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Abstract

We study the existence of (distribution/viscosity) solutions of a singular parabolic/Hamilton-Jacobi coupled
system. Our motivation stems from the study of the dynamics of dislocation densities in a crystal of finite size.
The method of the proof consists in considering a parabolic regularization of the system, and then passing to the
limit after obtaining some uniform bounds using in particular an entropy estimate for the densities. To cite this
article: A. Names, C. R. Acad. Sci. Paris, Ser. I ••• (••••).

Résumé

Existence globale de solutions pour un système couplé parabolique/Hamilton-Jacobi singulier
avec condition de Dirichlet. Nous étudions l’existence de solutions mixtes (distribution/viscosité) pour un
système couplé parabolique/Hamilton-Jacobi posé sur un interval. Notre motivation vient de l’étude de la dy-
namique de densités de dislocations dans un cristal de taille finie. L’idée de la preuve consiste à considérer une
régularisation parabolique appropriée, et ensuite à passer à la limite en utilisant en particulier une estimation
entropique pour les densités. Pour citer cet article : A. Names, C. R. Acad. Sci. Paris, Ser. I ••• (••••).

1. Version française abrégée

Pour tout temps T > 0, et l’interval spatial I = (−1, 1), nous étudions le système parabolique/Hamilton-
Jacobi suivant :

{

κtκx = ρtρx sur IT := I × (0, T ),

ρt = ρxx − τκx sur IT ,
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qui est une version intégrée du modèle de Groma, Csikor et Zaiser [4] décrivant la dynamique de densités
de dislocations dans un cristal. Les solutions physiquement acceptables, correspondant à des densités
positives de dislocations, sont celles vérifiant

κx ≥ |ρx| dans D′(IT ).

Notre résultat principal est :

Théorème 1.1 (Existence globale). Soit (ρ0, κ0) une donnée initiale sur I satisfaisant (4), (5). Alors
il existe une fonction (ρ, κ) telle que pour tout T > 0, (ρ, κ) ∈ (C(IT ))2 avec ρ ∈ C(IT ), solution de (1),
(6), avec les conditions initiales (2), et les conditions de Dirichlet au bord (3).

L’idée de la preuve du Théorème 1.1 consiste à considérer une régularization parabolique (8) du système
(1), en ajoutant une petite viscosité ε > 0. Nous prouvons alors l’existence globale (Théorème 2.3) d’une
solution au niveau ε, puis passons à la limite quand ε tend vers zéro.

2. Introduction and main results

Motivated by the study of the elastoviscoplastic properties of crystals, Groma, Csikor and Zaiser [4]
have proposed a model describing the dynamics of dislocation densities. Dislocations are defects in a
crystal structure that move when submitted to an exterior applied stress. We consider a one dimensional
framework where the crystal is modelized by the interval I := (−1, 1), and we consider two types of
dislocation defects : the positive and negative ones (according to their Burgers vector, see [5]). Let θ+

and θ− represent the density of the positive and negative dislocations respectively. Indeed, we will work
with the primitives (up to a constant) :

ρ±x = θ±, ρ = ρ+ − ρ− and κ = ρ+ + ρ−.

For a given time T > 0, and τ ∈ R, a constant applied stress, we consider an integrated form of the model
described in [4], namely :

{

κtκx = ρtρx on IT := I × (0, T ),

ρt = ρxx − τκx on IT ,
(1)

with initial and boundary conditions

ρ(x, 0) = ρ0(x), κ(x, 0) = κ0(x), ∀x ∈ I, (2)

ρ(±1, t) = 0 and κ(±1, t) = ±1, ∀t ∈ (0, T ). (3)

The non-negativity of the densities θ+ and θ− at the initial time is interpreted in terms of the unknowns
ρ0 and κ0 by :

κ0
x ≥ |ρ0

x| on I. (4)

Denote for s, r ∈ N, Dr
tD

s
xu = ∂s+ru

∂tr∂xs , and denote by ∂I the boundary of I, IT the closure of IT , and by
D′(IT ) the space of distributions over IT . We now introduce the notion of viscosity solution :

Definition 2.1 (Viscosity solution). Assume ρ ∈ C1(IT ). A function κ ∈ C(IT ) such that x 7→ κ(x, t)
is non decreasing, is called a viscosity solution of the first equation of (1) if it satisfies ∀φ ∈ C1(IT ) :
(i) for any local maximum X0 = (x0, t0) ∈ IT of κ− φ, we have : φt(X0)φx(X0) ≤ ρt(X0)ρx(X0),
(ii) for any local minimum X0 = (x0, t0) ∈ IT of κ− φ, we have : φt(X0)φx(X0) ≥ ρt(X0)ρx(X0).

