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Abstract

We study an implicit and discontinuous scheme for a non-local Hamilton-Jacobi equation modelling dislocation

dynamics. For the evolution problem, we prove an a posteriori estimate of Crandall-Lions type for the error between

continuous and discrete solutions. We deduce an a posteriori error estimate for the effective Hamiltonian associated

to a stationary cell problem. In dimension one and under suitable assumptions, we also give improved a posteriori

estimates. Numerical simulations are provided.
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1 Introduction

In this paper, we are interested in a first order non-local Hamilton-Jacobi equation describing dislocation
dynamics. For general references on dislocation theory, we refer for instance the reader to [13] and the book
[18]. The model studied in the present paper has been introduced in [15] where the periodic homogenization of
such equation has been obtained. To this end an effective Hamiltonian has been defined and was interpreted
as a visco-plastic law in mechanics (see also [19] for a section on the mechanical interpretation). Therefore
the numerical computation of this effective Hamiltonian is of particular importance and is the main subject
of the present work. In this paper, we will define a numerical scheme for which we will show a posteriori error
estimates on the effective Hamiltonian. These a posteriori error estimates will be illustrated by numerical
simulations.

1.1 The continuous cell problem

To be precise, for any p ∈ RN and any function u : RN → R satisfying

(1.1) x 7→ u(x) − p · x is bounded and ZN -periodic ,

we consider the following non-local operator:

Mp[u](x) :=

∫

RN

J (z)
{

E
(
u(x + z) − u(x)

)
− p · z

}

dz ,

which describes the force acting on dislocations, represented by the level sets of the function u. Here the
function E : R → R is the following odd modification of the integer part:

(1.2) E(α) =

{
k if α = k ∈ Z

k +
1

2
if k < α < k + 1 with k ∈ Z
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and the kernel J satisfies

(1.3)







J ∈ W 1,1(RN ), and J (−z) = J (z) ≥ 0 for all z ∈ RN

∃R0 > 0 and ∃g ∈ C0(SN−1), such that J (z) =
g(z/|z|)
|z|N+1

> 0 for |z| ≥ R0 .

The fact that the kernel is nonnegative is essential to recover good properties of the non-local operator Mp

and to finally work in the framework of viscosity solutions (see [20] for a viscosity framework with more
general kernels). The second line of (1.3) precises the behaviour of the kernel whose slow decay at infinity
is related to the long range interactions between dislocations. The function g allows to consider anisotropic
kernels.

We also introduce a periodic function c0 : RN → R which satisfies precisely

(1.4) c0 ∈ W 1,∞(RN ) and c0(x + k) = c0(x) for all x ∈ RN , k ∈ ZN

and define the non-local velocity by

(1.5) c[u] = c0 + Mp[u] .

Then we consider the following continuous cell problem:

(1.6) λ = |∇u| c[u] on RN ,

where λ ∈ R is a constant which is called the effective Hamiltonian. Equation (1.6) has to be understood in
a viscosity sense that will be precised in Section 2.1. Then we have the following result which is a corollary
of [15] (see later Section 3.1).

Theorem 1.1 (Existence and uniqueness of λ)
Under assumptions (1.3)-(1.4), for any p ∈ RN , there exists a unique λ ∈ R such that there exists a function
u satisfying (1.1) which is a viscosity solution of (1.6).

Recall that in general there is no uniqueness of the solution u and also that u could be discontinuous.

1.2 The discrete cell problem

We now introduce a discretization step in space ∆x > 0 with
1

∆x
∈ N and nodes xI = (i1∆x, ..., iN∆x) for

I = (i1, ..., iN ) ∈ ZN . We assume that

u(xI) is approximated by vI ,

where the function v : ZN → R satisfies

(1.7) I 7→ vI − p · xI is bounded and
(

1
∆xZ

)N
-periodic .

We then introduce a scheme such that

(|∇u| c[u])(xI) is approximated by RI [v] .

This scheme is presented in details in Section 2.2 and is strongly inspired from [14]. Then the discrete cell
problem is the following

(1.8) λd = R[v] on ZN ,

where λd ∈ R is a constant (the superscript d beeing here to recall that this is the discrete problem). Again,
equation (1.8) has to be understood in the sense of viscosity solution for the scheme (see Definition 2.2).
Because of the discontinuity of the scheme, related to the discontinuity of the function E, the λd can be non
unique (see Remark 2.5) and even the existence of a solution v to (1.8) for some constant λd is not known.
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1.3 Main results

For the applications that we have in mind, namely the study of the homogenization of dislocation dynamics,
it is important to compute numerically a good approximation of the effective Hamiltonian λ in equation
(1.6). To this end, we consider approximate solutions of the discrete cell problem (1.8), and the goal of this
paper is to provide some a posteriori error estimates between any discrete effective Hamiltonian and the con-
tinuous effective Hamiltonian λ. Concerning the effective Hamiltonian for local Hamilton-Jacobi equations,
we refer the reader to [1],[8],[17],[22],[25] for error estimates and numerical computations; see also [2],[3] for
a posteriori error estimates.

We start with the following definition.

Definition 1.2 (λd
v and λ

d

v)
Let us consider a function v : ZN → R satisfying condition (1.7). We call λd

v the maximal λd such that

λd ≤ R[v]

and we call λ
d

v the minimal λd such that
λd ≥ R[v] ,

where the inequalities are meant in the sense of viscosity for the scheme (see Definition 2.2).

Our first result is the following a posteriori Crandall-Lions type error estimate:

Theorem 1.3 (A posteriori O(
√

∆x) error estimate)
Under assumptions (1.3)-(1.4), let us consider a function v : ZN → R satisfying condition (1.7). Then there
exists a constant Cv, only depending on v, such that

λd
v − λ ≤ Cv

√
∆x and λ − λ

d

v ≤ Cv

√
∆x .

The constant Cv can be computed explicitly from Theorem 4.6 and Remark 4.7.
We refer the reader to the pioneering work of Crandall and Lions [10] for Hamilton-Jacobi equations and
also [4],[5],[12] for other similar estimates on different equations.

In dimension N = 1, we can get a better error estimate under suitable assumptions. Let us first replace
the index I ∈ ZN by i ∈ Z to distinguish the special case of dimension one.

Assumption (A)

i) There exists some constants l0, L0 such that 0 < l0 ≤ vi+1 − vi

∆x
≤ L0 for all i ∈ Z

ii) λd
v ≥ 0

iii)
(

1 +
L0

l0

)

∆x ≤ 1

2L0
iv) There exists a constant CJ such that the kernel J satisfies

J (z) ≤ CJ /z2 for all z ∈ R .

Then we have the following result.

Theorem 1.4 (A posteriori O(∆x) error estimate in 1D)
Under assumptions (1.3)-(1.4), let us consider a function v : Z → R satisfying condition (1.7) and assump-
tion (A). Then we have the following error estimate

λd
v − λ ≤ Kv∆x ,

with

Kv = L0

{

Lip(c0) +
4

3
π2 CJ L2

0

(

1 +
L0

l0

)}

.
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Another estimate can be obtained also for λ
d

v (see Theorem 5.1 for a precise statement).

The next natural question is: how to find a good candidate for v in order to get a good approximation
of λ ? To answer to this question in any dimension N ≥ 1, we recall that the effective Hamiltonian λ for the
continuous cell problem was constructed in [15] using the long time behaviour of the solution to the Cauchy
problem (see (3.1)). Here a natural strategy is then to consider an implicit scheme for the discrete time
evolution with the time step ∆t > 0:

(1.9)







vn+1
I − vn

I

∆t
= RI [v

n+1] and vn+1 satisfies (1.7) for n ≥ 0 ,

v0
I = p · xI .

We have used an implicit scheme, instead of an explicit one, in order to be able to get an error estimate
between any solution of the scheme and the solution of the corresponding partial differential equation. This
fact was already remarked in [14]. The scheme (1.9) is not monotone, which means that a sub-solution
may be above a super-solution at some points (see Definition 3.4 and Remark 3.5). This lack of comparison
principle is due to the discontinuities in the definition of the scheme. In particular, there is no uniqueness
of the solution to the scheme. Nevertheless we have the following result.

Theorem 1.5 (Minimal and maximal solutions for the time-evolution scheme)
Under assumptions (1.3)-(1.4), the scheme (1.9) enjoys the following properties:

i) there exists a minimal solution v = (vn
I ) and a maximal solution v = (vn

I ) such that every solution
v = (vn

I ) satisfies
v ≤ v ≤ v .

ii) there exists a solution v such that the discrete time derivatives

µn = inf
I∈Z

(
vn

I − vn−1
I

∆t

)

and µn = sup
I∈Z

(
vn

I − vn−1
I

∆t

)

, n ≥ 1

satisfy the following monotonicity property:

µn ≤ µn+1 ≤ µn+1 ≤ µn , n ≥ 1.

Remark 1.6 (Application to the improvement of the approximation of the effective Hamilto-
nian)
By definition we have

µn ≤ λd
vn ≤ R[vn] and µn ≥ λ

d

vn ≥ R[vn] .

From Theorem 1.5, we see that the gap µn−µn is a non-increasing function of n, and then the time evolution
scheme provides a method to improve our numerical approximation of the effective Hamiltonian (using the
error estimates given in Theorem 1.3 or Theorem 1.4).

1.4 Organization of the paper

The paper is organized as follows. In Section 2 we recall the notion of viscosity solutions for the cell problem,
we introduce the corresponding numerical scheme and prove some properties it satisfies. Section 3 is devoted
to the continuous evolution problem and its discrete version; we give in particular a sketch of the proof of
Theorem 1.1. In Section 4 we prove an error estimate of Crandall-Lions type for the evolution problem and
we deduce an a posteriori estimate for the cell problem (Theorem 1.3), while in Section 5 we improve the
result in the one-dimensional case (Theorem 1.4). Section 6 concerns the numerical scheme for the evolution
problem, we prove an existence result of discrete solutions and show how to contruct extremal solutions
in practice (Theorem 1.5). Finally, in Section 7, we present some numerical simulations in one and two
dimensions.
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2 Viscosity solutions for the stationary problems

2.1 Viscosity solutions for the stationary PDE

We adopt the notion of viscosity solution for non-local Hamilton-Jacobi equations introduced by Slepčev in
[24] and then adapted to equation (1.6) in [15].

To this end we consider the upper and lower semicontinuous envelopes of the integer part E in (1.2),
respectively

E∗(α) = k +
1

2
if k ≤ α < k + 1, k ∈ Z ,

E∗(α) = k +
1

2
if k < α ≤ k + 1, k ∈ Z .

For a function u : RN → R satisfying (1.1), we define the corresponding non-local velocities c∗[u] and c∗[u]
as follows:

(2.1) c∗[u](x) = c0(x) +

∫

RN

J (z)
{

E∗
(
u(x + z) − u(x)

)
− p · z

}

dz

and

(2.2) c∗[u](x) = c0(x) +

∫

RN

J (z)
{

E∗

(
u(x + z) − u(x)

)
− p · z

}

dz .

We also denote by u∗ and u∗ the upper and lower semicontinuous envelopes of u, respectively. We give the
definition of viscosity solution for the cell problem (1.6).

Definition 2.1 (Viscosity solution for the stationary PDE)
We consider a function u : RN → R satisfying (1.1). We say that u is a viscosity sub-solution of (1.6) if
u is upper semicontinuous and if for all x0 ∈ RN and for all test functions ϕ ∈ C1(RN ) such that u − ϕ
attains a local maximum at x0 , then we have

(2.3) λ ≤ |∇ϕ(x0)| c∗[u](x0) .

Analogously we say that u is a viscosity super-solution of (1.6) if u is lower semicontinuous and if for all
x0 ∈ RN and for all test functions ϕ ∈ C1(RN ) such that u−ϕ attains a local minimum at x0 , then we have

(2.4) λ ≥ |∇ϕ(x0)| c∗[u](x0) .

Then we say that u is a viscosity solution of (1.6) if u∗ is a viscosity sub-solution and u∗ is a viscosity
super-solution.

2.2 Viscosity solutions for the stationary scheme

In this subsection, we introduce the numerical scheme for which we define the notion of viscosity solution.
We consider a grid which is uniform in each dimension, i.e. we choose a discretization step in space ∆x

with 1
∆x ∈ N and nodes xI = (i1∆x, ..., iN∆x), where I = (i1, ..., iN ) ∈ ZN . For every discrete function

v : ZN → R we denote by v♯ its piecewise constant extension to RN , given by

(2.5) v♯(x) =
∑

I∈ZN

vIχQI
(x) ,

with
QI = [xi1 − ∆x/2, xi1 + ∆x/2) × ... × [xiN

− ∆x/2, xiN
+ ∆x/2) .

By an abuse of notation, we also denote vI by v(xI).

