
of equation (3.1). Moreover, we have

(7.1) |θ∗(·, t)− θ∗(·, t)|L1(R2) = 0 for all t ∈ [0,+∞)

(Velocity Lipschitz in time) The speed c[θ(·, t)] satisfies (3.3).

18



Proof of Lemma 7.1
If we assume that the velocity have higher local regularity, namely c0 ∈ W 2,∞(RN ) ∩ L1(RN ), c1 ∈
W 2,∞(RN × [0,+∞)), then the existence and uniqueness is given by [2, Theorem 4.3]. Equality (7.1) follows
from [2, Lemma 3.1]. The Lipschitz in time property (3.3) of c[θ(·, t)](x, t) comes from [2, Proposition 3.3]
applied to the case with two velocities c̃1(x, s) = c[θ(·, s+ t)](x, s+ t) and c̃2 = 0 with initial condition θ(·, t)
joint to the following inequality

(7.2) |c[θ1(·, t)](·, t)− c[θ2(·, t)](·, t)|L∞(RN ) ≤ |c0|∞|θ1(·, t)− θ2(·, t)|L1(RN )).

From the proofs of the previous mentioned results, it is possible to see that the same result holds when we
weaken the assumptions on c0, c1 as in the statement of Lemma 7.1 (see in particular Theorem 1.3, case ii)
of [6] where this result is true for the level set formulation of the problem).

Definition 7.2 (Interior ball property)
We say that a compact set K of RN has the interior ball property of radius r > 0, if and only if for any
y ∈ ∂K, there exists a ball Br(x) ⊂ K such that y ∈ ∂Br(x).

Definition 7.3 (Hausdorff distance)
Let K1 and K2 two compact sets of RN . Then we define the Hausdorff distance between K1 and K2 as

distH(K1,K2) = max

(
sup
x∈K1

inf
y∈K2

|x− y|, sup
x∈K2

inf
y∈K1

|x− y|
)
.

Proposition 7.4 (Hausdorff distance controlled by the Lebesgue measure)
Let the radii R > r > 0 be fixed. Then there exists a constant C = C(R, r,N) > 0 such that the following
holds. Let K1 and K2 be two compact sets contained in the ball BR(0) of RN . Assume that K1 and K2

have the interior ball property of radius r. Then we have

(7.3) distH(K1,K2) ≤ C|K1∆K2| 1N

where |A| is the Lebesgue measure of a set A, and K1∆K2 = (K1\K2) ∪ (K2\K1).

Proof of Proposition 7.4
Without loss of generality, let us assume that

ρ = distH(K1,K2) = sup
x∈K2

dist(x,K1) = dist(x0,K
1),

with x0 ∈ K2. This implies in particular that

Bρ(x0) ∩K1 = ∅.

The proof is decomposed into two cases:

Case 1: there exists x1 ∈ (∂K2) ∩Bρ/2(x0). This implies that

Bρ/2(x1) ∩K1 = ∅.

Using the fact that K2 satisfies the interior ball property of radius r, we deduce that there exists z1 ∈ K2

such that
Br(z1) ⊂ K2 and x1 ∈ ∂Br(z1).

Sub-case 1.1:
ρ

2
≤ r. In this case, we deduce that

Bρ/2(z0) ⊂ Br(z1)

where z0 = x1 +
ρ

2

z1 − x1

|z1 − x1|
. Hence

Bρ/2(z0) ∩Bρ/2(x1) ⊂ Br(z1) ∩Bρ/2(x1) ⊂ K2\K1 ⊂ K1∆K2.

19



This implies that there exists a constant C2 (depending only on N) such that

|K1∆K2| ≥ C2ρ
N

and so

distH(K1,K2) = ρ ≤
(
|K1∆K2|

C2

) 1
N

.

Sub-case 1.2:
ρ

2
≥ r. In this case, we deduce that

Br(z1) ∩Br(x1) ⊂ K2\K1 ⊂ K1∆K2.

This implies that that there exists a constant C3 (depending only on N) such that

|K1∆K2| ≥ C3r
N

and so

distH(K1,K2) ≤ 2R ≤ 2R

r

(
|K1∆K2|

C3

) 1
N

.