The main result of this note is the following :
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Theorem 2.2 (Global existence of a mixed solution). Let ρ0, κ0 ∈ C∞(Ī) satisfying (4) and

Dxρ
0, Dxκ

0 ∈ C∞
0 (I). (5)

Then there exists (ρ, κ) such that for every T > 0, (ρ, κ) ∈
(

C(IT )
)2

with ρ ∈ C1(IT ), is a solution of
(1), (2) and (3). Moreover, this solution satisfies :

κx ≥ |ρx| on D′(IT ). (6)

However, the solution has to be interpreted in the following sense :
(i) κ is a viscosity solution of κtκx = ρtρx in IT ,
(ii) ρ is a distributional solution of ρt = ρxx − τκx in IT ,
(iii) the initial and the boundary conditions are satisfied pointwisely.

The principal difficulty we have to face is to deal with the first equation of (1), that we can formally
rewrite as κt = ρtρx/κx which is singular as κx vanishes. The idea is to pass to the limit as ε→ 0 in the
family of solutions (ρε, κε), ε > 0, of the particular 1 parabolic regularization of (1), namely :







κεt = εκεxx +
ρεxρ

ε
xx

κεx
− τρεx on IT

ρεt = (1 + ε)ρεxx − τκεx on IT ,

(8)

with some initial data and the same boundary conditions

ρε(x, 0) = ρε,0(x), κε(x, 0) = κε,0(x), ∀x ∈ I, (9)

ρε(±1, t) = 0 and κε(±1, t) = ±1, ∀t ∈ (0, T ). (10)

Concerning system (8), (9) and (10) we have the following global existence and uniqueness result :

Theorem 2.3 (Global existence of smooth solutions for the regularized system, [6]). Let
ρε,0, κε,0 ∈ C∞(Ī) satisfying the compatibility conditions :

(1 + ε)ρε,0xx = τκε,0x and (1 + ε)κε,0xx = τρε,0x on ∂I, (11)

and
κε,0x > |ρε,0x | on Ī . (12)

Then there exists (ρε, κε) ∈ (C∞(Ī × (0,∞)))2 unique solution of (8), (9) and (10) for T = ∞, satisfying
for r, s ∈ N :

(Dr
tD

s
xρ
ε, Dr

tD
s
xκ

ε) ∈ (C(Ī × [0,∞)))2, 2r + s ≤ 3 (13)

and
κεx > |ρεx| on Ī × [0,∞). (14)

The boundary conditions (11) that we have imposed on the initial data of the regularized system are
natural here. In fact, assume ρε and κε are sufficiently regular solutions of (8), (9) and (10). From (10),
we know that ρε and κε are constants on ∂I × (0, T ) and therefore ρεt = κεt = 0 on ∂I × (0, T ) which,
using (8) at time t = 0, immediately implies (11). The compatibility conditions (11), joint with the Hölder
theory for parabolic equations imply the regularity (13).

1 This comes from the natural parabolic regularization for the system satisfied by θ±, which is :

θ
±,ε

t
= εθ

±,ε
xx ±

((

θ
+,ε
x − θ

−,ε
x

θ+,ε + θ−,ε
− τ

)

θ±,ε

)

x

with θ±,ε =
κε

x ± ρε
x

2
. (7)
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To do the proof of Theorem 2.2, we will apply Theorem 2.3 with initial conditions ρε,0, κε,0 constructed
from ρ0, κ0. In fact, condition (5) is a sufficient technical condition to insure (11) and (12) for instance,

with the special choice : ρε,0(x) = ρ0(x)+ετψ(x)
(1+ε)2 , κε,0(x) = κ0(x)+εx

1+ε , with ψ(x) = 1
4τ2 [1 − cos τ(x2 − 1)]

when τ 6= 0.

