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1 Introduction

In this paper, we focus on the modelling of dislocation dynamics. We refer the reader to the book of
Hirth and Lothe [20] for a detailed introduction to dislocations. Our study ranges from atomic models
to macroscopic crystal plasticity. At each scale, dislocations can be described by a suitable model. Our
goal is to explain how we can deduce a model at a larger scale, from the model at a smaller scale.

Even if our derivation will be done on some simplified models (essentially 2D and 1D models), we
hope that our contribution will shed light, even on some well-known models. More precisely, we will
consider the following four models, from the smaller to the larger scale:
1. Generalized Frenkel-Kontorova model (FK)
2. Peierls-Nabarro model (PN)
3. Dynamics of discrete dislocations (DDD)
4. Dislocation density model (DD)

Schematically, the four models are related as shown below (see also Figure 6.1 for a more detailed
diagram):

(FK)ε1,ε2,ε3>0
ε1→0
−→ (PN)ε2,ε3>0

ε2→0
−→ (DDD)ε3>0

ε3→0
−→ (DD) (1.1)

The rest of the paper is composed of four sections. Each section presents one model, and explains
how this model can be deduced from the previous model at a smaller scale.
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2 Generalised Frenkel-Kontorova model

2.1 Geometrical description

We call (e1, e2, e3) a direct orthonormal basis of the threedimensional space. We consider a perfect
crystal Z

3 where each position with integer coordinates is occupied by one atom. We want to describe
dislocations, which are certain “line defects” in the crystal. Even if it possible to write down a full 3D
model at this level of description, the whole analysis (including the change of scales) in this paper will
be carried out only for the case of straight dislocation lines. For this reason, and in order to simplify
the presentation, we will assume that the material is invariant by integer translations in the direction
e3. Because of this assumption, we can simply consider the cross section of the crystal in the plane
(e1, e2) where each atom is now assumed to have a position I ∈ Z

2 in the perfect crystal. We also
assume that each atom I can have a displacement UI ∈ R in the direction e1, such that the effective
position of the atom I is I + UIe1.

On Figure 2.1 below is represented a view of the perfect crystal. On Figure 2.2 we can see a schematic
view of an edge dislocation in the crystal. On this picture, the upper part {I2 ≥ 0} of the crystal has
been expanded to the right of a vector 1

2e1, while the lower part {I2 ≤ −1} of the crystal has been
contracted to the left of a vector − 1

2e1. The net difference between these two vectors is e1 and is called
the Burgers vector of this dislocation.

e1

e2

I  =−1
2

2

I  = 0

Fig. 2.1. Perfect crystal

I  =−1
2

2

I  = 0

e1

e2

Fig. 2.2. Schematic view of an edge dislocation in the
crystal

In order to describe an edge dislocation in our formalism, let us make a few assumptions. We will
assume that the dislocation defects are essentially described by the mismatch between the two planes
I2 = 0 and I2 = −1, like on Figure 2.2. For this reason, and also in order to simplify the analysis, we
assume that the displacement of the crystal satisfies the following antisymmetry property

U(I1,−I2) = −U(I1,I2−1) for all I = (I1, I2) ∈ Z
2. (2.1)

Let us also define the discrete gradient

(∇dU)I =

(
UI+e1

− UI

UI+e2
− UI

)
.

Remark that defects in the crystal can be seen as regions where the discrete gradient is not small.

Formalism for an edge dislocation with Burgers vector e1
In our formalism, an edge dislocation like the one of Figure 2.2, can be represented by a displacement
UI satisfying 




U(I1,0) = −U(I1,−1) → 0 as I1 → −∞

U(I1,0) = −U(I1,−1) →
1

2
as I1 → +∞.
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Because we assume that the dislocation core lies in the two planes I2 = 0 and I2 = −1, it is reasonable
to assume that all the components of the discrete gradient are small, except components UI+e2

− UI

for I = (I1, I2) with I2 = −1. More precisely, we assume that there exists a small δ > 0 such that
{
|UI+e1

− UI | ≤ δ for all I = (I1, I2) ∈ Z
2

|UI+e2
− UI | ≤ δ for all I = (I1, I2) ∈ Z

2 with I2 6= −1.
(2.2)

Moreover, if there is no applied stress on the crystal, then it is reasonable to assume that

dist
(
(∇dU)I ,Z

2
)
→ 0 as |I| → +∞.