Case 2: Bρ/2(x0) ⊂ K2\K1. In this case, there exists a constant C4 such that

|K1∆K2| ≥ C4ρ
N

and so

distH(K1,K2) = ρ ≤
(
|K1∆K2|

C4

) 1
N

.

Finally in the general case, we see that (7.3) holds with a constant C only depending on the radii R, r
and the dimension N .

Lemma 7.5 (Checking assumption (A3))
Assume that Ω0 ⊂ RN is a bounded C2 open set and let c ∈ C(RN×[0,∞)) with ∇c,D2c ∈ L∞(RN×[0,+∞)),
satisfying c ≥ δ > 0, and for any e ∈ C([0,∞)) with |e|L∞([0,∞)) < δ, let us set

ce(x, t) = c(x, t) + e(t)

Then there exists a unique viscosity solution θe of the local equation

(7.4)

{
θet (x, t) = ce(x, t)|Dθe(x, t)| in RN × (0,+∞)
θe(·, 0) = 1Ω0

− 1Ωc0
on RN

and

(7.5) |(θe)∗(·, t)− (θe)∗(·, t)|L1(RN ) = 0 for all t ∈ [0,+∞)

Moreover for every T ∗ > 0, there exists e0 ∈ (0, δ), C0 > 0 and T̄ > 0 such that for any 0 ≤ T0 < T ∗, and if
the following holds

|e|L∞([0,T∗)) ≤ e0 and |θe − θ|L∞([0,T∗);L1(RN )) ≤ e0

then we have

(7.6) |θe − θ|L∞([T0,T0+T );L1(RN )) ≤ C0

(
|e|L∞([T0,T0+T ))T + |(θe − θ)(·, T0)|

1
N

L1(RN )

)
for 0 < T ≤ min(T̄ , T ∗ − T0).

20



Proof of Lemma 7.5
Because c ≥ δ, and |e|L∞([0,+∞)) < δ, Lemma 7.1 applies and proves the existence and uniqueness of a
solution satisfying (7.5). Moreover, for any T ∗ > 0, applying [2, Propositions 3.3] to equation (7.4) with
speeds c and ce, this gives the existence of e0, C1 > 0 such that

(7.7) |θe − θ|L∞([T0,T0+T );L1(RN )) ≤ C1

(
|e|L∞([T0,T0+T ))T + distH({θe(·, T0) = 1} , {θ(·, T0) = 1})

)
for T0 < T0 + T ≤ T ∗ with T ≤ T̄ for some T̄ > 0. Now using Proposition 7.4 joint to the estimate on the
radius r = r(T0) of the interior ball given in [2, Lemma 3.1], we deduce that

(7.8) distH({θe(·, T0) = 1} , {θ(·, T0) = 1}) ≤ C2|θe(·, T0)− θ(·, T0)|
1
N

L1(RN )

Finally (7.7) and (7.8) imply (7.6).

Proof of Theorem 3.2
By Lemmata 7.1 and 7.5, assumptions (A2), (A3) are verified, and then the result follows from Theorem
3.4.

8 Numerical tests for dislocation dynamics

In this section, we present some numerical tests in the non-local case performed with an algorithm modeled
either on the monotone GFMM (Section 2.2) or on the non-monotone GFMM (Appendix A). Let us point
out that the algorithm based on the non-monotone GFMM is not proved to be convergent. These tests
simulate dislocation dynamics in dimension N = 2. Test 1 is performed with the non-local, non-monotone
GFMM while the two others are performed with the two algorithms.
The non-local part of the speed is given by c0 ? θ

+, where θ+ = θ+1
2 is the positive part of θ. This problem

is equivalent to (3.1), up to rescaling the kernel c0 and modifying the local speed c1. In the sequel, for
simplicity we will denote θ+ by θ.
To compute the non-local discrete velocity cε(x, t) = c[θε(·, t)](x, t) + c1(x, t), we have to compute a convo-
lution of the form

(c0 ? θ
ε(·, tnk))(xI).