Discretization of the non-local velocity
When v satisfies (1.7), we discretize the non-local velocity c[·] = c0 + Mp[·] as follows. For all I ∈ ZN , we
define the discrete velocities

(2.6) (c∗)d
I [v] := c∗[v♯](xI) and (c∗)

d
I [v] := c∗[v♯](xI) .
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Discretization of the gradient
On the other hand we approximate the gradients of discrete functions by considering the standard forward
and backward first order differences:

D+
k v(xI) =

v(xI+ek
) − v(xI)

∆x
, D−

k v(xI) =
v(xI) − v(xI−ek

)

∆x
, k = 1, ..., N ,

where I ± ek = (i1, ..., ik−1, ik ± 1, ik+1, ..., iN ) and

DvI = (D+vI ,D
−vI) with D±vI =

(

D±
1 v(xI), ...,D

±
Nv(xI)

)

.

For all S = (P,Q) ∈ RN × RN , let us consider the following Osher, Sethian [21] discretization of the
modulus of the gradient in an upwind fashion (see also [23] for a different discretization)

G+(S) =
( N∑

i=1

(max{Pi, 0})2 +
N∑

i=1

(min{Qi, 0})2
) 1

2

,

G−(S) =
( N∑

i=1

(min{Pi, 0})2 +

N∑

i=1

(max{Qi, 0})2
) 1

2

and for any velocity c ∈ R, let us define the following continuous function:

R(c, S) :=

{
c G+(S) if c ≥ 0
c G−(S) if c < 0

Then we introduce the following notion of viscosity solution.

Definition 2.2 (Viscosity solution for the stationary scheme)
Let v : ZN → R be a function satisfting (1.7). We say that v is a sub-solution of (1.8) if for all I ∈ ZN we
have

λd ≤ R((c∗)d
I [v],DvI) =: R∗

I [v] .

We say that v is a super-solution of (1.8) if for all I ∈ ZN we have

λd ≥ R((c∗)
d
I [v],DvI) =: (R∗)I [v] .

Then we say that v is a solution of (1.8) if and only if it is a sub and a super solution.

Remark 2.3 The terminology of viscosity solutions may sound strange in the context of discrete schemes.
See the proof of Theorem 4.3 step 4 for a justification.

Remark 2.4 (Notation)
When v is a sub-solution of (1.8), we also write:

λd ≤ R[v] ,

while when v is a super-solution of (1.8), we also write:

λd ≥ R[v] .

Those notations are used in Definition 1.2 and provide in particular a definition of a viscosity solution of
equation (1.8).

Remark 2.5 (Non uniqueness of λd)
In contrast with the continuous setting, the discrete effective Hamiltonian λd is non unique in general, since
the operators R∗ and R∗ are not the same. We now give such an example.
In dimension N = 1 choose a kernel J such that J (z) > 0 for every z ∈ R, take c0 = 0 and vi = p i∆x with
0 < p∆x ∈ Q. It follows that

(c∗)d
i [v] ≡ const =: C∗ , (c∗)

d
i [v] ≡ const =: C∗ for all i ∈ Z
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and C∗ > C∗. Moreover
∣
∣
∣
vi+1 − vi

∆x

∣
∣
∣ = p. Then, by setting

λd = pC∗ and λ
d

= pC∗ ,

we conclude that
(R∗)i[v] = λ

d
< λd = R∗

i [v] , for all i ∈ Z ,

i.e., the pairs (λ
d
, v) and (λd, v) are two different solutions of the cell problem (1.8).

Our scheme (1.9) is almost monotone, with the meaning that the operators R∗ and R∗ are monotone as
it is stated in the following lemma.

Lemma 2.6 (Monotonicity of R∗ and R∗)
Let v, w be two discrete functions and suppose that

(2.7) vJ ≤ wJ for all J ∈ ZN .

If there exists some index I ∈ ZN such that vI = wI , then we have

R∗
I [v] ≤ R∗

I [w] and (R∗)I [v] ≤ (R∗)I [w] .

Remark 2.7 The scheme (1.9) is not truely monotone, because (2.7) and vI = wI do not imply R∗
I [v] ≤

(R∗)I [w].

Proof of Lemma 2.6.
We restrict the proof to R∗, since it is the same for R∗. We first remark that (c∗)d

I [v] ≤ (c∗)d
I [w]. In fact, by

definition we get

(2.8) (c∗)d
I [w] − (c∗)d

I [v] =
∑

J∈ZN

( ∫

QJ

J (z) dz
) {

E∗
(
wI+J − wI

)
− E∗

(
vI+J − vI

)}

.

By assumption (2.7) we have
wI+J − wI = wI+J − vI ≥ vI+J − vI .

Since the kernel J is non negative and the function E∗ is non decreasing, we conclude that the right hand
side in (2.8) is non negative.

We now consider three cases, depending on the signs of (c∗)d
I [v] and (c∗)d

I [w]:

i) (c∗)d
I [v] ≤ 0 ≤ (c∗)d

I [w]. In this case the result follows trivially by the fact that the function G± is
non negative.

ii) 0 ≤ (c∗)d
I [v] ≤ (c∗)d

I [w]. In this case we have

R∗
I [v] = (c∗)d

I [v] G+(DvI) and R∗
I [w] = (c∗)d

I [w] G+(DwI) .

By assumption (2.7) we get

D+
k vI ≤ D+

k wI and D−
k vI ≥ D−

k wI for k = 1, ..., N

and then

max{D+
k vI , 0}2 ≤ max{D+

k wI , 0}2 and min{D−
k vI , 0}2 ≤ min{D−

k wI , 0}2 .

It follows that G+(DvI) ≤ G+(DwI) and this implies the result.

iii) (c∗)d
I [v] ≤ (c∗)d

I [w] ≤ 0. We have

R∗
I [v] = (c∗)d

I [v] G−(DvI) and R∗
I [w] = (c∗)d

I [w] G−(DwI)

and following the reasoning of step (ii), we obtain G−(DvI) ≥ G−(DwI), which implies the result.

The proof is complete. �
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3 Viscosity solutions for the time evolution problems

In this section we recall the definition of viscosity solutions for the time evolution problems.

3.1 Viscosity solutions for the time evolution PDE

With the definition of the velocity c[·] given in (1.5), we now consider solutions u of

(3.1)







ut = |∇u| c[u(·, t)] in RN × (0,+∞) ,

u(·, t) satisfies (1.1) for all t > 0

u(x, 0) = u0(x) for all x ∈ RN .

where the initial data u0 satisfies (1.1) and is globally Lipschitz-continuous on RN .

We recall that c∗[·] and c∗[·] are respectively defined in (2.1) and (2.2). Then we recall the following
definition which was introduced in [15].

Definition 3.1 (Viscosity solutions for the time evolution PDE)
Let u : RN × R+ → R be a function such that u(t, ·) satisfies (1.1) for all t > 0.
We say that u is a viscosity sub-solution of (3.1) if u is upper semicontinuous and satisfies

• u(x, 0) ≤ u0(x) for all x ∈ RN ;

• for all (x0, t0) ∈ RN × (0,+∞) and for all test functions ϕ ∈ C1(RN × (0,+∞)) such that u−ϕ attains
a local maximum at (x0, t0) , then we have

(3.2) ϕt(x0, t0) ≤ |∇xϕ(x0, t0)| c∗[u(·, t0)](x0) .

Analogously we say that u : RN ×R+ → R is a viscosity super-solution of (3.1) if u is lower semicontinuous
and

• u(x, 0) ≥ u0(x) for all x ∈ RN ;

• for all (x0, t0) ∈ RN × (0,+∞) and for all test functions ϕ ∈ C1(RN × (0,+∞)) such that u−ϕ attains
a local minimum at (x0, t0) , then we have

(3.3) ϕt((x0, t0) ≥ |∇xϕ(x0, t0)| c∗[u(·, t0)](x0) .

Then we say that u is a viscosity solution of (3.1) if u∗ is a viscosity sub-solution and u∗ is a viscosity
super-solution.

In the sequel we will need the following results (see [15] for details).

Theorem 3.2 (Comparison Principle) Let u−, u+ be respectively a sub-solution and a super-solution of
(3.1). Then u−(x, t) ≤ u+(x, t) for all (x, t) ∈ RN × (0,+∞).

The main idea is that there is a comparison principle for the non-linear non-local right hand side of (3.1),
essentially because the instability created by the discontinuity of the integer part E is somehow compensated
by the vanishing of the gradient at the same points (see the proofs of the comparison principle in [15],[7],[11]).

Theorem 3.3 (Existence-Uniqueness) For any p ∈ RN there exists a unique continuous viscosity solu-
tion u of the evolution problem (3.1). Moreover there exist two constants λ ∈ R and C > 0 such that

|u(x, t) − p · x − λ t| ≤ C , for x ∈ RN , t ≥ 0 .

Now we give a sketch of the proof of Theorem 1.1, concerning the existence and uniqueness of the effective
Hamiltonian.

Sketch of the proof of Theorem 1.1.
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Step 1: Stability of viscosity solutions
Let u be the unique continuous viscosity solution of (3.1) given by Theorem 3.3, such that

|u(x, t) − p · x − λ t| ≤ C , for x ∈ RN , t ≥ 0 ,

for some λ ∈ R and C > 0. We define for all x ∈ RN and t ∈ R

u(x, t) = lim sup
n→+∞

(y,s)→(x,t)

(
u(y, s + n) − p · y − λn

)
+ p · x

and
u(x, t) = lim inf

n→+∞
(y,s)→(x,t)

(
u(y, s + n) − p · y − λn

)
+ p · x .

By stability of viscosity solutions (see Proposition 4.2 in [15]) it follows that u, u are respectively a sub-
solution and a super-solution of (3.1). Moreover we have

|u(x, t) − p · x − λ t| ≤ C and |u(x, t) − p · x − λ t| ≤ C , for x ∈ RN , t ∈ R .

Step 2: Existence of a solution of the cell problem
Define

u(x) = lim sup
y→x
t∈R

(
u(y, t) − λ t

)
and u(x) = lim inf

y→x
t∈R

(
u(y, t) − λ t

)
.

It is possible to prove that u, u are respectively a sub-solution and a super-solution of the cell problem (1.6)
corresponding to λ. Moreover

|u(x) − p · x| ≤ C and |u(x) − p · x| ≤ C , for x ∈ RN ,

which implies
ũ := u − 2C ≤ u .

Since the cell problem is invariant with respect to the addition of constants, it follows that ũ is still a
sub-solution. Then, by applying the Perron’s method, we conclude that there exists a solution U of (1.6),
satisfying (1.1) and such that

ũ ≤ U ≤ u and |U(x) − p · x| ≤ 3C .

Step 3: Uniqueness of λ
By contradiction assume that (λ1, U1) and (λ2, U2) are two solutions of the cell problem (1.6), with λ1 < λ2

and
|U1(x) − p · x| ≤ C0 , |U2(x) − p · x| ≤ C0 , for some constant C0 > 0 .

Now define
u1(x, t) = U1(x) + λ1 t + 2C0 and u2(x, t) = U2(x) + λ2 t .

It follows that u1 and u2 are two viscosity solutions of the equation (3.1) with u1(·, 0) ≥ u2(·, 0). Then, by
comparision principle (Theorem 3.2), we get u1(x, t) ≥ u2(x, t) for all x ∈ RN and t ≥ 0, i.e.,

U1(x) + λ1 t + 2C0 ≥ U2(x) + λ2 t .

Dividing by t and taking the limit as t goes to infinity, we conclude that λ1 ≥ λ2, which is absurd. The
proof is complete. �

3.2 Viscosity solutions for the time evolution scheme

We consider solutions of the time evolution scheme

(3.4)







vn+1
I − vn

I

∆t
= RI [v

n+1] , I ∈ ZN , n ∈ N

vn+1 satisfies (1.7) for n ∈ N ,

v0
I = (v0)I , I ∈ ZN ,

where the initial data v0 is assumed to satisfy (1.7). We recall that the operators R∗ and R∗ are defined in
Definition 2.2.
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Definition 3.4 (Viscosity solutions for the time evolution scheme)
Let us consider a function v : ZN × N → R such that vn satisfies (1.7) for every n ∈ N. We say that v is a
sub-solution of (3.4) if for all I ∈ ZN and n ∈ N we have

vn+1
I − vn

I

∆t
≤ R∗

I [v
n+1] .

We say that v is a super-solution of (3.4) if for all I ∈ ZN and n ∈ N we have

vn+1
I − vn

I

∆t
≥ (R∗)I [v

n+1] .

Then we say that v is a solution of (3.4) if and only if it is a sub and a super solution.

Remark 3.5 (No comparison principle for the time evolution scheme)
With the same assumptions of Remark 2.5 just define

vn
i = vi + λdn∆t and vn

i = vi + λ
d
n∆t .