2.2 The energy and the dynamics

We assume that the energy of a configuration U = (UI)I∈Z of the crystal can be formally written as

E(U) =
1

2

∑

I 6=J

W̃ (UI − UJ)

where W̃ : R → R is a potential describing nearest neighbors interactions satisfying
Assumption (Ã1)





i) (Regularity) W̃ ∈ C3(R)

ii) (Periodicity) W̃ (a+ 1) = W̃ (a) for all a ∈ R

iii) (Minimum on Z) W̃ (Z) = 0 < W̃ (a) for all a ∈ R\Z

iv) (Local harmonicity of W̃ ) W̃ (a) = 1
2a

2 for all |a| < δ

where δ > 0 is introduced in (2.2). Remark that the periodicity of the potential W̃ reflects the

periodicity of the crystal, while the mimimum property of W̃ is consistent with the fact that the perfect
crystal Z

2 is assumed to minimize its energy. Assumption iv) will be used for later simplification. Then
we assume that we are in a regime where the crystal reaches very quickly the equilibrium in the regions
where there is no defects, i.e. satisfies

0 = −∇UI
E(U) for all I = (I1, I2) ∈ Z

2 with I2 6= 0,−1. (2.3)

Remark that the equilibrium condition (2.3) may look artificial. Indeed this condition is also assumed
in order to carry out the analysis, and can be seen as a drastic simplification of reality.

In the two planes where the dislocation lives, we have the following fully overdamped dynamics
(describing the average friction of the lattice on the effective dissipative motion of the dislocations):

d

dt
UI = −∇UI

E(U) for all I = (I1, I2) ∈ Z
2 with I2 = 0,−1. (2.4)

Let us mention that we do not have a fundamental justification of this dynamics, but we think that one
of the main justification of this model is that other known models at larger scales can be deduced from
this particular model. For physical justifications of the dissipative effects in the motion of dislocations,
see [2,20]. See also [22–24] for a fundamental justification of the overdamped dynamics based on explicit
computations in a 1D Hamiltonian model.

Taking into account the local harmonic assumption (Ã1) iv), applied where the components of the
discrete gradient are small (see (2.2)), joint to the antisymmetry property defined in (2.1), we can
rewrite system (2.3)-(2.4) as follows for all t > 0:




0 =
∑

J∈Z2, |J−I|=1

(UJ − UI) for all I = (I1, I2) ∈ Z
2 with I2 ≥ 1

d

dt
UI = −W̃ ′(2UI) +

∑

J∈Z2, |J−I|=1, J2≥0

(UJ − UI) for all I = (I1, I2) ∈ Z
2 with I2 = 0.

(2.5)
We call this model a generalised Frenkel-Kontorova model. Even if this system of equations is not

standard, it is nevertheless possible to define a unique solution under suitable assumptions, in the
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framework of viscosity solutions (see [13]). We refer the reader to the book of Braun, Kivshar, [6] for a
detailed presentation of the classical FK model. For homogenization results of FK models, we refer the
reader to [15]. For the description of vacancy defects at equilibruim, see [19]. See also [18], where the
authors study the problem involving a dislocation inside the interphase between two identical lattices.
Their model corresponds to our model (2.5) at the equilibrium with the potential W̃ is a cosinus
function. For other 2D FK models, see [8,9].

Remark 2.1 It is important to remark that we used condition (2.2) only to derive the model. We do
not know and we do not claim that there exists solutions of system (2.5) satisfying condition (2.2).
From now on, we only consider solutions of system (2.5) without requiring further assumptions on the
solutions.

Remark 2.2 When we freeze the components UI = 0 for I2 ≥ 1, and change the evolution equation
forgetting the index J with J2 = 1, this leads to the following classical fully overdamped Frenkel-
Kontorova model satisfied by Vi := U(i,0)

d

dt
Vi = Vi+1 + Vi−1 − 2Vi − W̃ ′(2Vi).