This convolution can be rewritten in the following sum:

(8.1) (c0 ? θ
ε(·, tnk)(xI) = (c0 ? (θnk+1−1)∆(xI) =

∑
J∈Z2

c̄0,I−J θ
nk+1−1
J ,

where (θ)
∆

has been defined in (2.4) and

c̄0,I =
1

|QI |

∫
QI

c0(x)dx,

with QI the square cell centered in xI :

QI = [xi1 −∆x/2, xi1 + ∆x/2]× [xi2 −∆x/2, xi2 + ∆x/2].

The kernel c0 = c0,δ is chosen as the kernel proposed in [5] for the Peierls-Nabarro model, which Fourier
transform is given by:

ĉ0,δ(ξx1 , ξx2) = −1

2

(
ξ2
x1

+ ( 1
1−ν )ξ2

x2√
ξ2
x1

+ ξ2
x2

)
e−δ
√
ξ2x1

+ξ2x2 ,

where ν is the Poisson ratio that takes values in (−1, 0.5), and δ is a constant proportional to the size of the
core of the dislocations. In our simulations we consider cases with δ = C∆x, where 0.1 ≤ C ≤ 11. Since c0
tends to 0 for |x| → ∞, we truncate c0,δ outside the numerical domain.

We consider a bounded square D = [−l, l] × [−l, l] as numerical domain. In the case θ(x1, x2) has a
compact support contained in the numerical domain (Test 2), we assume θ(x1, x2) 2l−periodic in both

21



directions. Then the discrete convolution is computed on D by the inverse discrete Fourier transform of the
product of the Fourier transform of c0 with the Fourier transform of θ(x1, x2) (for more details about the
computation of the convolution we refer to [4]).

In other cases (Test 1 and Test 3) we choose an initial data which is 2l-periodic in the x2−direction. Then
the discrete convolution (8.1) is calculated on a larger numerical domain DK = [−(2K + 1)l, (2K + 1)l] ×
[−(2K + 1)l, (2K + 1)l], where K is a positive integer. The kernel c0 is now truncated outside DK and the
following extension of θ is used in the computation of the speed. First, θ(x1, x2) is extended over the domain
[−(2K + 1)l,−l]× [−l, l] by the constant in x2 value θ(−l, ·) and on the domain [l, (2K + 1)l]× [−l, l] by the
constant in x2 value θ(l, ·). Then it is extended over all the domain DK periodically in the x2−direction.

The non-local speed is computed each time step size ∆T , whose value will be specified in each test. The
step ∆t is always chosen equal to the space step ∆x.

Test 1 : a propagating line with obstacles
We choose as initial data a line and three different speeds describing three different obstacles. In all cases
the continuous speed is given by c(x, t) = (c0,δ ? θ(·, t))(x) + c1(x, t) with δ = 0.5, ν = 0 and local speed

c1(x, t) =

{
α if |x|2 < 0.3

2 otherwise
.

The presence of the external force c1 allows the line to propagate. For α < 2, the speed c1 on the domain
|x|2 < 0.3 can be thought as an obstacle which slows down the propagation of the line. Smaller α is, deeper
the obstacle is. We compute the discrete solution in the numerical domain [−3, 3]× [−3, 3], with 129 nodes
each sides and we update the speed each ∆T = 0.02. Here we use the non-monotone GFMM (presented in
the appendix) and the discrete convolution is computed in the extended domain DK with K = 1 and l = 3.

Case α = 1.5 : the line passes over the obstacle

The line comes slowed down in the zone of the obstacle, but it succeeds to exceed it without to disconnect
itself. In Figure 2 we show the line evolution and the obstacle at times t = 0, 0.42, 0.66, 0.93, 1.03, 1.44.

Case α = 1 : the obstacle breaks the line

Lowering the value of α but holding it still positive, we simulate the presence of a deeper obstacle that
slows down the propagation of the line. Due to the presence of this deeper obstacle, the line disconnects.
Therefore there is a change of topology. One part of the dislocation still propagates to the left, the other
part remains captured by the obstacle and collapses over time. In Figure 3 we show the line evolution and
the obstacle at times t = 0, 0.38, 0.69, 0.85, 1.05, 1.20.