It follows that v, v are respectively a sub-solution and a super-solution of the scheme (3.4) with initial datum
v0 = v. In particular they coincide for n = 0, but vn > vn for all n ≥ 1, i.e., in contrast with the continuous
setting, the comparison principle does not hold for the scheme. This is due to the fact that the instability of
the discontinuity of the integer part E can not be here compensated by the vanishing of the gradient, because
the discrete gradient can be non zero at the same points.

4 Crandall-Lions type error estimates

This section is devoted to one of the main results of this paper: we first prove an error estimate of Crandall-
Lions type between the viscosity solution for the continuous evolution problem (3.1) and the discrete solutions
of the scheme (3.4). Then we apply such estimate to obtain an analogous error estimate between the effective
Hamiltonian of the cell problem (1.6) and the discrete solutions of the corresponding scheme (1.8).

4.1 Estimate for the time evolution problem

We start with some preliminary results, in particular we prove the existence of barriers for both the continuous
and the discrete evolution problem.

Proposition 4.1 (Continuous barriers)
Let u0(x) = ũ0(x)+p ·x, where ũ0 is a Lipschitz continuous and ZN -periodic function. Let Cu0

be a constant
such that

(4.1) Cu0
≥ max

{
‖c∗[u0]‖∞ , ‖c∗[u0]‖∞

})

‖∇u0‖∞

and define
u±(x, t) = u0(x) ± Cu0

t , for all (x, t) ∈ RN × (0,+∞) .

Then the unique viscosity solution u of (3.1) with initial datum u0 satisfies

u−(x, t) ≤ u(x, t) ≤ u+(x, t) , for all (x, t) ∈ RN × (0,+∞) .

Proof.
It is easy to see that u−, u+ are respectively a sub-solution and a super-solution of (3.1). Then we conclude
by applying the comparison principle (Theorem 3.2) to u, u+ and u−, u. �

Proposition 4.2 (Discrete barriers)
Let v0 satisfying (1.7). Let Cv0

be a constant such that

(4.2) Cv0
≥ max

{

‖R∗[v0]‖∞ , ‖R∗[v0]‖∞
}

10



and define
(v±)n

I = (v0)I ± Cv0
n∆t , for all I ∈ ZN , n ∈ N .

Then every solution v of the scheme (3.4), with initial datum v0 satisfies

(v−)n
I ≤ vn

I ≤ (v+)n
I for all I ∈ ZN , n ∈ N .

Proof.
We restrict the proof to the case of sub-solutions, since it is similar for super-solutions. Let v be a sub-solution
of the scheme, i.e.,







vn
I − vn−1

I

∆t
≤ R∗

I [v
n] , I ∈ ZN , n ∈ N \ {0}

v0
I = (v0)I , I ∈ ZN ,

We want to prove by induction that vn
I ≤ (v+)n

I for every n ∈ N. The case n = 0 is trivial, since v0
I =

(v0)I = (v+)0I by definition. Now let n ∈ N and suppose that vk
I ≤ (v+)k

I for all k = 0, ..., n − 1.
We set

M = sup
I∈ZN

(

vn
I − (v+)n

I

)

= vn
I0

− (v+)n
I0

,

where the supremum M is achieved at a point I0 ∈ ZN since both v and v+ are of the form periodic plus
linear with the same slope p. Then we have vn

I − M ≤ (v+)n
I for all I ∈ ZN and vn

I0
− M = (v+)n

I0
. By

Lemma 2.6 it follows that
R∗

I0
[vn − M ] ≤ R∗

I0
[(v+)n] .

Then by the invariance of R∗ with respect to the addition of constants, we obtain

vn
I0

− vn−1
I0

∆t
≤ R∗

I0
[vn] = R∗

I0
[vn − M ] ≤ R∗

I0
[(v+)n] = R∗

I0
[v0] ≤ Cv0

and this, together with the inductive assumption, implies

vn
I0

≤ vn−1
I0

+ ∆t Cv0
≤ (v+)n−1

I0
+ ∆t Cv0

= (v+)n
I0

.

We conclude that
M = sup

I∈ZN

(

vn
I − (v+)n

I

)

≤ 0

and then
vn

I ≤ (v+)n
I for all I ∈ ZN .

The proof is complete. �

Given a discrete function v : ZN × N → R we denote by v♯ its piecewise constant extension in space
and time to RN × (0,+∞), i.e., with a little abuse of notation in comparison to (2.5),

v♯(x, t) =
∑

I∈ZN , n∈N

vn
I χQI×[tn,tn+1)(x, t) ,

with tn = n∆t. We also adopt the following notation: for T > 0,

(4.3) G∆x(v♯) = sup
|x−y|≥∆x

t∈{0,...,tnT
}

|v♯(x, t) − v♯(y, t)|
|x − y| ,

where nT is the highest integer such that nT ∆t ≤ T , and

(4.4) G∆t(v♯) = sup
|t−s|≥∆t

t,s∈{0,...,tnT
}

x∈R
N

|v♯(x, t) − v♯(x, s)|
|t − s| .
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Finally we introduce the following auxiliary velocities

(4.5) c̃∗[v♯, xI ](x, t) = c0(x) +

∫

RN

J (y − x)
{

E∗(v♯(y, t) − v♯(xI , t)) − p · (y − x)
}

dy ,

c̃∗[v♯, xI ](x, t) = c0(x) +

∫

RN

J (y − x)
{

E∗(v♯(y, t) − v♯(xI , t)) − p · (y − x)
}

dy

and define

(4.6) L(c̃∗[v♯]) = sup
I∈Z, t∈[0,T ]

Lip
(
c̃∗[v♯, xI ](·, t)

)
,

L(c̃∗[v♯]) = sup
I∈Z, t∈[0,T ]

Lip
(
c̃∗[v♯, xI ](·, t)

)
.

Now we can state the error estimate.

Theorem 4.3 (Crandall-Lions type error estimate)
Let N ≥ 1, T ≥ 1. Let u be a continuous sub-solution of (3.1) with Lipschitz initial datum u0 and v a
discrete super-solution of the scheme (3.4) with initial datum v0. There exists a positive constant Kv♯,u0,v0

,
which depends on u0, v0, v♯, N , p, ‖c0‖W 1,∞(RN ), ‖J ‖W 1, 1(RN ), such that the following error estimate holds:

(4.7) sup
RN×{0,...,tnT

}

(u − v♯) ≤ sup
RN

(u0 − (v0)♯) + Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

+ η∗ T ,

where tn = n∆t, nT is the highest integer such that nT ∆t ≤ T and

(4.8) η∗ = 2
√

2NG∆x(v♯)‖c∗[v♯]‖∞X
(

1 + X(1 +
√

N/2)
)2

,

with

X =

√

L(c̃∗[v♯]) ε

‖c∗[v♯]‖∞
√

N/2
, ε = ∆x +

∆t

‖c∗[v♯]‖∞
√

2N
.

To do the proof of Theorem 4.3, we will need the following result.

Lemma 4.4 (Viscosity inequality at time T )
Let u be a continuous sub-solution of equation (3.1) and take T > 0. For every test function ϕ ∈ C1(RN ×
(0,+∞)) such that

max
RN×[0,T ]

u − ϕ = u(x0, T ) − ϕ(x0, T ) for some x0 ∈ RN ,

the following viscosity inequality holds:

ϕt(x0, T ) ≤ |∇xϕ(x0, T )| c∗[u(·, T )](x0) .

Sketch of the proof.
The idea is to introduce the following perturbation of the test function ϕ,

ϕη(x, t) = ϕ(x, t) +
η

T − t
, η > 0 ,

which forces the difference u − ϕη to attain a local maximum at a point (xη, tη) such that tη < T and

(xη, tη)
η→0−→ (x0, T ). It follows that ϕη is a good test function for the viscosity inequality at (xη, tη), i.e.,

ϕη
t (xη, tη) ≤ |∇xϕη(xη, tη)| c∗[u(·, tη)](xη) .

We conclude by taking η → 0 and using the fact that (x, t) 7→ c∗[u(·, t)](x) is an upper-semicontinuous
function. �

Proof of Theorem 4.3.
We follow the method introduced by Crandall and Lions in [10] and then adapted in [5],[12]. One of the
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differences is that we get here a posteriori estimates instead of a priori estimates.

We first assume that

(4.9) u0(xI) ≥ (v0)♯(xI) for all I ∈ ZN

and define
µ0 = sup

RN

(u0 − (v0)♯) ≥ 0 .

We duplicate the variables by defining, for every γ > 0 and η ≥ 0,

Ψ ≡ Ψγ
η(x, t, y, s) = u(x, t) − v♯(y, s) − |x − y|2

2γ
− |t − s|2

2γ
− ηt

and we set
M = sup

{

Ψγ
η(x, t, y, s) : x, y ∈ RN , t ∈ [0, T ], s ∈ {0, ..., tnT

}
}

.

We remark that the supremum M is achieved at a point (x, t, y, s) ∈ RN × [0, T ] × RN × {0, ..., tnT
} since

both x 7→ u(x, t) − p · x and x 7→ v♯(x, t) − p · x are ZN -periodic by assumption.

The proof is splitted in several steps.

Step 1: estimates on u and v♯

By Proposition 4.1 the sub-solution u satisfies

(4.10) u(x, t) − u0(x) ≤ Cu0
t for all x ∈ RN and t ∈ [0, T ] ,

where the constant Cu0
is given by (4.1).

Similarly by Proposition 4.2 the super-solution v satisfies

(4.11) (v0)♯(y) − v♯(y, s) ≤ Cv0
s for all y ∈ RN and s ∈ {0, ..., tnT

} .

where the constant Cv0
is given by (4.2).

Step 2: estimate of the maximum point of Ψ
We first look for an estimate of |x − y|. From the inequality Ψ(x, t, x, s) ≤ Ψ(x, t, y, s) we get

|x − y|2
2γ

≤ v♯(x, s) − v♯(y, s) .

If |x − y| ≥ ∆x we obtain
|x − y|2

2γ
≤ G∆x(v♯)|x − y| ,

with G∆x(v♯) given by (4.3). It follows that

(4.12) |x − y| ≤ 2G∆x(v♯)γ + ∆x .

Similarly we obtain an estimate of |t − s|. In fact, let t̃ be the projection of t on the time grid, namely the
point t̃ = ñ∆t, ñ ∈ N, such that |t̃ − t| ≤ ∆t. From the inequality Ψ(x, t, y, t̃) ≤ Ψ(x, t, y, s), we get

|t − s|2
2γ

≤ |t̃ − t|2
2γ

+ v♯(y, t̃) − v♯(y, s) ≤ |t̃ − t|2
2γ

+ G∆t(v♯)|t̃ − s| ≤ (∆t)2

2γ
+ G∆t(v♯)

(
|t − s| + ∆t

)
,

with G∆t(v♯) given by (4.4). If |t − s| ≥ 2∆t we obtain

|t − s|2
2γ

≤ 1

4

|t − s|2
2γ

+
3

2
G∆t(v♯)|t − s| ,

i.e.,
|t − s|2

2γ
≤ 2G∆t(v♯)|t − s| ,
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and then we conclude

(4.13) |t − s| ≤ 4G∆t(v♯)γ + 2∆t .

Now we claim that if η is big enough then t = 0 or s = 0. We proceed by contradiction and assume that
t > 0 and s > 0.

Step 3: the continuous viscosity inequality
We set

ϕ(x, t) = v♯(y, s) +
|x − y|2

2γ
+

|t − s|2
2γ

+ ηt .

Then u−ϕ achieves a maximum at the point (x, t) and u is a sub-solution of equation (3.1). It follows that

ϕt(x, t) ≤ c∗[u](x, t)|∇ϕ(x, t)| ,

where we denote c∗[u(·, t)](x) by c∗[u](x, t) in order to simplify the presentation. Then we obtain

(4.14) η +
t − s

γ
≤ c∗[u](x, t)

|x − y|
γ

.

We remark here a crucial point: if the maximum of u − ϕ is achieved at the final time t = T , in general
it is not a local maximum, since it is not excluded that u is above ϕ for t > T . Nevertheless the viscosity
inequality (4.14) still holds by Lemma 4.4.

Step 4: the discrete viscosity inequality
Let yI be the grid point such that y ∈ QI and n ∈ N such that s = n∆t. For every y ∈ RN and s ≥ s − ∆t
we set

ϕ(y, s) = −|x − y|2
2γ

− |t − s|2
2γ

.

From the inequality Ψ(x, t, y, s) ≤ Ψ(x, t, y, s) we get

v♯(y, s) − v♯(y, s) ≤ ϕ(y, s) − ϕ(y, s) .

Since v♯ is the piecewise constant extension of a super-solution v of the scheme (3.4), for y = y and s = s−∆t
we have

ϕ(y, s) − ϕ(y, s − ∆t)

∆t
≥ v♯(yI , n∆t) − v♯(yI , (n − 1)∆t)

∆t
=

=
vn

I − vn−1
I

∆t
≥ (R∗)I [v

n] .

