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Abstract

In this paper, we give a review of recent results about the homogenization of particle systems

with applications to Frenkel-Kontorova models and dislocation dynamics of curves. We under-

line the main ideas which allow us to extend the nonlinear homogenization methods for viscosity

solutions, to the present framework of particles in interactions, or moving fronts in interactions.
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1 Introduction

In this paper we are interested in the homogenization of dislocation dynamics. Disloca-

tions are defects in crystals, that can move in the material when they are submitted to

a shear stress. In this introduction we will explain how we can modelize the dynamics of

those defects by the evolution of particle systems in dimension 1. We will moreover give a

first homogenization result in this framework, for nearest neighbors interactions between

particles. The limit equation is identified as a Hamilton-Jacobi equation. In Section 2, we

will introduce more material, like the notion of hull function, and the Ansatz to explain

the main ideas which allow to justify the homogenization. In Section 3, for the case of

two-body interactions, we will introduce the notion of cumulative distribution function.

In this case, the effective equation is a non-local Hamilton-Jacobi equation, involving a

half-Laplacian which is related to the long range interaction forces which behave like 1/x.
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A suitable notion of viscosity solution will be given and the notion of correctors will be

presented. Qualitative properties of the effective Hamiltonian will be also given. Finally,

in Section 4, we will introduce the modelling for the dynamics of dislocation curves, and

we will also provide a homogenization result. Detailed proofs of the results presented in

this paper can be found in [6, 7].

1.1 Modelling of dislocation dynamics by particle systems

Dislocations are curves defects in crystals that can move inside crystallographic planes

of the material. In the simplest case, we can assume that theses curves are parallel

straight lines (along the direction e2) all moving in the same plane of basis (e1, e2). For

this special geometry, the i-th line can be described by its first coordinate (along the

direction e1) that we denote by the real number Ui. We also assume that these positions

of the dislocations are ordered, i.e. satisfy for all i ∈ Z

Ui < Ui+1 .

In particular, there is no “shock” between two particles. The typical evolution of the

position Ui of the dislocation is given by the overdamped dynamics:

m0
d2Ui

dτ2
+ k

dUi

dτ
= fi, i ∈ Z ,

where τ is the time variable, m0 ≥ 0 is the effective mass of the dislocation, and k > 0

is the damping factor. Here fi is the effective force acting on the i-th dislocation. We

assume that the force fi has two main contributions:

fi = fper
i + f int

i ,

where f int
i is the force created by the interaction between the i-th dislocation and its m

nearest neighbors (m on the left and m on the right). This means that we can write this

contribution as

f int
i = −

∑

j∈{−m,...,m}\{0}

V ′(Ui − Uj) ,

where V is the potential of pair interactions. On the one hand, the case m = 1 is the

simplest case and corresponds to the interactions with the first nearest neighbors. On

the other hand, the case m = +∞ corresponds to considering all two-body interactions

between dislocations. The other contribution fper
i describes the interaction of the i-th

dislocation with the other fixed defects of the crystal (like for instance fixed dislocations).

To simplify the analysis, we simply assume that fper
i is 1-periodic, and write it as

fper
i = f − V ′

0(Ui) ,
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where V0 is a 1-periodic potential and f is a constant effective force acting on the dislo-

cation, that can be interpreted as the applied resolved shear stress in the material.

Our main goal is to describe the behaviour at large scales of this infinite system

of particles, i.e. to perform the homogenization of this system. Even if under suitable

assumptions, the homogenization can be done when the effective mass m0 is small enough

(see [8]), we will restrict our presentation to the case where m0 = 0, i.e. the fully

overdamped dynamics. Without loss of generality, we can take the damping factor k = 1,

and we have





dUi

dτ
= F (Ui−m, ..., Ui+m), i ∈ Z ,

with F (Ui−m, ..., Ui+m) = f − V ′
0(Ui) −

∑

j∈{−m,...,m}\{0}

V ′(Ui − Uj) .

(1.1)

1.2 First assumptions and first homogenization result

Dislocation dynamics is described by this system for m = +∞ and the special two-body

interaction V (x) = − ln |x| (see Subsection 3.7 for the results in this case).

Nevertheless, we can study systems (1.1) for general m and potentials V , which describe

the evolution of general systems of particles. In particular, when m is finite, observe that

because of the ordering of the particles (Ui < Ui+1), the natural domain of definition of

F is

D =
{
(U−m, ..., Um) ∈ R

2m+1, U−m < U−m+1 < · · · < Um

}
.