Case α = −0.5 : the obstacle captures the line

Choosing a deeper obstacle, the line does not succeed to exceed the obstacle. There is a change
of topology: a part exceeds the obstacle and continues propagating to the left, another part remains
captured around to the obstacle. In Figure 4, we show the line evolution and the obstacle at times
t = 0, 0.47, 0.74, 1.04, 1.35, 1.81.

Test 2 : Shrinking of a square
Here, we are looking at the collapse of a non-smooth front: the square.

We choose as continuous speed c(x, t) = (c0,δ ? θ)(·, t))(x) with δ = 0.02 and ν = 0. In this case
the shrinking of the square approaches a circle, this is expected since for δ → 0 the dislocation dynamics
approaches the Mean Curvature Motion.

We compute the discrete solution in the numerical domain D ≡ [−3, 3] × [−3, 3], with 160 nodes each
sides and we update the speed each ∆T = 0.001. We plot the contour line each 0.05 time step.

This test has been done in a precedent paper with a finite difference scheme for the level set formulation,
see [4].

Since for very small core δ, the speed has large gradient, the finite difference scheme was not satisfactory:
the gradient of the solution becomes too small and it is hard to follow the level set evolution.

22



Figure 2: A propagating line with an obstacle, case α = 1.5

Figure 3: A propagating line with an obstacle, case α = 1

We compare the numerical solution given by the GFMM algorithm (Subsection 2.2) with the one given
by the Level Sets method with a finite difference scheme. Let us point out that techniques such as extension
velocity or reinitialization (see [11, 8, 1]) might be used to improve the numerical results (but with more

23



Figure 4: A propagating line with an obstacle, case α = −0.5

computational complexity).
The finite difference scheme produces oscillations in the level set line representing the dislocation and it

is not possible to follow the complete evolution (see Figure 5) on the left. This fact happens because the
continuous function, which 0 contour line represents the fronts, has become flat.

The GFMM does not suffer from this problem: no oscillations are produced in the evolution and it is
possible to follow the evolution until the square collapse, see Figure 5 on the right.
In Figure 6, we show the increase of accuracy in the approximation of the contour lines with respect different
space steps. From the top, we used respectively ∆x = 0.12, ∆x = 0.06, ∆x = 0.03.

Remark 8.1 The stair-step appearance in Figures 5-6 comes from the fact that the computed solution is
discontinuous (and take only value −1 or 1). Hence we cannot interpolate the solution (like for the classical
level set method) and in the graphical plot, one can see stair-step of the size of the mesh. As we point out in
Figure 6, this phenomena will disappear as ∆x goes to zero.

We study numerical convergence by comparing the numerical solution with respect the exact solution,
where we assume exact the numerical solution computed with ∆x = 0.0075, δ = 0.005, ∆t = ∆x/10 and
∆T = 10−5 at T = 0.02 , let us denote it by θT (x).
We define the approximated set Ω+

n = {xI ∈ Q ∩ D : θnI > 0}, and C̃ = {x ∈ R2 : I[θn](x) = 0} the
approximated front, where I[·] is a linear interpolation. Moreover, we indicate by Ω+

T = {xI ∈ Q ∩ D :
θT (xI) > 0}, and C = {x ∈ R2 : I[θT ](x) = 0} the exact set and the exact front.
We measure the errors in term of the Hausdorff distanceH(·, ·) between the exact front and the approximated
front. Although that distance cannot be computed exactly, a good approximation can be obtained by
computing it on only a finite number of points belonging to the fronts. Moreover we measured the difference
of the discrete area A(·) of the set Ω+

n and Ω+
T .

In Tab. 1, we show the errors obtained by the non-monotone version of GFMM, and in Tab. 2 we show the
errors obtained by the monotone-version. The parameters are chosen as following: δ = 0.005, ∆t = ∆x/10 ,
∆T = 5 · 10−5 and T = 0.02. We see that the second algorithm is more accurate than the first one, and it
shows numerical convergence.

Test 3 : Collapse of a sinusoidal line dislocation

24



Table 1: Area and Hausdorff distances for Test 2 with non-monotone GFMM.

∆x |A(Ω+
T )−A(Ω+

m)| H(C, C̃)
0.06 2.71 · 10−1 1.32 · 10−1

0.03 1.27 · 10−1 7.63 · 10−2

0.015 3.90 · 10−1 1.38 · 10−1

Table 2: Area and Hausdorff distances for Test 2 with monotone GFMM.