Moreover for y± = y ± ek∆x, s = s and k = 1, ..., N it follows that

D+
k vn

I ≥ D+
k ϕ(y, s) :=

ϕ(y+, s) − ϕ(y, s)

∆x

D−
k vn

I ≤ D−
k ϕ(y, s) :=

ϕ(y, s) − ϕ(y−, s)

∆x

=⇒
G+(Dvn

I ) ≥ G+(Dϕ(y, s))

G−(Dvn
I ) ≤ G−(Dϕ(y, s))

where

Dϕ(y, s) =
(
D+ϕ(y, s),D−ϕ(y, s)

)
with D±ϕ(y, s) =

(
D±

1 ϕ(y, s), ...,D±
Nϕ(y, s)

)
.

Then
ϕ(y, s) − ϕ(y, s − ∆t)

∆t
≥ c∗[v♯](yI , s)Gs[v♯](Dϕ(y, s)) .

where s[v♯] = sign
(
c∗[v♯](yI , s)

)
. Finally we set

qx =
x − y

γ
, qt =

t − s

γ
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and by straightforward computations on discrete derivatives of ϕ we obtain

(4.15) qt +
∆t

2γ
≥ c∗[v♯](yI , s)Gs[v♯]

(

qx −
−→
∆x

2γ
, qx +

−→
∆x

2γ

)

,

with
−→
∆x = ∆x (1, ..., 1).

Step 5: subtracting the viscosity inequalities
From (4.14) and (4.15) we get

(4.16) η ≤ ∆t

2γ
+

(

c∗[u](x, t) − c∗[v♯](yI , s)
)

|qx| + |c∗[v♯](yI , s)|
∣
∣
∣Gs[v♯]

(

qx −
−→
∆x

2γ
, qx +

−→
∆x

2γ

)

− |qx|
∣
∣
∣ .

The latter term can be estimated as follows. Since |qx| = G±(qx, qx) and the discrete gradients G± are
1-Lipschitz continuous functions we have

(4.17) |c∗[v♯](yI , s)|
∣
∣
∣Gs[v♯]

(

qx −
−→
∆x

2γ
, qx +

−→
∆x

2γ

)

− |qx|
∣
∣
∣ ≤

√
2‖c∗[v♯]‖∞|

−→
∆x

2γ
| =

√

N

2
‖c∗[v♯]‖∞

∆x

γ
.

Step 6: estimate on the difference of the velocities when |x − y| 6= 0
From the inequality Ψ(y, t, y, s) ≤ Ψ(x, t, y, s) we get for every y ∈ RN

u(y, t) − u(x, t)
︸ ︷︷ ︸

α

≤ v♯(y, s) − v♯(y, s)
︸ ︷︷ ︸

β

− |x − y|2
2γ

︸ ︷︷ ︸

ε

.

By monotonicity of E∗ we have E∗(α) ≤ E∗(β − ε). Moreover E∗(β − ε) ≤ E∗(β), since ε > 0. Then, by
changing variables, we obtain

c∗[u](x, t) = c0(x) +

∫

RN

J (y − x)
{

E∗(u(y, t) − u(x, t)) − p · (y − x)
}

dy ≤

≤ c0(x) +

∫

RN

J (y − x)
{

E∗(v♯(y, s) − v♯(yI , s)) − p · (y − x)
}

dy

and

c∗[v♯](yI , s) = c0(yI) +

∫

RN

J (y − yI)
{

E∗(v♯(y, s) − v♯(yI , s)) − p · (y − yI)
}

dy .

By taking into account the auxiliary velocity c̃∗ defined in (4.5) and its Lipschitz constant L given by (4.6),
it follows that

(4.18) c∗[u](x, t) − c∗[v♯](yI , s) ≤ c̃∗[v♯, yI ](x, s) − c̃∗[v♯, yI ](yI , s) ≤

≤ Lip
(
c̃∗[v♯, yI ](·, s)

)
|x − yI | ≤ L(c̃∗[v♯])

(
|x − y| +

√
N∆x/2

)
.

Step 7: intermediate conclusion
By (4.16),(4.17),(4.18) and the estimate (4.12) we obtain

(4.19) η <
∆t

2γ
+

1

γ
L(c̃∗[v♯])

(

2G∆x(v♯)γ + (1 +
√

N/2)∆x
)2

+ ‖c∗[v♯]‖∞
√

N

2

∆x

γ
.

We set
KI

v♯
= 4(1 +

√
N/2)G∆x(v♯)L(c̃∗[v♯]) , KII

v♯
= 4

(
G∆x(v♯)

)2L(c̃∗[v♯]) ,

KIII

v♯
= ‖c∗[v♯]‖∞

√

N

2
, KIV

v♯
= (1 +

√
N/2)2L(c̃∗[v♯]) .

and we conclude that η < η, with

(4.20) η := KI

v♯
∆x + KII

v♯
γ +

1

γ

(∆t

2
+ KIII

v♯
∆x + KIV

v♯
∆x2

)

.
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If we choose η ≥ η, we obtain a contraddiction and then it is t = 0 or s = 0.

Step 8: bound on the error
In the case t = 0 we obtain

(4.21) M = max Ψ = Ψ(x, 0, y, s) ≤ u(x, 0) − v♯(y, s) ≤

≤ |u0(x) − u0(y)| + u0(y) − (v0)♯(y) + (v0)♯(y) − v♯(y, s) ≤
≤ ‖∇u0‖∞|x − y| + µ0 + Cv0

|t − s| ≤

≤ ‖∇u0‖∞
(
2G∆x(v♯)γ + ∆x

)

+ Cv0

(
4G∆t(v♯)γ + 2∆t

)
+ µ0

where we used (4.11) in the third line and (4.12),(4.13) in the fourth line.
Similarly, in the case s = 0 we obtain

(4.22) M = max Ψ = Ψ(x, t, y, 0) ≤ u(x, t) − v♯(y, 0) ≤

≤ u(x, t) − u(x, 0) + |u0(x) − u0(y)| + u0(y) − (v0)♯(y) ≤
≤ Cu0

|t − s| + ‖∇u0‖∞|x − y| + µ0 ≤
≤ Cu0

(
4G∆t(v♯)γ + 2∆t

)
+ ‖∇u0‖∞

(
2G∆x(v♯)γ + ∆x

)
+ µ0 .

where in the third line we used (4.10). Then from (4.21),(4.22) we get for some constants KV and KVI

(4.23) M = max Ψ ≤ µ0 + KV (∆x + ∆t) + KVI γ ,

which, together with (4.20), implies that for every x ∈ RN and s ∈ {0, ..., tnT
}

u(x, s) − v♯(x, s) − ηs = Ψ(x, s, x, s) ≤ M

i.e.

(4.24) u(x, s) − v♯(x, s) ≤ M + η T .

By choosing

γ =

√

KIII
v♯

KII
v♯

(

∆x +
∆t

2KIII
v♯

)

we get for some constant Kv♯,u0,v0

M ≤ µ0 + Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

and

η = KI

v♯
∆x + 2

√

KII
v♯

KIII
v♯

√

∆x +
∆t

2KIII
v♯

+ KIV

v♯

√

KII
v♯

KIII
v♯

√
√
√
√

∆x

∆x + ∆t
2KIII

v♯

∆x
3
2 ≤ η∗ ,

where η∗ is given by (4.8). Using (4.24) we conclude

(4.25) sup
RN×{0,...,tnT

}

(u − v♯) ≤ sup
RN

(u0 − (v0)♯) + Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

+ η∗ T .

In the case of general initial data we can replace u with u = u + µ1, where µ1 = supRN ((v0)♯ − u0). Then u
satisfies (4.9) and we have

sup
RN×{0,...,tnT

}

(u + µ1 − v♯) ≤ sup
RN

(u0 + µ1 − (v0)♯) + Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

+ η∗ T ,

which still implies (4.25). The proof is complete. �

Remark 4.5 By exchanging the role of u and v♯ in Theorem 4.3 we can prove the same error estimate for
sup(v♯ − u), with v♯ sub-solution of the scheme (3.4), u a continuous super-solution of (3.1) and c∗, L(c̃∗)
replaced by c∗, L(c̃∗) in the definition (4.8) of η∗.
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4.2 Estimate for the cell problem

Here we apply the error estimate (4.7) for the evolution problem and obtain an analogous error estimate for
the effective Hamiltonian of the cell problem (1.6).

Theorem 4.6 (A posteriori O(
√

∆x) error estimate)
For every p ∈ RN , let λ be the effective Hamiltonian for the cell problem (1.6). For every discrete function

v0 satisfying (1.7), set λ
d

= sup
I∈ZN

(R∗)I [v0] (resp. λd = inf
I∈ZN

R∗
I [v0]) . Then the following error estimate

holds:

(4.26) λ − λ
d ≤ CNG∆x

v0
cv0

Y
(

1 + Y(1 +
√

N/2)
)2

,

(

resp. λd − λ ≤ CNG∆x
v0

cv0
Y

(

1 + Y(1 +
√

N/2)
)2 )

,

where

CN = 2
√

2N , G∆x
v0

= sup
|x−y|≥∆x

|(v0)♯(x) − (v0)♯(y)|
|x − y| , Y =

√

Lv0
∆x

cv0

√

N/2
,

cv0
= ‖c∗[(v0)♯]‖∞ , Lv0

= sup
I∈Z

Lip
(
c̃∗[(v0)♯, xI ](·)

)

(

resp. cv0
= ‖c∗[(v0)♯]‖∞ , Lv0

= sup
I∈Z

Lip
(
c̃∗[(v0)♯, xI ](·)

) )

,

with c̃∗[(v0)♯, xI ] and c̃∗[(v0)♯, xI ] defined in (4.5).

Proof.
Let u be the unique continuous viscosity solution of the evolution problem (3.1) for some initial datum u0.
On the other hand define

vn
I = (v0)I + λ

d
n∆t , I ∈ ZN , n ∈ N .

It follows that v is a super-solution of the scheme (3.4) with initial datum v0. We apply the error estimate
(4.7) to u and v with T = n∆t for every x ∈ RN :

u(x, T ) − v♯(x, T ) ≤ sup
RN

(u0 − (v0)♯) + Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

+ η∗ T .

By following the proof of Theorem 4.3 and using the special form of v, it is easy to check that now Kv♯,u0,v0

and η∗ do not depend on the whole v♯, but only on v0; in particular they do not depend on T . Then we can
divide by T and obtain

u(x, T )

T
− (v0)♯(x)

T
− λ

d ≤ 1

T
sup
RN

(u0 − (v0)♯) +
1

T
Kv♯,u0,v0

(

∆x + ∆t +
√

∆x + ∆t
)

+ η∗ .

By taking the limit as T → ∞ and using the fact that u(x, T )/T converges to λ locally uniformly on x
(Theorem 3.3), we get

λ − λ
d ≤ η∗

and then, for ∆t → 0, we conclude to the result.

The estimate for λd can be obtained with the same argument by using Remark 4.5. The proof is com-
plete. �

Remark 4.7 The Lipschitz constant Lv0
can be estimated as follows:

Lv0
≤ L∗

v0
:= Lip(c0) + |p|‖J ‖L1(RN ) + ‖∇J ‖L1(RN )

(1

2
+ osc

(
(v0)♯(y) − p · y

))

,

where the oscillation of a given function w : RN → R is defined by

osc(w) = sup
x∈RN

w(x) − inf
x∈RN

w(x) .

Now the proof of Theorem 1.3 is just a consequence of Theorem 4.6 and Remark 4.7.
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5 Improved error estimate for the 1D case

In this section we restrict to the one-dimensional setting and we improve, under further assumptions, the
a posteriori error estimate given by Theorem 4.6. The idea is to use a discrete sub-solution of the scheme
(3.4), to build, up to an error, a continuous sub-solution of the equation (3.1). This allows to obtain an error
estimate for the effective Hamiltonian of order ∆x, instead of

√
∆x.

Theorem 5.1 (A posteriori O(∆x) error estimate)
Let N = 1, p ∈ R and let λ be the effective Hamiltonian of the cell problem (1.6). For every discrete function

v satisfying (1.7), set λd = inf
i∈Z

R∗
i [v] (resp. λ

d
= sup

i∈Z

(R∗)i[v]) and assume that

i) there exist constants l0, L0 such that 0 < l0 ≤ vi+1 − vi

∆x
≤ L0 for all i ∈ Z;

ii) (c∗)d
i [v] ≥ 0 (resp. (c∗)d

i [v] ≥ 0) for all i ∈ Z;

iii)
(

1 +
L0

l0

)

∆x ≤ 1

2L0
;

iv) there exists a constant CJ such that the kernel J satisfies

J (z) ≤ CJ /z2 for all z ∈ R .