2.3 The asymptotic stress created by a single dislocation

In this subsection, we will compute the asymptotic stress created by a single dislocation. To this end,
we first compute the effective Hook’s law of the lattice.
Computation of the Hook’s law
Let us consider an affine displacement

UI = a · I + C with a = (a1, a2) ∈ R
2

where C ∈ R is a constant. Then the energy by unit cell is

E = W̃ (UI+e1
− UI)) + W̃ (UI+e2

− UI)) =
1

2
(a2

1 + a2
2)

for |a| < δ. Reminding the fact that U is the displacement in the e1 direction, we get that the strain
e (i.e. the symmetric part of the gradient of the displacement) is given by

e =

(
e11 e12
e21 e22

)
=

1

2
(∇U ⊗ e1 + e1 ⊗∇U) =

(
a1 a2/2
a2/2 0

)
.

Therefore

E(e) =
1

2
e211 + 2e212.

Recalling that the stress is given by σ0 =
∂E

∂e
, we get the Hook’s law:

σ0 =

(
e11 2e12
2e21 0

)
.

Computation of the stress created by a single dislocation
Remark that when there is no dislocations, the energy associated to a continuous displacement U(X)
for X = (X1, X2) is formally

E =

∫

R2

1

2
|∇U |2.

Therefore the Euler-Lagrange equation (which is the corresponding equation of elasticity for this
model) is

∆U = 0. (2.6)

Let us now consider the following function

U0(X) =
1

2π
arctan

(
X1

X2

)
+

1

4
sgn (X2)
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where sgn is the sign function. This function satisfies



U0(X1, X2) = −U0(X1,−X2)

U0(X1, 0
+) = −U0(X1, 0

−) → 0 as X1 → −∞

U0(X1, 0
+) = −U0(X1, 0

−) →
1

2
as X1 → +∞.

Moreover we can easily check that

div (∇U0 −H(X1)δ0(X2)e2) = 0 in D′(R2)

where H is the Heavyside function and δ0 is the Dirac mass. This equation is the analogue of equation
(2.6) when there is a dislocation. This shows that in a continuum mechanics framework associated
to the particular lattice that we consider, the function U0 is the displacement corresponding to a
dislocation with Burgers vector e1. In particular, the stress created by this dislocation is then given
by

σ0 =
1

2π




X2

X2
1 +X2

2

−
X1

X2
1 +X2

2

−
X1

X2
1 +X2

2

0




and then

σ0
12(X1, 0) = −

1

2πX1
(2.7)

which is the asymptotic shear stress at the point (X1, 0) ∈ R
2 created by a single dislocation positioned

at the origin, and with Burgers vector e1.

2.4 Rescaling of the generalised FK model

In this subsection, in order to simplify the notation we denote by ε := ε1 > 0 the small parameter in
the first passage of the scheme (1.1). We are interested in the case of asymptotically small potential W̃
for which we expect an asymptotically large dislocation core. This means that in this limit, we expect
to be able to describe the discrete displacement UI by a continuous function.

More precisely, we first define the rescaled integer coordinates:

Ωε = (εZ) × ε (N\ {0}) , ∂Ωε = (εZ) × {0} .

Then we write the potential as

W̃ =
ε

2
W ε

and define the rescaled function

uε(X, t) = 2UX

ε

(
t

ε

)
for X = (X1, X2) ∈ Ω

ε
, t ∈ [0,+∞).

Remark that the factor 2 in the definition of uε permits to interprete uε as the jump of the displacement
in the direction e1, when we pass from hyperplane X2 = −ε to the hyperplane X2 = 0.

We can easily check that uε solves the following system of equations (with the particular value
σ = 0)





0 =
1

ε2

∑

J∈Z2, |J|=1

(uε(X + εJ, t) − uε(X, t)) for all (X, t) ∈ Ωε × (0,+∞)

uε
t (X, t) = 2ε2σ (ε2X1) − (W ε)′(uε(X, t)) + Iε[uε](X, t) for all (X, t) ∈ ∂Ωε × (0,+∞)

with Iε[uε](X, t) =
1

ε

∑

J∈Z2, |J|=1, J2≥0

(uε(X + εJ, t) − uε(X, t)).