3. Sketch of the proof of Theorem 2.2

We need a framework where system (1) is stable under approximation. Roughly speaking, the C1 re-
gularity of ρ that appears in Theorem 2.2 is expected since it satisfies a parabolic equation (the second
equation of (1)). In this case, considering the first equation of (1), we see that the right hand side ρtρx
is continuous and hence, assuming κx ≥ 0, we can interpret κ as a viscosity solution. This takes us in
a natural way to the framework of viscosity solutions where the stability property is well satisfied (see
[1, Lemma 2.3]). We want to show (as ε goes to zero) that (ρε, κε) → (ρ, κ) in (L∞

loc(IT ))2, ρεx → ρx in
L∞
loc(IT ), and ρεt → ρt in D′(IT ) with ρt ∈ C(IT ).

Step 1. (Convergence of κε). Writing down the entropy associated to system (7)

Sε(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx,

we show that Sε(t) ≤ C(T ) for t ∈ [0, T ], which implies that
∫

I
κεx log κεx ≤ C1(T ), which gives the

ε-uniform control of the modulus of continuity of κε with respect to the variable x. On the other hand,
remark that κε satisfies κεt − εκεxx = fε where we will show that fε is ε-uniformly bounded. Then it is
possible to deduce locally the ε-uniform control of the modulus of continuity of κε with respect to the

variable t. Indeed, we have fε =
ρε

x

κε
x
Aεx with Aε = ρεx − τκε satisfying Aεt = (1 + ε)Aεxx +

τρε
x

κε
x
Aεx. Hence,

using interior estimates for parabolic equations (see [7, Proposition 7.1]), we obtain

Aε → A and Aεx → Ax in L∞
loc, (15)

and joint to (14), we conclude that fε is ε-uniformly bounded. Finally, using the fact that ‖κε‖L∞(IT ) ≤ 1,
the convergence of κε directly follows by Arzela-Ascoli Theorem.

Step 2. (Convergence of ρε, ρεx and ρεt ). Using similar arguments as in Step 1, particularly (14), and the
fact that ρεt −ερ

ε
xx = Aεx, we deduce that ρε → ρ in L∞

loc(IT ). However, since ρε satisfies a linear parabolic
equation (the second equation of (8)), we can write ρεx = τκε + Aε, and ρεt = ερεxx + Aεx, therefore using
(15), we deduce, with ρt = Ax ∈ C(IT ), that ρεx → ρx in L∞

loc(IT ), and ρεt → ρt = Ax in D′(IT ).

Step 3. (Passing to the limit and boundary conditions). We rewrite system (8) in terms of Aε, we get :

{

κεtκ
ε
x = εκεxκ

ε
xx + ρεxA

ε
x on IT

ρεt = ερεxx +Aεx on IT .

Using Steps 1 and 2, we can pass to the limit in the above system, using in particular the stability
property for viscosity solutions in order to pass to the limit in the first equation. Our result then directly
follows. The only thing left is to recover the boundary conditions. This is made by the equicontinuity of
ρε and κε with respect to x near ∂I × [0, T ], and the equicontinuity of ρε and κε with respect to t near
I × {t = 0}.
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4. Sketch of the proof of Theorem 2.3

Step 1. (A lower bound on κεx). We have the following comparison principle for system (8) (which gives
a stronger version than inequality (6) for system (1)).

Proposition 4.1 (A comparison principle for system (8)). Let (ρε, κε) be the solution given by
Theorem 2.3. Choose β = β(ε, τ) > 0 large enough. Let M(x, t) := cosh(βx){κεx(x, t)−

√

γ2(t) + (ρεx(x, t))
2}

for (x, t) ∈ IT , where γ(0) = γ0
2 for some γ0 ∈ (0, 1), with κε,0x ≥

√

γ2
0 + (ρε,0x )2 on I, and

γ′

γ
≤ −

(

c0 + ‖ρεxxx(., t)‖L∞(I)

)

, c0 = c0(ε, β, τ). (16)

Then m(t) := minIM(x, t) satisfies m(t) ≥ γ2(t) for all t ∈ [0, T ]. In particular, we have

κεx(x, t) ≥
√

γ2(t) + (ρεx(x, t))
2 on IT . (17)

The idea of the proof of Proposition 4.1 is to write the partial differential inequality satisfied by M(x, t)
derived from system (8), and to deduce that m(t) satisfies the following ordinary differential inequality
in the viscosity sense :

mt ≥ b0m+ b1

for some coefficients b0, b1 depending in particular on γ, γ′ and ρxxx. On the other hand, we can show
that

(γ2)t ≤ b0γ
2 + b1,

and we conclude by comparison.