Then the following error estimate holds:

(5.1) λd − λ ≤ Kv∆x , ( resp. λ − λ
d ≤ Kv∆x) ,

where the constant Kv is given by

(5.2) Kv = L0

{

Lip(c0) +
4

3
π2 CJ L2

0

(

1 +
L0

l0

)}

.

Remark 5.2 The last term in the right hand side of (5.2) can be regarded as the Lipschitz constant of the
non-local part in the velocity (c∗)d[v]. Moreover, by definition of λd, it follows that

λd = inf
i∈Z

R∗
i [v] ≥ inf

i∈Z

(vi+1 − vi

∆x

)

inf
i∈Z

(c∗)d
i [v] .

Then, if inf
i∈Z

(c∗)d
i [v] > 0, we have the following interpretation for the relative error between λ and λd:

er :=
λd − λ

λd
≤ sup(vx)

inf(vx)

L
inf
i∈Z

(c∗)d
i [v]

∆x ,

with

sup(vx) = sup
i∈Z

(vi+1 − vi

∆x

)

, inf(vx) = inf
i∈Z

(vi+1 − vi

∆x

)

, L =
Kv

L0
,

where L can be regarded as a kind of Lipschitz constant of the velocity c∗.

Proof of Theorem 5.1.
We restrict the proof to λd, since it is the same for λ

d
. By definition of R∗ we have for all i ∈ Z

R∗
i [v] =

(vi+1 − vi

∆x

)(

c0(xi) +

∫

R

J (z)
{

E∗
(
v♯(xi + z) − v♯(xi)

)
− pz

}

dz
)

,

where we recall that v♯ is the piecewise extension of v. We now consider the piecewise linear extension ṽ of
v, satisfying ṽ(xi) = vi for each i ∈ Z. It follows that, for all i ∈ Z and x ∈ (xi, xi+1),

|ṽx|c∗[ṽ](x) =
(vi+1 − vi

∆x

)(

c0(x) +

∫

R

J (z)
{

E∗
(
ṽ(x + z) − ṽ(x)

)
− pz

}

dz
)

.
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We want to compare R∗[v] and |ṽx|c∗[ṽ]. To this end fix x ∈ R and choose i ∈ ZN such that x ∈ [xi, xi+1].
Let zj = j∆x, with j ∈ Z, the minimal grid point such that

(5.3) E∗
(
v♯(xi + zj) − v♯(xi)

)
= j +

1

2
.

Similarly, let zx
j ∈ R the minimal point such that

(5.4) E∗
(
ṽ(x + zx

j ) − ṽ(x)
)

= j +
1

2
.

We remark that for j = 0 we get z0 = zx
0 = 0.

Step 1: |zj − zx
j | ≤ ∆x

(

1 + L0

l0

)

.

We compare zj and zx
j . By definition of zj we have

v♯(xi + zj) − v♯(xi) ≥ j and v♯(xi + zj − ∆x) − v♯(xi) < j .

Moreover by assumption (i) we have

0 ≤ v♯(xi + zj) − v♯(xi + zj − ∆x) ≤ L0∆x .

Then it follows that

(5.5) j ≤ v♯(xi + zj) − v♯(xi) ≤ v♯(xi + zj − ∆x) + L0∆x − v♯(xi) < j + L0∆x .

On the other hand by definition of zx
j we have

ṽ(x + zx
j ) − ṽ(x) = j

which, together with (5.5), implies

(5.6) 0 ≤ v♯(xi + zj) − v♯(xi) − ṽ(x + zx
j ) + ṽ(x) < L0∆x .

By construction ṽ coincides with v♯ on the grid and by assumption (i) we have

−L0∆x ≤ ṽ(xi) − ṽ(x) ≤ 0 .

Then we get
|ṽ(xi + zj) − ṽ(x + zx

j )| ≤ L0∆x .

Moreover
|ṽ(xi + zj) − ṽ(x + zx

j )| ≥ l0|xi + zj − x − zx
j | ≥ l0(|zj − zx

j | − |x − xi|)
and then we conclude

(5.7) |zj − zx
j | ≤ ∆x

(

1 +
L0

l0

)

.

Step 2: bound from below on |zx
j |.

Consider for all j ∈ Z the points zx
j and zx

j+1: by definition

ṽ(x + zx
j+1) − ṽ(x) = j + 1 and ṽ(x + zx

j ) − ṽ(x) = j .

By assumption (i) we get
1 = ṽ(x + zx

j+1) − ṽ(x + zx
j ) ≤ L0(z

x
j+1 − zx

j )

and then

(5.8) zx
j+1 − zx

j ≥ 1

L0
,

which implies

(5.9) |zx
j | ≥

|j|
L0

.
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Step 3: comparison of R∗[v] and |ṽx|c∗[ṽ].
We set

mj = min{zj , z
x
j } and Mj = max{zj , z

x
j } .

We remark that, by (5.7), (5.8) and assumption (iii), the intervals (mj ,Mj) are disjoint. It follows that for
any z ∈ R

|E∗
(
v♯(xi + z) − v♯(xi)

)
− E∗

(
ṽ(x + z) − ṽ(x)

)
| =

∑

j∈Z\{0}

χ(mj ,Mj)(z) ,

where the index j = 0 is excluded from the sum, since m0 = M0 = z0 = zx
0 = 0. Then, by using the fact

that the kernel J is an even non-negative function and assumption (iv), we obtain for any x ∈ [xi, xi+1]

(5.10)
∣
∣
∣R∗

i [v] −
(vi+1 − vi

∆x

)

c∗[ṽ](x)
∣
∣
∣ =

(vi+1 − vi

∆x

)∣
∣
∣(c∗)d

i − c∗[ṽ](x)
∣
∣
∣ ≤

≤
(vi+1 − vi

∆x

)∣
∣
∣c0(xi) − c0(x) + 2CJ

∑

j≥1

∫ Mj

mj

dz

z2

∣
∣
∣ .

Moreover, by (5.7), (5.9) and assumption (iii), we get

Mj − mj ≤
(

1 +
L0

l0

)

∆x and mj ≥ j

L0
−

(

1 +
L0

l0

)

∆x ≥ j

2L0
,

which implies

∑

j≥1

∫ Mj

mj

dz

z2
≤

∑

j≥1

∫ j/2L0+(1+L0/l0)∆x

j/2L0

dz

z2
≤ (2L0)

2
(

1 +
L0

l0

)

∆x
∑

j≥1

1

j2
=

2

3
π2 L2

0

(

1 +
L0

l0

)

∆x ,

where we used the identity

∞∑

j≥1

1/j2 = π2/6. From (5.10) we conclude

(5.11)
∣
∣
∣R∗[v]i −

(vi+1 − vi

∆x

)

c∗[ṽ](x)
∣
∣
∣ ≤ L0

{

Lip(c0) +
4

3
π2 CJ L2

0

(

1 +
L0

l0

)}

∆x =: e .

By definition of λd it follows that for any i ∈ Z and x ∈ [xi, xi+1]

(5.12) λd = inf
i∈Z

R∗[v]i ≤ R∗[v]i ≤
(vi+1 − vi

∆x

)

c∗[ṽ](x) + e .

We want to prove that inequality (5.12) implies

(5.13) λd ≤ |ṽx|c∗[ṽ](x) + e .

in the viscosity sense for any x ∈ R. To this end it is enough to show that for every end-point xi we also
have

λd ≤
(vi − vi−1

∆x

)

c∗[ṽ](xi) + e .

This easily follows by applying (5.12) in the interval [xi−1, xi] for x = xi:

λd = inf
i∈Z

R∗[v]i ≤ R∗[v]i−1 ≤
(v(i−1)+1 − v(i−1)

∆x

)

c∗[ṽ](xi) + e =
(vi − vi−1

∆x

)

c∗[ṽ](xi) + e .

Step 4: conclusion.
Define for x ∈ R and t ≥ 0

ũ(t, x) = (λd − e)t + ṽ(x) .

It follows that ũ is a sub-solution of the evolution problem (3.1) with initial datum ṽ. Indeed, by (5.13) and
the invariance with respect to the addition of constants, we get in the viscosity sense

ut(t, x) = λd − e ≤ |ṽx|c∗[ṽ](x) = |ũx(t, x)|c∗[ũ(t, ·)](x) .
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On the other hand let U(x) be a corrector associated to the effective Hamiltonian λ, namely a viscosity
solution of the cell problem

λ = |∇U | c[U ] on RN .

Up to add a constant to U , we can assume that ṽ ≤ U . It follows that the function

u(t, x) = λt + U(x)

is a viscosity solution of (3.1) with inital datum U(x) and then, by comparison between ũ and u (Theorem
3.2), we obtain

(λd − e)t + ṽ(x) ≤ λt + U(x) .

Dividing by t and taking the limit as t → ∞, we get

λd − λ ≤ e

and this finishes the proof. �

We conclude this section with the proof of Theorem 1.4, which is a corollary of the previous result.

Proof of Theorem 1.4.

By assumptions (i)-(ii) of Theorem 1.4 the gradient of v is strictly positive, i.e.
vi+1 − vi

∆x
> 0 for all i ∈ Z,

and we have

0 ≤ λd = inf
i∈Z

R∗
i [v] ≤ R∗

i [v] =







vi+1 − vi

∆x
(c∗)d

i [v] if (c∗)d
i [v] ≥ 0

vi − vi−1

∆x
(c∗)d

i [v] if (c∗)d
i [v] < 0 .

It follows that (c∗)d
i [v] is non-negative for all i ∈ Z and we conclude by applying Theorem 5.1. �

6 Discrete time evolution problem

6.1 Existence of discrete solutions

In this section we prove an existence result of discrete solutions for the evolution scheme (3.4). To proceed
let us fix some notations: for every s ∈ R and every discrete function v we set

D+
k,vI

(s) =
vI+ek

− s

∆x
, D−

k,vI
(s) =

s − vI−ek

∆x
, k = 1, ..., N ,

DvI
(s) = (D+

vI
(s),D−

vI
(s)) with D±

vI
(s) =

(

D±
1,vI

(s), ...,D±
N,vI

(s)
)

.

We also set, for every I ∈ ZN ,

(c∗)d
I [v](s) = c0(xI) +

∑

J∈ZN

∫

QJ

J (z)
{

E∗
(
v♯(xI + z) − s

)
− p · z

}

dz ,

(c∗)
d
I [v](s) = c0(xI) +

∑

J∈ZN

∫

QJ

J (z)
{

E∗

(
v♯(xI + z) − s

)
− p · z

}

dz ,

G(c∗)d
I
[v](s) =

{
G+(DvI

(s)) if (c∗)d
I [v](s) ≥ 0

G−(DvI
(s)) if (c∗)d

I [v](s) < 0 ,

G(c∗)d
I
[v](s) =

{
G+(DvI

(s)) if (c∗)
d
I [v](s) ≥ 0

G−(DvI
(s)) if (c∗)

d
I [v](s) < 0

and
R∗

I [v](s) = G(c∗)d
I
[v](s) (c∗)d

I [v](s) ,

(R∗)I [v](s) = G(c∗)d
I
[v](s) (c∗)

d
I [v](s) .
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Remark 6.1 It easily follows by definition that, for every I ∈ ZN , the operators R∗
I [v](s) and (R∗)I [v](s)

satisfy the following properties:

a) R∗
I [v](s) and (R∗)I [v](s) are non increasing with respect to s;

b) R∗
I [v](s) and (R∗)I [v](s) are non decreasing with respect to v;

c) R∗
I [v](vI) = R∗

I [v] and (R∗)I [v](vI) = (R∗)I [v];

d) (R∗)I [v](s) ≥ R∗
I [v](t) for all s < t .

We have the following lemma.

Lemma 6.2 (Comparison)
Let v0, v be discrete functions satisfying (1.7) and fix I ∈ ZN . There exists a unique sI ∈ R such that

(6.1) (R∗)I [v](sI) ≤
sI − v0

I

∆t
≤ R∗

I [v](sI) .

Moreover, let w be a discrete functions satisfying (1.7). Then the following implications hold:

i)
wI − v0

I

∆t
≤ R∗

I [w] and w ≤ v =⇒ wI ≤ sI

ii)
wI − v0

I

∆t
> R∗

I [w] and w ≥ v =⇒ wI > sI

iii)
wI − v0

I

∆t
≥ (R∗)I [w] and w ≥ v =⇒ wI ≥ sI

iv)
wI − v0

I

∆t
< (R∗)I [w] and w ≤ v =⇒ wI < sI

Proof.
The existence of a unique sI ∈ R satisfying (6.1) immediately follows by the fact that (R∗)I [v](s), R∗

I [v](s)

are non-increasing with respect to s (see Remark 6.1) and the function
s − v0

I

∆t
is strictly increasing in s.