(2.8)
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The scalar function σ has been introduced to take into account the possible external applied shear
stress on the material. Here the small parameter ε2 > 0 has been introduced to take into account the
slow variation of the stress field which will allow a second change of scale as ε2 will go to zero later.
We will also assume that the initial data satisfies

uε(X, 0) = u0(X) for all X ∈ ∂Ωε (2.9)

where u0 is a given function independent on ε and smooth enough.
In order to identify a limit model as ε goes to zero, we also make the following assumption

||W ε −W ||C1(R) → 0 as ε→ 0 (2.10)

for some new potential W satisfying the following assumption:
Assumption (A1)

{
The potential W satisfies (Ã1) i), ii), iii)
iv) (Non degenerate minima): α := W ′′(0) > 0.

In (2.10), we use the C1 norm, because this is the first derivative of the potential that appears in

the equations. Remark that condition (2.10) can be fulfilled, if we assume for instance that W̃ satisfies

assumption (Ã1) with δ = δε << ε. We also make the following assumption on the stress:
Assumption (A2)
There exists a constant C > 0 such that

|σ| + |σx| + |σxx| ≤ C for all x ∈ R.

3 The Peierls-Nabarro model

3.1 Description of the PN model

In this section we introduce the Peierls-Nabarro model, which is a phase field model (see [20] for a
presentation of this model). In this model, phase transitions describe the dislocation cores. We set

Ω =
{
X = (X1, X2) ∈ R

2, X2 > 0
}
.

A function u0(X, t) is said to be a solution of the PN model, if it satisfies the following system




0 = ∆u0 on Ω × (0,+∞)

u0
t = 2ε2σ (ε2X1) −W ′(u0) +

∂u0

∂X2
on ∂Ω × (0,+∞)

(3.1)

with initial data
u0(X, 0) = u0(X) for all X ∈ ∂Ω. (3.2)

The stationary version of this model has been originally introduced in order to propose a method to
compute at the equilibrium a finite stress created by a dislocation. In this model, u0 is the phase
transition. For instance, for an edge dislocation with Burgers vector e1 as presented in Section 2, u0 is
a transition between the value 0 on the left to the value 1 on the right (see Figure 3.1). In the special
case u0

t = 0 = σ and for sinusoidal potentials W , the stationary solution u0 is known explicitely (see for
instance [7]), which makes the PN model very attractive. Let us mention that a physical and numerical
study of the evolution problem (3.1) has been treated in [25].

Remark 3.1 Remark that system (3.1)-(3.2) and also system (2.8) are equations which have the nice
property to enjoy a comparison principle (see for instance related works [15,7]), which can be made
rigorous in the framework of viscosity solutions. Remark also that when we consider system (3.1)-(3.2)
in this framework, the evolution equation on the boundary ∂Ω appears to be a boundary condition of
the system. For this reason, as it is usual for viscosity solutions (see for instance [3,4]), this boundary
condition has to be understood technically in the sense that on ∂Ω the function u0 solves pointwisely
either 0 = ∆u0 or the evolution equation.



From microscopic models to macroscopic crystal plasticity 7

u

1

0

0
x1

Fig. 3.1. Phase transition for an edge dislocation with Burgers vector e1 for X2 = 0

3.2 Convergence of the generalised FK model to the PN model

We have the following result

Theorem 3.2 (Formal convergence of FK to PN, ε = ε1 → 0)
Let ε > 0. For the initial data u0 ∈ W 2,∞(Ω) which is assumed harmonic on Ω, and under assumption

(Ã1) on εW ε, and (A2) on σ, there exists a unique viscosity solution uε of system (2.8)-(2.9). Moreover
assuming (2.10) with the potential W satisfying assumption (A1), then, as ε goes to zero, the solution
uε formally converges to a viscosity solution of system (3.1)-(3.2).

The proof of Theorem 3.2 is done in full details in [13].

Sketch of the proof of Theorem 3.2
One way to guess the limit model (3.1)-(3.2) is to pass to the limit formally in system (2.8)-(2.9)
assuming that the solution uε (and its derivatives) converges to a limit u0. The convergence in the
system is then obtained using a simple Taylor expansion. The existence of a solution uε to system
(2.8)-(2.9) is technically delicate and is based on the proof of a suitable comparison principle for this
system.