Comments on the strategy of the proof of Theorem 2.3. Recall that we work on IT . The term E that will

appear in the sequel may certainly vary from line to line but always has the form E = E(T ) = cecT , c > 0
is a positive constant independent of time but depending on ε. By applying a fixed point argument, we
can show the existence of a local smooth solution (ρε, κε) of (8), (9) and (10) for T > 0 small enough.
This solution satisfies inequality (17) of Proposition 4.1 which somehow linearizes the first equation of
(8) and may leads to a set of a priori estimates on the solution. We remark form inequality (16) that we
need to have a good control on ‖ρεxxx(., t)‖L∞(I) in order to prevent γ from vanishing at a finite time.
Otherwise, we can not guarantee the long time existence of (ρε, κε). In fact, using Hölder estimates for
parabolic equations [9], we get :

‖ρεxxx(., t)‖L∞(I) ≤
E

γ(t)
, (18)

which, if plugged in (16), does not prevent γ from vanishing, and here is the principal difficulty in treating
system (8). More a priori estimates concerning system (8) can also be obtained, namely for t ∈ (0, T ) :

‖ρεxxx‖BMOp(I×(0,t)) ≤ E and ‖ρεxxx‖W 2,1
2 (I×(0,t)) ≤

E

γ4(t)
, (19)

with W 2,1
2 (IT ) = {u ∈ L2(IT ), (ut, ux, uxx) ∈ (L2(IT ))2}, and the parabolic bounded mean oscillation

space BMOp is now recalled.

Definition 4.2 (Parabolic bounded mean oscillation space). A function u ∈ L1
loc(IT ) is said to be of

bounded mean oscillation, u ∈ BMOp(IT ), if the quantity : ‖u‖BMOp(IT ) = sup
Q⊂IT

(

1

|Q|

∫

Q

|u−mQ(u)|

)

is finite. Here Q = Qr(x0, t0) = {(x, t); |x− x0| < r, t0 − r2 < t < t0} with r > 0, and mQ(u) = 1
|Q|

∫

Q
u.

The BMOp space is a Banach space whose elements are defined up to an additive constant.
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Step 2. (A parabolic Kozono-Taniuchi inequality). We seek to find an estimate on ‖ρεxxx(., t)‖L∞(I) better

than (18). In fact, the space L∞ lies in between the spaces BMOp and W 2,1
2 , and it seems natural to

estimate the L∞ norm by interpolation between these two spaces. Indeed, this is the goal of the next
result.

Proposition 4.3 (A parabolic Kozono-Taniuchi inequality.) Let u ∈ W 2,1
2 (IT ), then there exists

a constant E such that, for all t ∈ (0, T ), the following estimate holds (with log+ a = max(0, log a)) :

‖u‖L∞(I×(0,t)) ≤ E‖u‖BMOp(I×(0,t))

(

1 + log+ ‖u‖W 2,1
2 (I×(0,t))

)

. (20)

The proof is an adaptation of the Kozono-Taniuchi inequality which is shown on the whole space R
n in

the elliptic case [8, Theorem 1]. It is worth mentioning that the original type of the logarithmic Sobolev
inequality was found in [2], and [3]. Using inequality (20) together with (19), we obtain :

‖ρεxxx(., t)‖L∞(I) ≤ E

(

1 + log+ E

γ4(t)

)

. (21)

Step 3. (Long time existence). Using the sharper estimate (21) on ‖ρεxxx(., t)‖L∞(I), we can choose γ
solution of the following ODE :

γ′

γ
= −E

(

1 + log+ 1

γ

)

,

with some new constant E = E(T ). From Proposition 4.1, we finally deduce that :

κεx(., t) ≥ γ(t) ≥ e−e
ec(t+1)

> 0 for t ∈ [0, T ], (22)

where c > 0 is a positive constant independent of time. Indeed, the time T being arbitrary, we see that
(22) is true for all time t ≥ 0. From (22), the following a priori estimates on ρε and κε can be obtained :

‖Ds
xρ
ε(., t)‖L∞(I) ≤ ee

ec(t+1)

, ‖Ds
xκ

ε(., t)‖L∞(I) ≤ ee
ec(t+1)

, ∀s ∈ N, s ≤ 3, ∀t ≥ 0. (23)

The above a priori estimates (22) and (23) permit to show the long time existence by time iteration.
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