Now we prove implication (i). By contradiction suppose that wI > sI . Then, by (6.1) and the properties in
Remark 6.1, we get

wI − v0
I

∆t

↓
>

sI − v0
I

∆t

(6.1)

≥ (R∗)I [v](sI)
w≤v, (b)

≥ (R∗)I [w](sI)
(d)

≥ R∗
I [w](wI)

(c)
= R∗

I [w] ≥ wI − v0
I

∆t
,

which is absurd. Similarly we get implication (ii). Indeed, if we assume wI ≤ sI , we obtain

wI − v0
I

∆t
≤ sI − v0

I

∆t

(6.1)

≤ R∗
I [v](sI)

w≥v, (b)

≤ R∗
I [w](sI)

(a)

≤ R∗
I [w](wI)

(c)
= R∗

I [w]
↓
<

wI − v0
I

∆t
.

Finally, implications (iii),(iv) follow by the same arguments. The proof is complete. �

Now we can prove the announced existence result.

Theorem 6.3 (Existence of discrete solutions)
Let u0 be a discrete function satisfying (1.7). There exists at least one solution of the scheme (3.4) with
initial datum u0.

Proof.
We first consider the discrete barriers given by Proposition 4.2, namely

u±,n
I = u0

I ± Cu0 n∆t , for all I ∈ ZN , n ∈ N , with Cu0 ≥ max
{

‖R∗[u
0]‖∞ , ‖R∗[u0]‖∞

}

,
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and we recall that every solution u of the scheme (3.4) satisfies

(6.2) u−,n
I ≤ un

I ≤ u+,n
I for all I ∈ ZN , n ∈ N .

Now we proceed by recurrence in time, i.e., we fix n ∈ N, we assume that there exists a solution un at step n
and we prove the existence of a solution un+1 at step n+1 by Perron’s method. To this end we remark that
u−,n+1 and u+,n+1 are respectively a sub-solution and a super-solution of the scheme at step n + 1. Indeed,
by (6.2) and the invariance of R∗, R∗ with respect to the addition of constants, we get for all I ∈ ZN

u−,n+1
I − un

I

∆t
≤ u−,n+1

I − u−,n
I

∆t
= −Cu0 ≤ R∗

I [u
0] = R∗

I [u
−,n+1]

and
u+,n+1

I − un
I

∆t
≥ u+,n+1

I − u+,n
I

∆t
= Cu0 ≥ (R∗)I [u

0] = (R∗)I [u
+,n+1] .

Then we consider the following set:

S :=
{

w sub-solution at step n + 1 s.t. w ≤ u+,n+1
}

and define pointwise
v := supS .

Note that u−,n+1 ∈ S and then the function v is well defined. If we prove that v is both a sub-solution and
a super-solution at step n + 1, we conclude by setting un+1 := v. The proof is splitted in two steps.

Step 1: v is a sub-solution of the scheme at time step n + 1.
Let us fix I ∈ ZN and consider, for k = 1, ..., N , sequences {vm} , {vk,m} , {vk,m} in S such that

vm
I

m→∞−→ vI , vk,m
I+ek

m→∞−→ vI+ek
vk,m

I−ek

m→∞−→ vI−ek
.

We then take the pointwise maximum between these 2N + 1 sequences, that we denote again, with a little
abuse of notation, by vm so that

vm
J ≤ vJ ∀J ∈ ZN , vm

I
m→∞−→ vI , vm

I±ek

m→∞−→ vI±ek
for k = 1, ..., N

and we remark that, by Lemma 2.6, vm is still a sequence of sub-solutions.

For every J ∈ ZN we have

(6.3) lim sup
m→∞

(vm
I+J − vm

I ) ≤ vI+J − vI .

Let l ∈ Z such that l − 1 < vI+J − vI < l + 1. By (6.3) we get vm
I+J − vm

I < l + 1 for m large enough. Then
in both cases vI+J − vI ≥ l and vI+J − vI < l we get

E∗
(
vm

I+J − vm
I

)
= E∗

(
vI+J − vI

)

or
E∗

(
vm

I+J − vm
I

)
< E∗

(
vI+J − vI

)
.

This implies (c∗)d
I [v

m] ≤ (c∗)d
I [v] for m large enough.

On the other hand we have

D+
k vm

I =
vm

I+ek
− vm

I

∆x

m→∞−→ D+
k vI , D−

k vm
I =

vm
I − vm

I−ek

∆x

m→∞−→ D−
k vI , k = 1, ..., N

and
G±(D+vm

I ,D−vm
I )

m→∞−→ G±(D+vI ,D
−vI) .

By reasoning as in the proof of Lemma 2.6, depending on the signs of (c∗)d
I [v

m] and (c∗)d
I [v], we conclude

that
lim sup
m→∞

R∗
I [v

m] ≤ R∗
I [v] .
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But for every m the function vm is a sub-solution of the scheme at step n + 1:

vm
I ≤ un

I + ∆tR∗
I [v

m] .

By taking the limit as m goes to infinity we finally get

vI ≤ un
I + ∆t lim sup

m→∞
R∗

I [v
m] ≤ un

I + ∆tR∗
I [v] .

Since I ∈ ZN is arbitrary we conclude that v = sup S is still a sub-solution of the scheme at step n + 1.

Step 2: v is a super-solution of the scheme at time step n + 1.
By contradiction we assume that the super-solution inequality fails at least at one point, namely

vI0
< un

I0
+ ∆t (R∗)I0

[v] for some I0 ∈ ZN .

By Lemma 6.2 there exists a unique sI0
∈ R such that

(6.4) (R∗)I0
[v](sI0

) ≤
sI0

− un
I0

∆t
≤ R∗

I0
[v](sI0

) and vI0
< sI0

≤ u+,n+1
I0

.

Then we define a new discrete function w as follows:

wI =

{
sI0

if I = I0 ,
vI otherwise .

By (6.4) and monotonicity properties of R∗ (see Remark 6.1), we obtain

wI0
≤ un

I0
+ ∆tR∗

I0
[v](wI0

) ≤ un
I0

+ ∆tR∗
I0

[w] ,

and we remark that the same inequality holds for I 6= I0 by Lemma 2.6. Then w is a sub-solution of the
scheme at step n+1 such that w ≤ u+,n+1, i.e., w ∈ S and it is greater than v at one point. This contradicts
the definition of v as the supremum of S. Therefore v is a super-solution and the proof is complete. �

Remark 6.4 Since every solution of the scheme is bounded from above by the barrier u+, it follows that
the solution given by the Perron’s method is the maximal solution of the scheme. By a similar proof we can
prove that the function v := inf I, with

I :=
{

w super-solution at step n + 1 s.t. w ≥ u−,n+1
}

,

is the minimal solution of the scheme.

6.2 Construction of minimal and maximal solutions

This section is devoted to the proof of Theorem 1.5, i.e., we construct minimal and maximal solutions for
the scheme (3.4). Moreover, we prove the monotonicity of the time derivative of a particular solution and
use this information to improve the approximation of the effective Hamiltonian.

We start by showing how to produce a solution for a single time step ∆t, given an initial datum and a
sub-solution (or a super-solution), then we extend the results at each time step by recurrence. The main
tool is the following

Proposition 6.5 (Definition of the map Φ)

There exists a map Φ : RZ
N × RZ

N → RZ
N

satisfying the following properties:

a) Consider discrete functions u0 and u− such that u− is a sub-solution of the scheme (3.4) at step ∆t
with initial datum u0, i.e.,

u−
I − u0

I

∆t
≤ R∗

I [u
−] , I ∈ ZN .

Then

i) u− ≤ Φ[u0, u−] ( with u− = Φ[u0, u−] if and only if u− is a solution )
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ii) Φ[u0, u−] is a sub-solution

b) Consider discrete functions v0 and v+ such that v+ is a super-solution of the scheme (3.4) at step ∆t
with initial datum v0, i.e.,

v+
I − v0

I

∆t
≥ (R∗)I [v

+] , I ∈ ZN .

Then

i) v+ ≥ Φ[v0, v+] ( with v+ = Φ[v0, v+] if and only if v+ is a solution )

ii) Φ[v0, v+] is a super-solution

Proof.
We restrict the proof to properties (a) for sub-solutions, since properties (b) can be obtained by similar
arguments.

We apply Lemma 6.1 to u0 and u−: for every I ∈ ZN there exists a unique s−I such that

(R∗)I [u
−](s−I ) ≤ s−I − u0

I

∆t
≤ R∗

I [u
−](s−I ) and u−

I ≤ s−I .

Then we glue together all the values s−I and define the map Φ, depending on the initial datum u0 and the
sub-solution u−:

ΦI [u
0, u−] := s−I , I ∈ ZN .

By construction we have u− ≤ Φ[u0, u−], with equality if and only if u− is a solution, i.e., property (i) is
proved. Now consider, for fixed J ∈ ZN , the following function, obtained by changing the value of u− at the
point J :

u−,J
I =

{
s−J if I = J ,
u−

I otherwise .

By Lemma 2.6 it follows that u−,J is a sub-solution for all J ∈ ZN and then Φ[u0, u−] can be regarded as a
pointwise supremum of sub-solutions, i.e.,

ΦI [u
0, u−] = sup

J∈ZN

{

u−,J
I

}

.

By reasoning as in the proof of Theorem 6.3 we conclude that Φ[u0, u−] is also a sub-solution, namely
property (ii), and this finishes the proof. �

Remark 6.6 The key point in our construction is that the map Φ strictly increases sub-solutions in all the
points where they are not super-solutions and strictly decreases super-solutions in all the points where they
are not sub-solutions.

The next result shows that the map Φ enjoys a kind of comparison principle.

Proposition 6.7 (Partial comparison principle)
Let u0, v0 be discrete functions such that u0 ≤ v0. Consider a sub-solution u− at step ∆t with initial datum
u0, a super-solution v+ with initial datum v0 and assume u− ≤ v+. Then Φ[u0, u−] ≤ Φ[v0, v+].

Proof.
Suppose by contraddiction that there exists I ∈ ZN such that

ΦI [u
0, u−] = s−I > s+

I = ΦI [v
0, v+] .

By property (d) in Remark 6.1, we have

(R∗)I [·](t1) ≥ R∗
I [·](t2) ∀ t2 > t1

and this, together with u0 ≤ v0, u− ≤ v+ and monotonicity of R∗ , R∗ implies an absurd:

u0
I + ∆tR∗

I [u
−](s−I ) ≥ s−I > s+

I ≥ v0
I + ∆t (R∗)I [v

+](s+
I ) ≥

≥ v0
I + ∆t (R∗)I [u

−](s+
I ) ≥ u0

I + ∆tR∗
I [u

−](s−I ) . �

Now we can make a step in time and construct solutions. The idea is just to apply iteratively to u−, v+ the
map Φ and the partial comparison principle. We have the following result.
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Proposition 6.8 (Construction of solutions)
Under the assumptions of Proposition 6.7, set for every k ∈ N

u−,k+1 = Φ[u0, u−,k] with u−,0 = u−

and
v+,k+1 = Φ[v0, v+,k] with v+,0 = v+ .

There exist discrete functions u1 and v1 such that u−,k → u1 and v+,k → v1 as k → +∞. Moreover u1, v1

are solutions of the scheme (3.4) at step ∆t with initial data u0, v0 respectively. We set

Ψ[u0, u−] := u1 and Ψ[v0, v+] := v1 .

Then we have
u− ≤ Ψ[u0, u−] ≤ Ψ[v0, v+] ≤ v+

and
Ψ[u0, u] = u if and only if u is a solution .

Proof.
By applying Proposition 6.7 repeatedly, we get the following chain of inequalities:

u− ≤ Φ[u0, u−,k] ≤ Φ[u0, u−,k+1] ≤ ... ≤ Φ[v0, v+,k+1] ≤ Φ[v0, v+,k] ≤ v+ .

Then the sequence u−,k is non-decreasing and bounded from above by v+, whereas v+,k is non-increasing
and bounded from below by u−. Taking the limit as k goes to infinity we conclude

u− ≤ lim
k→∞

u−,k =: u1 =: Ψ[u0, u−] ≤ Ψ[v0, v+] := v1 := lim
k→∞

v+,k ≤ v+ .

Now we prove that u1 and v1 are solutions of the scheme at step ∆t, respectively with initial data u0 and
v0. By definition of the map Φ, the sequence u−,k satisfies, for all k ∈ N and I ∈ ZN ,

(6.5) u0
I + ∆t (R∗)I [u

−,k](u−,k+1) ≤ u−,k+1 ≤ u0
I + ∆tR∗

I [u
−,k](u−,k+1) .