3.3 Reformulation of the PN model

In this subsection and in Subsection 3.4, in order to simplify the notation we denote by ε := ε2 > 0
the small parameter in the second passage of the scheme (1.1). We recall that it is well known that for
bounded smooth functions u0 defined on Ω which are harmonic on Ω, we can write

∂u0

∂X2
(X1, 0) = L(u0(·, 0))(X1) for all (X1, 0) ∈ ∂Ω

where for a general bounded smooth function w, the linear operator L is given by the Levy-Khintchine
formula (see Theorem 1 in [11]):

(Lw)(x) =
1

π

∫

R

dz

z2

(
w(x + z) − w(x) − zw′(x)1{|z|≤1}

)
. (3.3)

Then for smooth solutions u0, system (3.1) can be rewritten for V (X1, t) = u0(X1, X2, t)|X2=0 with
x = X1 ∈ R as

Vt = 2εσ(εx) −W ′(V ) + LV on R. (3.4)

We also recall (see [7]) that there exists a unique function φ solution of




0 = Lφ−W ′(φ) on R

φ′ > 0 and φ(−∞) = 0, φ(0) =
1

2
, φ(+∞) = 1.

(3.5)

The function φ is called the layer solution and a translation of φ is pictured on Figure 3.1.
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3.4 Rescaling of the PN model

We now consider the following rescaling

vε(x, t) = V

(
x

ε
,
t

ε2

)
.

Then system (3.4) can be rewritten as

vε
t =

1

ε

{
Lvε −

1

ε
W ′(vε) + 2σ(x)

}
on R (3.6)

with initial condition
vε(x, 0) = vε

0(x) for x ∈ R. (3.7)

Again, a good notion of solution for system (3.6)-(3.7) is the notion of viscosity solution for non
local equations (see for instance [5]).

Here we will choose carefully the initial condition vε
0 as follows

Assumption (A3) 



x0
1 < x0

2 < ... < x0
N

vε
0(x) =

ε

α
· 2σ(x) +

N∑

i=1

φ

(
x− x0

i

ε

)

where we recall that α = W ′′(0) > 0 and φ is defined in (3.5).

4 Dynamics of discrete dislocations

4.1 Description of the DDD model

In this section we assume that the phase transition reduces to a sharp interface where the transition
is localized at the position x = x0

1 ∈ R. For a dislocation associated to a Burgers vector e1, the sharp
interface is associated to a non-decreasing step function like the one of Figure 4.1.

1

0

0
x

v

x
1
0

Fig. 4.1. Sharp interface describing a discrete dislocation at x = x0

1

More generally, we can consider the case of N dislocations (or particules) of positions (xi(t))i=1,...,N

solving the following system

dxi

dt
= −γ


σ(xi) +

∑

j 6=i

V ′(xi − xj)


 on (0,+∞) for i = 1, ..., N (4.1)

with the two-body interaction potential

V (x) = −
1

2π
ln |x|

with initial data
xi(0) = x0

i for i = 1, ..., N. (4.2)
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Here the constant γ > 0 is the inverse of the damping factor. It is related to the layer solution φ
defined in (3.5) and is given by

γ = 2

(∫

R

(φ′)2
)−1

.

The function σ is the applied shear stress and V ′(x − xj) is the (singular) shear stress created at
the point x by the dislocation xj . This corresponds exactly to the shear stress already computed in

(2.7). The total stress σ(xi) +
∑

j 6=i

V ′(xi − xj) is called the resolved Peach-Koehler force acting on the

dislocation xi.

4.2 Convergence of the PN model to the DDD model

We have

Theorem 4.1 (Convergence of PN to DDD, ε = ε2 → 0)
Let ε > 0. Under assumptions (A1)-(A2)-(A3), there exists a unique viscosity solution vε of (3.6)-
(3.7). Moreover there exists a unique solution of (4.1)-(4.2), and we define

v0(x, t) =
∑

i=1,...,N

H(x− xi(t))

where H is the Heavyside function. Then as ε goes to zero, the function vε converges to v0 in the
following sense

lim sup
(x′,t′)→(x,t), ε→0

vε(x′, t′) ≤ (v0)∗(x, t)

and
lim inf

(x′,t′)→(x,t), ε→0
vε(x′, t′) ≥ (v0)∗(x, t).