∆x |A(Ω+
T )−A(Ω+

m)| H(C, C̃)
0.06 5.03 · 10−1 1.89 · 10−1

0.03 2.14 · 10−1 1.14 · 10−1

0.015 4.21 · 10−3 3.31 · 10−2

We choose as initial data a sinusoidal line x1 = −0.15 sin(πx2) and as speed c(x, t) = (c0,δ ? θ)(·, t))(x)
with δ = 0.01 and ν = 0. In this case the speed changes sign with respect to the space variable. It is
expected that a sinusoidal line will collapse to a straight line.

We compute the discrete solution in the numerical domain [−1, 1]× [−1, 1], with 100 nodes each side. The
discrete convolution is computed in the extended domain DK with K = 1 and it is updated each ∆T = 10−4.

In Fig. 7 we show the numerical solution at times t = 0, 1.90 · 10−3, 3.30 · 10−3, 4.50 · 10−3, 6.70 ·
10−3, 2.67 · 10−2.

In Fig. 8 we compare the numerical solution at time t = 5 · 10−3 with respect to different space steps.
More precisely, we use respectively N = 50, N = 100 and N = 150 number of nodes on each side of the
square numerical domain. One can see that together with the decreasing of the space step, we get a more
accurate representation of the curve.

We perform an error analysis by comparing the areas A(·) of the sets Ω+
T and Ω+

m and computing the
approximated Hausdorff distance between the exact and approximated fronts, as defined in the previous test.
We consider exact solution a numerical solution computed using ∆x = 0.005, ∆t = ∆x/20, ∆T = 10−6,
δ = 10−3 and at the final time T = 2.50 · 10−3.

In Tables 3, 4 we show the errors obtained by using respectively the non-monotone version and the
monotone version of the scheme, the parameters to compute the solution are ∆t = ∆x/20, ∆T = 10−5,
δ = 10−3 and at the final time T = 5 · 10−3. Both tables show numerical convergence and the errors result
very similar.

Figure 5: Shrinking of a square approaching a circle with the Level Sets method (left) and GFMM (right)

25



−3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 6: Shrinking of a square approaching a circle with decreasing space steps ∆x

Table 3: Area and Hausdorff distances for Test 3 with non-monotone GFMM.

∆x |A(Ω+
T )−A(Ω+

m)| H(C, C̃)
0.04 4.13 · 10−2 9.71 · 10−2

0.02 1.30 · 10−2 4.12 · 10−2

0.0133 4.20 · 10−3 1.80 · 10−2

Table 4: Area and Hausdorff distances for Test 3 with monotone GFMM.

∆x |A(Ω+
T )−A(Ω+

m)| H(C, C̃)
0.04 2.86 · 10−2 1.01 · 10−1

0.02 1.30 · 10−2 4.53 · 10−2

0.0133 4.00 · 10−3 2.59 · 10−2

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: Shrinking of a sinusoidal line dislocation

A A non-local algorithm modeled on a non-monotone GFMM

In certain tests we have used a non-local algorithm modeled on a non-monotone GFMM (in short non-
monotone non-local GFMM).

There are two main differences, the first one concerns the time uJ→I . As in [7], we take the same time
uJ→I in all the direction and we denote it by uJ→±.

26



−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: A collapsing sinusoidal line computed at t = 5 · 10−3 respectively with ∆x = 0.04, ∆x = 0.02 and
∆x = 0.0133

Initialization

1. Set n = 1

2. Initialize the field θ0 as

θ0
I =

{
1 for xI ∈ Ω0,
−1 elsewhere

3. Initialize the speed: c0I ≡ c[(θ0)∆](xI , t0), with t0 = 0.

4. Initialize the time for points I

u0
I→± =

{
t0 = 0 if I ∈ U0 ∩ F 0

∓
+∞ otherwise

Loop

5. Compute ũn−1 on NBn−1

Let I ∈ NBn−1, then we compute ũn−1
I as the solution of the following quadratic equation:

N∑
k=1

(
max
±

(
0, ũn−1

I − un−1
Ik,±→−

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
− ,

N∑
k=1

(
max
±

(
0, ũn−1

I − un−1
Ik,±→+

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
+ ,

where
Ik,± = (i1, .., ik−1, ik ± 1, ik+1, .., iN ).