Moreover, by continuity of discrete gradients and semi-continuity of E∗, E∗, we easily obtain that R∗, R∗

are respectively upper and lower semicontinuous. Then by taking the limit as k → +∞ in (6.5), we get

u0
I + ∆t (R∗)I [u

1] ≤ u1 ≤ u0
I + ∆tR∗

I [u
1] ,

i.e., u1 is a solution. Similarly we conclude that v1 is also a solution. Finally, the property Ψ[u0, u] = u if and
only if u is a solution directly follows by the corresponding property of the map Φ (see Proposition 6.5) . �

As stated in the next result, the solutions constructed above are extremal solutions in the interval [u−, v+],
i.e., Ψ[u0, u−] is the minimal solution above u− and Ψ[v0, v+] is the maximal solution below v+, among all
the solutions w with initial datum w0 such that u− ≤ w ≤ v+ and u0 ≤ w0 ≤ v0.

Proposition 6.9 (Extremal solutions in the window [u−, v+])
Let Ψ[u0, u−], Ψ[v0, v+] be the solutions of the scheme (3.4) given by Proposition 6.8 and consider a discrete
function w0 such that u0 ≤ w0 ≤ v0. Then every solution w at step ∆t with initial datum w0 such that
u− ≤ w ≤ v+ satisfies

Ψ[u0, u−] ≤ w ≤ Ψ[v0, v+] .

Proof.
Every solution w above u− is in particular a super-solution. Then, by applying Proposition 6.8 to u− and
w, we get

u− ≤ Ψ[u0, u−] ≤ Ψ[w0, w] = w .

The proof of the maximality of Ψ[v0, v+] is similar and we omit it. �

Remark 6.10 We remark here an important point: if we choose the barriers given by Proposition 4.2 as the
initial sub and super solutions u−, v+ of our construction, we recover exactly the extremal solutions obtained
in Theorem 6.3 by the Perron’s method (see Remark 6.4). But now the situation is somehow reversed, the
minimal solution is reached from below by sub-solutions, whereas the maximal one is reached from above by
super-solutions.
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Now we are in a position to prove Theorem 1.5. The idea is just to apply the previous construction iteratively
in time.

Proof of Theorem 1.5.

Step (i): construction of extremal solutions
We first consider the discrete barriers given by Proposition 4.2, namely

v±,n
I = v0

I ± Cv0 n∆t , for all I ∈ ZN , n ∈ N , with Cv0 ≥ max
{

‖R∗[v
0]‖∞ , ‖R∗[v0]‖∞

}

,

and we recall that every solution v of the scheme (3.4) has to satisfy

(6.6) v−,n
I ≤ vn

I ≤ v+,n
I for all I ∈ ZN , n ∈ N .

Now we construct the extremal solutions v and v by recurrence in n.

For n = 0 we set v0 = v0 = v0 and we remark that, by definition, the functions v−,1, v+,1 are respec-
tively a sub-solution and a super-solution of the scheme at step 1 with initial datum v0. By Proposition 6.8
it follows that

v1 := Ψ[v0, v−,1] and v1 := Ψ[v0, v+,1]

are two solutions a step 1. Moreover by (6.6) and Proposition 6.9 we get

v−,1 ≤ v1 ≤ v1 ≤ v1 ≤ v+,1 .

Now let n ≥ 1. We assume

(6.7) v−,n ≤ vn ≤ vn ≤ vn ≤ v+,n

and define
vn+1 := Ψ[vn, v−,n+1] and vn+1 := Ψ[vn, v+,n+1] .

We remark that this definition is well posed if v−,n+1 is a sub-solution at step 1 with initial datum vn and
v+,n+1 is a super-solution at step 1 with initial datum vn. Indeed, by (6.7) we get for all I ∈ ZN

v−,n+1
I − vn

I

∆t
=

v−,n+1
I − v−,n

I

∆t
+

v−,n
I − vn

I

∆t
≤ −Cv0 ≤ R∗

I [v
0] = R∗

I [v
−,n+1]

and
v+,n+1

I − vn
I

∆t
=

v+,n+1
I − v+,n

I

∆t
+

v+,n
I − vn

I

∆t
≥ Cv0 ≥ (R∗)I [v

0] = (R∗)I [v
+,n+1] .

By Proposition 6.9 we conclude that

v−,n+1 ≤ vn+1 ≤ vn+1 ≤ vn+1 ≤ v+,n+1 .

Step (ii): construction of a solution with monotone time derivatives
For the time step n = 0 we set

λ0 = inf
I∈ZN

R∗
I [v

0] , λ
0

= sup
I∈ZN

(R∗)I [v
0] , δ = max{λ0 − λ

0
, 0} ,

µ0 = λ0 − δ/2 , µ0 = λ
0

+ δ/2 .

and we define for all I ∈ ZN

v−
I = v0

I + ∆tµ0 , v+
I = v0

I + ∆tµ0 ,

so that we have µ0 ≤ µ0 and v− ≤ v+. Moreover v−, v+ are respectively a sub-solution and a super-solution

at step 1 with initial datum v0. Then we denote by v1 one of the two solutions Ψ[v0, v−], Ψ[v0, v+] given by
Proposition 6.8, applied to v− and v+. It follows that v− ≤ v1 ≤ v+, which implies for all I ∈ ZN

µ0 =
v−

I − v0
I

∆t
≤ inf

I∈ZN

(v1
I − v0

I

∆t

)

=: µ1 ≤ µ1 := sup
I∈ZN

(v1
I − v0

I

∆t

)

≤ v+
I − v0

I

∆t
= µ0 .
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Similarly, for every n ≥ 1, we set

(6.8) µn = inf
I∈ZN

(vn
I − vn−1

I

∆t

)

, µn = sup
I∈ZN

(vn
I − vn−1

I

∆t

)

and define for all I ∈ ZN

v−
I = vn

I + ∆tµn , v+
I = vn

I + ∆tµn .

By construction we have µn ≤ µn and v− ≤ v+. Moreover v−, v+ are respectively a sub-solution and a

super-solution at step n + 1. Then we construct the solution vn+1 as previously and we conclude that

µn ≤ µn+1 ≤ µn+1 ≤ µn .

The proof is complete. �

Remark 6.11 In order to obtain a better approximation of the effective Hamiltonian, we can apply Theorem
1.3 to the solution v given by Theorem 1.5-(ii): for every n ∈ N we get

(6.9) λd
vn − Cvn

√
∆x ≤ λ ≤ λ

d

vn + Cvn

√
∆x .

Since v is both a sub-solution and a super-solution, we have for all n ∈ N

µn = inf
I∈ZN

(vn
I − vn−1

I

∆t

)

≤ inf
I∈ZN

R∗
I [v

n] = λd
vn ,

µn = sup
I∈ZN

(vn
I − vn−1

I

∆t

)

≥ sup
I∈ZN

(R∗)I [v
n] = λ

d

vn

and then

(6.10) µn − Cvn

√
∆x ≤ λ ≤ µn + Cvn

√
∆x .

This estimate can improve if the constant Cvn remains controlled as n goes to infinity, since the gap µn −µn

is non-increasing in n by Theorem 1.5. The same argument applies to the improved error estimate (5.1) in
the one-dimensional case.

7 Numerical Simulations

In this section we present some numerical tests, concerning the approximation of the effective Hamiltonian. In
order to highlight the features of the scheme (3.4), we mainly focus on the one-dimensional case. Nevertheless,
we will also show simulations in the two-dimensional case at the end of the section.

7.1 Setting of the computation

First of all we have to reduce the non-local velocity

(7.1) (c∗)d
i [v] = c0(xi) +

∫

R

J (z)
{

E∗
(
v♯(xi + z) − v♯(xi)

)
− p z

}

dz , i ∈ Z

in a form suitable for numerical computations. To this end we set ∆x = 1/N0 with N0 ∈ N \ {0}, p = P/Q
with P ∈ Z, Q ∈ N \ {0} and we consider discrete functions of the form periodic plus linear, namely
vi = wi + pxi, where w is 1

∆x -periodic function. By taking the following partition of R in intervals of size 1,
i.e.

R =
⋃

h∈Z

Q−1
⋃

m=0

[
hQ + m − ∆x/2, hQ + m + 1 − ∆x/2

)
,

and by a change of variables, we can rewrite the integral in (c∗)d
i [v] as

I :=
∑

h∈Z

Q−1
∑

m=0

∫ 1−∆x/2

−∆x/2

J (z + hQ + m)
{

E∗
(
v♯(xi + z + hQ + m) − v♯(xi)

)
− p (z + hQ + m)

}

dz .
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Since [−∆x/2, 1 − ∆x/2) =

N0−1⋃

j=0

[
xj − ∆x/2, xj + ∆x/2

)
and the function v♯ is constant on each interval,

we obtain

I =
∑

h∈Z

Q−1
∑

m=0

N0−1∑

j=0

∫ xj+∆x/2

xj−∆x/2

J (z + hQ + m)
{

E∗
(
v♯(xi + xj + hQ + m) − v♯(xi)

)
− p (z + hQ + m)

}

dz .

Now
v♯(xi + xj + hQ + m) − v♯(xi) =

= w♯(xi + xj + hQ + m) + p(xi + xj + hQ + m) − w♯(xi) − pxi =

= w♯(xi + xj) − w♯(xi) + p(xj + hQ + m) =

= wi+j − wi + p(xj + m) + phQ ,

where we used the fact that hQ + m ∈ Z and w♯ is a 1-periodic function. Moreover phQ ∈ Z and

E∗(wi+j − wi + p(xj + m) + phQ) = E∗(wi+j − wi + p(xj + m)) + phQ .

Then we obtain

I =

Q−1
∑

m=0

N0−1∑

j=0

∫ xj+∆x/2

xj−∆x/2

J Q(z + m)
{

E∗
(
wi+j − wi + p(xj + m)

)
− p (z + m)

}

dz ,

where J Q is the Q-periodic kernel given by

(7.2) J Q(t) =
∑

h∈Z

J (t + hQ) .

We now define

(7.3) J Q
m,j =

1

∆x

∫ xj+∆x/2

xj−∆x/2

J Q(z + m) dz and ζQ
m,j =

1

∆x

∫ xj+∆x/2

xj−∆x/2

(z + m)J Q(z + m) dz .

It follows that

I =

Q−1
∑

m=0

N0−1∑

j=0

{

J Q
m,j E∗

(
wi+j − wi + p(xj + m)

)
− p ζQ

m,j

}

∆x .

We remark that the coefficients J Q
m,j and ζQ

m,j can be pre-computed for a given Q and ∆x. In practice we use
a simple rectangular quadrature rule in order to approximate the integrals in (7.3) and a large (but finite)
sum to sample the kernel J Q in (7.2): for some N1 ∈ N

J Q(t) ≃
N1∑

h=−N1

J (t + hQ) , J Q
m,j ≃ J Q(xj + m) and ζQ

m,j ≃ (xj + m)J Q(xj + m) .

With this choice we need N0Q pre-computations and the non-local velocity (c∗)d
i [v], for i = 0, ..., N0 − 1,

reduces to

(c∗)d
i [v] ≃ c0(xi) +

Q−1
∑

m=0

N−1∑

j=0

J Q
m,j

{

E∗
(
wi+j − wi + p(xj + m)

)
− p (xj + m)

}

∆x =: (c∗)♭
i [w] .

Similarly, by replacing E∗ with E∗, we obtain the following approximation of (c∗)
d
i [v]:

(c∗)
d
i [v] ≃ c0(xi) +

Q−1
∑

m=0

N−1∑

j=0

J Q
m,j

{

E∗

(
wi+j − wi + p(xj + m)

)
− p (xj + m)

}

∆x =: (c∗)
♭
i [w] .

Then we define

(R∗)♭
i [w] = (c∗)♭

i [w]G(s∗)i[w](Dwi + p) with (s∗)i[w] = sign
(
(c∗)♭

i [w]
)
,
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(R∗)
♭
i [w] = (c∗)

♭
i [w]G(s∗)i[w](Dwi + p) with (s∗)i[w] = sign

(
(c∗)

♭
i [w]

)

and we compute the discrete effective Hamiltonian by following the time evolution of approximate sub and
super solutions of the implicit scheme (3.4). In terms of w we have to solve

w0
i = 0 ,

wn+1
i − wn

i

∆t
= (R)♭

i [w
n+1] i = 0, ..., N0 − 1 , n ∈ N ,

in the sense of discrete viscosity solutions given in Definition 3.4.

7.2 The algorithm

We introduce three parameters εd, εc, εs > 0, respectively a tolerance to quit the dichotomy process updating
sub and super solutions, a tolerance for the convergence of the scheme for a single time step ∆t and a tolerance
for the saturation in time of the values approximating the effective Hamiltonian. Then we implement, for a
given p ∈ R, the following algorithm:

1) Initialization for n = 0 :

w−,0
i = w+,0

i = w0
i = 0 , λ0 = min

i=0,...,N0−1
(R∗)♭

i [w
0] , λ

0
= max

i=0,...,N0−1
(R∗)

♭
i [w

0] ,

δ = max{λ0 − λ
0
, 0} , µ0 = λ0 − δ/2 , µ0 = λ

0
+ δ/2 .