The proof of this result is done in full details in [17].

Remark 4.2 We recall that the semi-continuous envelopes of a function v are defined as

v∗(x, t) = lim sup
(x′,t′)→(x,t)

v(x′, t′) and v∗(x, t) = lim inf
(x′,t′)→(x,t)

v(x′, t′).

Sketch of the proof of convergence
The existence of a solution for all time of the ODE system (4.1)-(4.2) comes from the fact that V (x) is
a convex potential outside the origin. This property allows to show that the minimal distance between
particles

d(t) = inf
i6=j

|xi(t) − xj(t)|

satisfies
d(t) ≥ d(0)e−Cγt (4.3)

which prevents the meeting of the particles at any finite time.
Then the main idea to prove the convergence is to approximate the solution vε by the following ansatz

ṽε(x, t) =
ε

α
· 2σ(x) +

N∑

i=1

{
φ

(
x− xi

ε

)
− εẋi(t)ψ

(
x− xi

ε

)}
with ẋi(t) =

dxi

dt
(t)

where α = W ′′(0) and the corrector ψ solves the following equation

Lψ −W ′′(φ)ψ = φ′ + η (W ′′(φ) −W ′′(0)) with η =
1

W ′′(0)

∫

R

(φ′)2.

The stress created in x by a dislocation positioned at the origin, comes from the following property

φ(x) −H(x) ∼ −
1

απx
as |x| → +∞.

The rest of the proof of convergence of vε is done by construction of sub and super solutions based on
the ansatz ṽε.
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4.3 Rescaling of the DDD model

In this subsection, in order to simplify the notation we denote by ε := ε3 > 0 the small parameter in
the third passage of the scheme (1.1). We consider a given initial data w0 which satisfies
Assumption (A4)

{
w0 ∈ W 2,∞(R),
w′

0 > 0, w0(−∞) = 0.

We also introduce the integer Nε and the position of the dislocations x0
1 < ... < x0

Nε
such that

∑

i=1,...,Nε

H(x− x0
i ) =

⌊w0(εx)

ε

⌋
(4.4)

where ⌊·⌋ denotes the floor function which is the following integer part:

⌊x⌋ = max{n ∈ Z; n ≤ x}.

We also assume that the stress σ is periodic. Precisely, we make the following assumption:
Assumption (A2’)

σ ∈ C2(R) and σ(x+ 1) = σ(x) for all x ∈ R.

This assumption allows to study the collective behaviour of dislocations in a landscape with periodic
obstacles, and to get the effective macroscopic model by a periodic homogenization approach when
ε→ 0.

Then we consider the solution (xi(t))i=1,...,Nε
of the system (4.1)-(4.2) with N = Nε where Nε is

defined by (4.4). In particular, remark that

Nε ∼
sup

R
w0

ε
→ +∞ as ε→ 0.

We define the function
v0(x, t) =

∑

i=1,...,Nε

H(x− xi(t))

and the rescaling

wε(x, t) = εv0

(
x

ε
,
t

ε

)
. (4.5)

5 Dislocation density model

5.1 Description of the DD model

We first introduce a function g : (0,+∞) × R → R which satisfies
Assumption (A5) 



g ∈ C0((0,+∞) × R),

l 7→ g(ρ, l) is nondecreasing.

Then we consider a function w0(x, t) which is a solution of

w0
t = g(w0

x, Lw
0) on R × (0,+∞) (5.1)

where the operator L is defined in (3.3), and with initial data

w0(x, 0) = w0(x) for all x ∈ R. (5.2)

Here the function w0 is such that its derivative w0
x represents the macroscopic dislocation density.