6. t̃n = min
{
ũn−1
I , I ∈ NBn−1

}
.

7. Truncate t̃n
tn = max(tn−1,min{t̃n, tn−1 + ∆t})

8. if tn < t̃n go to 11 with θn = θn−1.

9. Initialize the new accepted points
NAn± = {I ∈ NBn−1

± , ũn−1
I = t̃n}, NAn = NAn+ ∪NAn−

10. Reinitialize θn

θnI =

{
−θn−1

I for I ∈ NAn
θn−1
I elsewhere

27



11. Compute the speed cnI :
Given tn−1 ∈ [p∆T, (p+ 1)∆T ) for some p ∈ N, we set

cnI ≡

 cn−1
I if tn < (p+ 1)∆T

c[(θn−1)∆](xI , tn) if tn ≥ (p+ 1)∆T

12. Reinitialize unI→K

unI→± =

{
min(un−1

I→K , tn) ifI ∈ Un ∩ Fn∓
+∞ otherwise

13. Set n : +1 and go to 5

Remark A.1 Let us note that, since the algorithm described in Subsection 2.2 has constant in time speed
on each interval ∆T , it is not necessary to recompute the values of ũn−1 on the whole Narrow Band NBn

in this time interval: the computation is needed only on the neighborhood of the accepted nodes.

References

[1] D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set
methods, J. Comput. Phys., 148 (1999), pp. 2–22.

[2] O. Alvarez, P. Cardaliaguet, and R. Monneau, Existence and uniqueness for dislocation dy-
namics with nonnegative velocity, Interfaces and Free Boundaries, 7 (2005), pp. 415–434.

[3] O. Alvarez, E. Carlini, R. Monneau, and E. Rouy, Convergence of a first order scheme for a non
local eikonal equation, IMACS Journal ”Applied Numerical Mathematics”, 56 (2006), pp. 1136–1146.

[4] , A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics,
Numerische Mathematik, 104 (2006), pp. 413–572.

[5] O. Alvarez, P. Hoch, Y. Le Bouar, and R. Monneau, Dislocation dynamics: short time existence
and uniqueness of the solution, Archive for Rational Mechanics and Analysis, 85 (2006), pp. 371–414.

[6] G. Barles, P. Cardaliaguet, O. Ley, and R. Monneau, Global existence results and uniqueness
for dislocation equations, SIAM J. Math. Anal., 40 (2008), pp. 44–69.

[7] E. Carlini, M. Falcone, N. Forcadel, and R. Monneau, Convergence of a generalized fast-
marching method for an eikonal equation with a velocity-changing sign, SIAM J. Numer. Anal., 46
(2008), pp. 2920–2952.

[8] D. L. Chopp, Another look at velocity extensions in the level set method, SIAM J. Sci. Comput., 31
(2009), pp. 3255–3273.

[9] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,
Math. Comp., 43 (1984), pp. 1–19.

[10] N. Forcadel, Comparison principle for a generalized fast marching method, SIAM J. Numer. Anal.,
47 (2009), pp. 1923–1951.

[11] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set
method, J. Comput. Phys., 155 (1999), pp. 410–438.

[12] D. Rodney, Y. Le Bouar, and A. Finel, Phase field methods and dislocations, Acta materialia, 51
(2003), pp. 17–30.

[13] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad.
Sci. U.S.A., 93 (1996), pp. 1591–1595.

[14] , Level set methods and fast marching methods, vol. 3 of Cambridge Monographs on Applied
and Computational Mathematics, Cambridge University Press, Cambridge, second ed., 1999. Evolving
interfaces in computational geometry, fluid mechanics, computer vision, and materials science.

28



[15] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat. Control,
40 (1995), pp. 1528–1538.

[16] A. Vladimirsky, Static PDEs for time-dependent control problems, Interfaces and Free Boundaries, 8
(2006), pp. 281–300.

29