2) Build initial sub-solution and super-solution for current step n :

w−
i = w−,n

i + ∆t µn and w+
i = w+,n

i + ∆t µn , i = 0, ..., N0 − 1 .

3) Initialize dichotomy intervals: for i = 0, ..., N0 − 1 set

s−left,i = w−
i , s−right,i = w−

i + k−
i ,

with k−
i ∈ N the first integer such that

s−right,i > w−,n
i + ∆t (R∗)♭

i [w
−](s−right,i)

and
s+
left,i = w+

i − k+
i , s+

right,i = w+
i ,

with k+
i ∈ N the first integer such that

s+
left,i < w−,n

i + ∆t (R∗)
♭
i [w

−](s+
left,i) .

4) Dichotomy process: for i = 0, ..., N0 − 1 freeze all the values w−
j , w+

j with j 6= i and optimize,

respectively in s−i ∈ [s−left,i, s
−
right,i) and s+

i ∈ [s+
left,i, s

+
right,i), the inequalities

s−i ≤ w−,n
i + ∆t (R∗)♭

i [w
−](s−i ) and s+

i ≥ w+,n
i + ∆t (R∗)

♭
i [w

+](s+
i )

until s−right,i − s−left,i < εd and s+
right,i − s+

left,i < εd.

5) Build auxiliary sub-solution and super-solution: for i = 0, ..., N0 − 1 set

(w−
aux)i = s−left,i and (w+

aux)i = s+
right,i .

If ‖w−−w−
aux‖∞ < εc and ‖w+ −w+

aux‖∞ < εc then go to step (6); else swap w− ↔ w−
aux, w+ ↔ w+

aux
and go to step (3).
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6) Step forward in time: set

w−,n+1 = w−
aux , µn+1 = min

i=0,...,N0−1

(w−,n+1
i − w−,n

i

∆t

)

and

w+,n+1 = w+
aux , µn+1 = max

i=0,...,N0−1

(w+,n+1
i − w+,n

i

∆t

)

.

If |µn+1 − µn| < εs and |µn+1 − µn| < εs go to step (7); else go to step (2) with n ↔ n + 1.

7) Set nlast = n + 1 and exit: the value λ of the effective Hamiltonian is approximated by the interval
[µnlast , µnlast ].

Remark 7.1 By construction, we have

µn ≤ µn+1 and µn+1 ≤ µn for all n ∈ N .

Remark 7.2 In order to speed up the dichotomy process (step (4) of the algorithm), we can update w−
i and

w+
i sequentially, as soon as the values s−i and s+

i are computed.

7.3 Tests in 1D

We consider a velocity of the form c0(x) = c1(x) + L, where c1 : R → R is a 1-periodic function representing
obstacles to the motion of dislocations and L ∈ R is a driving force. We choose N0 = 100 (i.e. ∆x = 0.01)
and Q = 10. Moreover ∆t = 0.1, εd = 10−9, εc = 10−6 and εs = 10−4. Finally we take c1(x) = A sin(2πx)
with A = 2 and the kernel J (z) = CJ /z2 with CJ = 1/2, truncated inside the δ-neighborhood of the origin
of size δ = ∆x.

7.3.1 Computation of the effective Hamiltonian

Here we compute the effective Hamiltonian for p, L ∈ [0, 4] with steps ∆p = 0.1 and ∆L = 0.1. In Figure 1a
we show an approximation of the effective Hamiltonian as a surface, obtained by taking for fixed p and L the
minimal value µnlast , while Figure 1b represents the corresponding level-sets. For similar computations of
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Figure 1: Surface graph (a) and level-sets (b) of the effective Hamiltonian.
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effective Hamiltonians with different methods or models, see [13],[16]. We remark that the zero level-set of
the effective Hamiltonian (see the brightest grey region in Figure 1b) is very important, since it corresponds
to the pinning of dislocations, namely the situation in which the external stress L is small and dislocations
can not overcome the obstacles given by the wells of c1. On the other hand, when the density of dislocations
p increases, the non-local part of the velocity becomes relevant: dislocations exibit a cooperative behavior
and are able to move inside the crystal lattice even if L is not big enough. This situation is well illustrated
by Figure 2, which shows the Hamiltonian as a function of L for different values of p.
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Figure 2: Graphs of the effective Hamiltonian as a function of L for different values of p.

For small values of p we have few dislocations in the interval [0, Q], which are quite far from each other and
then interact only weakly; we see in the simulation that the critical value L = A = 2 is just the amount
of the external stress needed to balance the size A of the obstacles, a threshold between equilibrium and
dynamics. While, for larger p, this threshold is drastically reduced, due to the fact that dislocations interact
more and more.

7.3.2 Monotonicity of time derivatives

Here we show numerically the monotonicity property enjoyed by the time derivatives of discrete sub/super
solutions w−, w+ (see Remark 7.1) and we compare our approach of computing the effective Hamiltonian
to the classical one. More precisely, for 1 ≤ n ≤ nlast, we compare µn and µn with

ηn = min
i=0,...,N0−1

(w−,n
i

n∆t

)

and ηn = max
i=0,...,N0−1

(w+,n
i

n∆t

)

.

In Figure 3 we show µn, µn and ηn, ηn as functions of n in the case p = 0.5, L = 2.3. Despite the fact that
the implicit scheme is quite expensive to solve, we clearly see that µn, µn converge much faster than ηn, ηn.

7.3.3 A posteriori error estimate

This simulation concerns the a posteriori error estimate for the effective Hamiltonian λ. We consider the
case p = 0.1, L = 3 and we compute µnlast , µnlast for different values of ∆x, ranging from 0.1 to 0.01. At
each stage we restart the time evolution with initial data equal to the last w±,nlast , linearly interpolated on
the new mesh. Then we check that the new sub/super solutions v±

i := w±,nlast

i +pxi satisfy the assumptions
of the improved error estimate given by Theorem 5.1 and we compute the corresponding constants Kv± in
(5.2) such that

(7.4) −Kv−∆x + µnlast ≤ λ ≤ µnlast + Kv+∆x .
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Figure 4 shows µnlast , µnlast as functions of ∆x and also the inequalities (7.4) represented by error bars.

0.10.01
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Space step ∆x

_

_

µ

µ

Figure 4: A posteriori error estimate of order ∆x

7.4 Tests in 2D

Here we present some simulations in the two-dimensional case. We recall that in our model what is physically
meaningful is not the whole solution v = w+p ·x, but only its integer level-sets, representing dislocation lines
in motion along a slip plane of the crystal. We then adopt this suggestive representation in all the figures
below and show the time evolution through several key-frames. Moreover, in order to better appreciate the
contribution of the non-local interactions between dislocations to the dynamics, we compare each simulation
to its local counterpart. We just mention [9] for an alternative numerical method to compute the dynamics
of a single dislocation line. We choose N0 = 20 (i.e. ∆x = 0.05), Q = 1 and ∆t = 0.01. Moreover we
consider the periodic cell given by the square [−Q/2, Q/2]2 and a velocity of the form c0(x) = c1(x) + L,
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with c1(x) = min{80|x|2 − 1, 0}, so that the obstacle to the motion of dislocations is just a circle. Finally,
we take the kernel J (z) = CJ /|z|3 with CJ = 0.01 and truncated inside the δ-neighborhood of the origin
of size δ = ∆x.

7.4.1 Test 1: change of topology and self-interaction

Here we consider a single dislocation line (p = 1) moving with a driving force (L = 1.1) greater than the size
of the obstacle. Let us first examine the case without non-local interactions, namely the case J ≡ 0.
As expected, Figure 5 shows that the line overcomes the obstacle, but it is partially trapped, so that it
breaks changing its topology. Note that, inside the obstacle, the residual part shrinks and disappears in
finite time, while the line keeps moving but remains distorted.

t = 0 t = 0.2 t = 0.25 t = 0.35 t = 0.4

t = 0.44 t = 0.45 t = 0.48 t = 0.53 t = 0.6

Figure 5: Evolution of a line without non-local interactions - change of topology

Now consider the non-local case with the same parameters. It is known that for a straight dislocation line
there is no internal force created by self-interactions or, in other words, the non-local term in the velocity
(7.1) is just zero if the periodic part of the solution v = w + p · x is constant. It follows that the line moves
uniformly until it reaches the obstacle (see Figure 6). Then it starts bending and interacting with itself, so
that it can exit the obstacle (without breaking in this simulation). Finally, it relaxes and becomes straight
again.

t = 0 t = 0.2 t = 0.25 t = 0.3 t = 0.35

t = 0.4 t = 0.45 t = 0.5 t = 0.55 t = 0.6

Figure 6: Evolution of a dislocation line with non-local self-interactions
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7.4.2 Test 2: pile up effect

We repeat Test 1 for the critical value L = 1, i.e. we choose a driving force exactly equal to the size of
the obstacle. In the case without interactions (Figure 7), we see again that the part of the line entering
the obstacle has no hope to exit. Moreover we observe that every time the line passes through the obstacle
(recall that we are in the periodic setting), new residuals pile up. Theoretically we expect that the loops
will disappear in infinite time.

t = 0 t = 0.4 t = 0.55 t = 0.75 t = 0.95

t = 1.45 t = 1.55 t = 2.10 t = 2.5 t = 2.75

Figure 7: Evolution of a line without non-local interactions - pile up effect

On the other hand, Figure 8 shows the computation in the non-local case. We see that the dislocation line
can proceed ”almost undisturbed”, again thanks to self-interactions.

t = 0 t = 0.65 t = 0.75 t = 0.85 t = 0.92

t = 0.97 t = 0.98 t = 0.99 t = 1.02 t = 1.15

Figure 8: Evolution of a dislocation line with non-local self-interactions - ”just a hitch”
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7.4.3 Test 3: capturing of dislocations

Here we consider again the motion of a single dislocation line (p = 1), but we change the velocity c0

representing obstacles. More precisely, we choose the following discontinuous function:

c0(x) =

{
−0.5 if |x|2 ≤ 1/80 ,
2 otherwise .

Figure 9 corresponds to the case without interactions and we see a relevant difference with respect to the
previous tests: the line does not enter the obstacle, but surroundes it. Then the line breaks and the residual
loop is captured by the obstacle. This happens every time a new line comes, so we finally see a lot of loops
piling up on the boundary of the circle.

t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4

t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9

t = 1 t = 1.1 t = 1.2 t = 1.3 t = 1.4

t = 1.5 t = 1.6 t = 1.7 t = 1.8 t = 1.9

Figure 9: Capturing and piling up of loops without non-local interactions

The version with non-local interactions of this simulation is even more interesting and it is shown in Fig-
ure 10. Again, the dislocation line first surrounds the obstacle, then breaks and the residual part is quickly
captured. But now a new line comes: it starts both surrounding the obstacle and pushing the dislocation
loop. Since the force is not enough to climb the well, the residual dislocation shrinks and disappears, just
while a new loop is created and captured.
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t = 0 t = 0.1 t = 0.15 t = 0.2 t = 0.25

t = 0.3 t = 0.31 t = 0.35 t = 0.42 t = 0.5

t = 0.6 t = 0.65 t = 0.68 t = 0.72 t = 0.75

t = 0.77 t = 0.8 t = 0.82 t = 0.85 t = 0.9

Figure 10: Capturing of dislocation lines vs non-local interactions

7.4.4 Test 4: pinning and cooperative behavior

Here we illustrate how the non-local interactions between different dislocations can give rise to a cooperative
behavior. To this end we consider again a velocity of the form c0(x) = c1(x) + L, with L = 1, x = (x1, x2)
and

c0(x) =

{
x2

1/( 7
8x2

2 + 1
32 )2 − 1 if |x1| ≤ 7

8x2
2 + 1

32 ,
0 otherwise ,

so that the corresponding obstacle is a region with curved boundary which cut in halves the square (see
Figure 11). With this choice we both force the whole dislocation line to pass through the obstacle and create
self-interactions. Nevertheless Figure 11 shows a single dislocation line (p = 1) slowing down rapidly and
stopping: its self-force is not enough to overcome the obstacle.

We then consider three lines (p = 3), one of them already trapped in the middle of the obstacle. We
clarly see in Figure 12 that dislocations help one another periodically.
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t = 0 t = 0.2 t = 0.35 t = 0.45 t = 0.5

t = 0.6 t = 0.9 t = 1.4 t = 1.9 t = 2.4

Figure 11: Pinning of a single dislocation line: self-interactions are not enough

t = 0 t = 0.1 t = 0.25 t = 0.35 t = 0.38

t = 0.4 t = 0.45 t = 0.55 t = 0.68 t = 0.85

Figure 12: Three dislocation lines in cooperative motion
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