Moreover w0 can be seen as the plastic strain localized in plane x2 = 0 and
1

2
Lw0 can be identified

to the stress created by the dislocation density w0
x. Equation (5.1) can be interpreted as the plastic

flow rule in a model for macroscopic crystal plasticity. Indeed, from a mechanical point of view, we
have the following table (see also [21]) of equivalence between our homogenized model and a classical
model in mechanics for elasto-visco-plasticity of crystals (see [16]).
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Crystal elasto-visco-plasticity DD model

resolved plastic strain γ(x1)δ0(x2) w0(x1)δ0(x2)
Nye tensor of
dislocations densities

α = (e1 ⊗ e2)γ
′(x1)δ0(x2) α = (e1 ⊗ e2)w

0
x(x1)δ0(x2)

exterior applied stress Σext

microscopic resolved
shear stress

σ −

∫

(0,1)

σ

resolved exterior
applied stress

Σext : e0
∫

(0,1)

σ

displacement v = v1e1
strain e := e(v) − e0γδ0(x2)

with e(v) :=
1

2

(
∇v + t∇v

)

and e0 :=
1

2
(e2 ⊗ e1 + e1 ⊗ e2)

total elastic energy E :=

∫

R2

1

2
(Λ : e) : e+Σext : e E :=

∫

R

−
1

2
w0Lw0 −

(∫

(0,1)

σ

)
w0

macroscopic stress Σ := Λ : e+Σext

resolved macroscopic
shear stress

τ := Σ : e0 τ := Lw0 +

∫

(0,1)

σ

visco-plastic law
∂γ

∂t
= f(τ)

∂w0

∂t
= g

(
w0

x, Lw
0 +

∫

(0,1)

σ

)

energy decay
d

dt
E =

∫

R

−τf(τ) ≤ 0
d

dt
E =

∫

R

−τg
(
w0

x, τ
)
≤ 0

Remark that when we choose the microscopic stress σ in Assumption (A2’) so that

∫

(0,1)

σ = 0, we

expect that g satisfies

g(ρ, 0) = 0. (5.3)

This equality reflects the pinning of dislocations (see [14, Th 2.6]). In the model presented in the
previous table, the plastic strain velocity w0

t is prescribed by the function g (whose typical profile can
be seen on Figure 5.1) which is assumed to satisfy (5.3).

g

l

Fig. 5.1. Graph of the map l 7→ g(ρ, l) showing a threshold effect

Let us mention that a similar profile for g as a function of l only have been obtained rigorously
for a different model involving the motion of a phase transition solution of Allen-Cahn type equations
(see [10]).
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5.2 Convergence of the DDD model to the DD model

We have the following result

Theorem 5.1 (Convergence of DDD to DD, ε = ε3 → 0)
Let us assume (A2’), (A4). Then there exists a function g satisfying assumption (A5). Moreover the
function wε defined in (4.5) converges to the unique solution w0 of (5.1)-(5.2), locally uniformly on
R × [0,+∞).

The proof of this result is done in full details in [14].
Remark that Theorem 5.1 is an homogenization result in the periodic setting. In the particular case

where the periodic stress σ is equal to zero, we get

g(ρ, l) =
γ

2
ρl.

The presence of a non-zero 1-periodic stress with zero mean value, creates a threshold phenomenon
where for a fixed dislocation density ρ, the quantity g(ρ, l) can be equal to zero if |l| is small enough
(see for instance the numerical simulations in [12] which look like Figure 5.1).

Heuristic ideas used in the proof of Theorem 5.1
Step 1 : Splitting of the interactions
Let us first approximate the positions of the particules xj as follows (dropping the time dependence
of w0)

w0(εxj) = jε. (5.4)

For some radius Rε satisfying:
1

ε
≫ Rε → 0 as ε→ 0,

we split the interactions into two contributions (short and long range interactions):∑

j 6=i

V ′(xi − xj) =
∑

|j−i|≤Rε,j 6=i

V ′(xi − xj)

︸ ︷︷ ︸
Iε

+
∑

|j−i|>Rε

V ′(xi − xj)

︸ ︷︷ ︸
IIε

.

Step 2 : The long range interactions
Remark that we can rewrite (using the homogeneity of V ′):

IIε =
∑

|jε−iε|>εRε

εV ′(εxi − εxj).

Setting z = zj = εxj , dz = zj+1−zj , x = εxi, we see for a finite difference of (5.4) that ε ≃ (w0)′(z)dz.
Noticing that εRε → 0, we see formally that we can approximate IIε by the following integral

IIε ≃

∫

R

(w0)′(z)V ′(x− z)dz = (w0 ∗ V ′′)(x) =
1

2
Lw0(x) =:

l

2
.

This shows in particular that, because of the slow decay of the interactions V ′, the long range contri-
bution IIε is non zero in general.

Step 3 : The short range interactions and determination of the function g
Assume that for |j − i| < Rε and |t− t0| ≪

1
ε
, the following quantity is bounded:

|xj(t) − xi(t0) − v(t− t0) − (j − i)/ρ| ≤ C

where v is the mean velocity of the particules xj , and ρ = (w0)′(xi(t0)) is the mean density of particules.
A way to guess the correct velocity v is to consider equation (4.1) with σ replaced by σ + l

2 (because

of the long range contribution IIε ≃ l
2 ), and to look for particular solutions:

xj(t) = h(vt+ j/ρ) with h(a+ 1) = 1 + h(a) for all a ∈ R.

The function h is called the hull function. Both h and the constant v have to be determined. It can
be shown that v is unique. Then we set

g(ρ, l) = −vρ

which is known in physics as the Orowan’s law.
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6 Conclusion

We considered a two-dimensional Frenkel-Kontorova model in the fully overdamped regime. From this
model, we derived by a scaling argument the time-dependent Peierls-Nabarro model. Looking at the
sharp interface limit of the phase transitions of the Peierls-Nabarro model, we were able to identify a
dynamics of particles that corresponds to the classical discrete dislocation dynamics, in the particular
case of parallel straight edge dislocation lines in the same glide plane with the same Burgers vector.
Considering the motion of these particles in a landscape with periodic obstacles, we were able to
identify at large scale an evolution model for the dynamics of a density of dislocations. This model is a
macroscopic model for crystal visco-elasto-plasticity, where we predicted a plastic flow rule. This last
model shows in particular a threshold effect where dislocations can be pinned in the obstacles, if the
effective stress acting on these dislocations is too small.

In order to present a summary of our approach, we give here a diagram (see Figure 6.1) that shows
the links between the four models treated in this paper. Up to our knowledge, this derivation of classical
models from a single microscopic model (the 2D Frenkel-Kontorova model), seems new and allows to
make clear connections between different modelling of dislocation dynamics.
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2D Frenkel-Kontorova (FK)





0 =
∑

J∈Z2, |J|=1

(UX+J (t) − UX(t)) for X = (X1, X2) with X2 ∈ N\ {0}

d

dt
UX(t) = ε1ε2σ(ε1ε2X1) −

ε1
2

(W ε1)′(2UX(t)) + I1[UX(t)] for X2 = 0

where I1[UX(t)] =
∑

J∈Z2,|J|=1, J2≥0

UX+J(t) − UX(t)

ε1
↓
0

wwwwwwww�

uε1(X, t) = 2U X

ε1

(
t
ε1

)
→ u0(X, t), as ε1 → 0

W ε1 →W, as ε1 → 0
v(X1, t) = u0(X1, X2, t)|X2=0; x = X1

Peierls-Nabarro (PN)

vt(x, t) = 2ε2σ(ε2x) −W ′(v(x, t)) + Lv(x, t)

ε2
↓
0

wwwwwwwwww�

vε2(x, t) = v
(

x
ε2

, t
ε2

2

)
→ v0(x, t), as ε2 → 0

v0(x, t) =
∑

i=1,··· ,N

H(x− xi(t))

Dynamics of Discrete Dislocations (DDD)

ẋi(t) = −γ


σ(xi) −

1

2π

∑

i6=j

1

xi(t) − xj(t)


 for i = 1, · · · , N

ε3
↓
0

wwwwwwww�

wε3 (x, t) = ε3v
0
(

x
ε3

, t
ε3

)
→ w0(x, t), as ε3 → 0

σ(x + 1) = σ(x)

Dislocations Density (DD)

w0
t = g(w0

x, Lw
0)

Fig. 6.1. Descriptive diagram summarizing the links between the four models
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