We then make the following basic assumptions:

(A) Assumptions on the potentials V0 and V :

i)(Periodicity) V0 ∈ C2(R) and V0(x + 1) = V0(x),

ii)(Convexity) V is convex on [0,+∞) and V is convex on (−∞, 0],

iii)(Regularity) V ′′ is bounded on (0,+∞) and on (−∞, 0) .

Let us make a few comments on these assumptions. In assumption Aii), the convexity

of the potential implies on D that

F (U−m, ..., Um) is non-decreasing in each U i for 1 ≤ |i| ≤ m. (1.2)

This property is essential to ensure a comparison principle for the system (1.1) and in

particular to preserve the ordering of the particles. Remark also that condition Aii)

allows the potential to be Lipschitz continuous but non convex at the origin.
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The regularity of the potentials V0 and V given respectively in assumptions Ai) and Aiii)

are sufficient to ensure that the function F defined in (1.1) is globally Lipschitz contin-

uous on D.

A typical example of such a system is the classical Frenkel-Kontorova model (FK)

with

m = 1, V (x) =
1

2
x2, V0(x) = sin(2πx) . (1.3)

In this model, each particle Ui can be interpreted as the position of an atom, and this

model has been used for instance to describe qualitatively the dynamics of a single dislo-

cation in a lattice of atoms (see [10]). This model can also describe the friction between

two materials. Indeed, this model was originally introduced in Kontorova, Frenkel [10]

to describe the plasticity at a microscopic level. Such a model is sketched on figure 1.

i−1 i i+1 i+2

periodic potential

Figure 1: Sketch of the chain of particles for the classical FK model

In order to make precise the initial position of the particles, let us consider a Lipschitz

continuous function u0(x) which satisfies the following assumption:

(I0) Initial gradient bounded from above and below

0 < 1/K0 ≤ (u0)x ≤ K0 on R ,

for some fixed K0 > 0. Let us now assume that

Ui(0) = ε−1u0(iε) ,

with ε > 0.

It is then natural to ask what is the macroscopic behaviour of the solution U = (Ui)i∈Z

as ε goes to zero. To this end we define the following function which describes the rescaled

positions of the particles

uε(t, x) = εU⌊ε−1x⌋(ε
−1t) (1.4)

where ⌊·⌋ denotes the floor integer part and where the particles satisfy system of ODE’s

(1.1), which in the particular case (1.3) can be written

dUi

dτ
= Ui+1 + Ui−1 − 2Ui − 2π cos(2πUi), i ∈ Z .
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In the limit ε = 0, we will see that the effective equation is the following Hamilton-

Jacobi equation





u0
t = F (u0

x) for (t, x) ∈ (0,+∞) × R ,

u0(0, x) = u0(x) for x ∈ R ,

(1.5)

where the function F will be identified later on.

More precisely, we have the following homogenization result:

Theorem 1.1. (Homogenization with m nearest neighbors interactions)

Under assumption (I0)-(A), there exists a continuous function F : R → R, such that the

function uε converges uniformly on compact sets of [0,+∞) × R to the unique viscosity

solution u0 of (1.5).

Remark 1.2. If θ = u0
x denotes the macroscopic density of particles, we can see, by

deriving equation (1.5), that it solves formally the following conservation law:

θt = (F (θ))x .

2 Homogenization in the case of the m nearest neigh-

bors interactions

One important remark is that we can imbed the ODE system (1.1) into a single PDE.

To this end, for a given function v(y) with y ∈ R, we define

[v]m(y) = (v(y − m), v(y − m + 1), ..., v(y + m)) .

Then we can look for solutions u(τ, y) to the following “finite differences-like” PDE

uτ = F ([u(τ, ·)]m) for (τ, y) ∈ (0,+∞) × R . (2.1)

In the present paper, we work with viscosity solutions, which are possibly discontinuous

(see for instance [5] for a general introduction to the viscosity solution theory).

We see in particular that Ui(τ) = u(τ, i) for i ∈ Z. Then equation (2.1) can be

interpreted as the evolution of a family of systems of ODE’s indexed by a parameter

a ∈ [0, 1). This parameter is the fractional part of the general coordinate y = i + a.

2.1 Effective Hamiltonian and notion of hull function

To study the solutions of (2.1), it is classical to introduce the so-called hull function, i.e.

a function h(z) such that u(τ, y) = h(py+λτ) is a solution of (2.1). We refer for instance
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to the pioneering work of Aubry [1], and Aubry, Le Daeron [2], where, in particular, they

studied this notion in details in the stationary case.

More precisely we introduce the

Definition 2.1. (Hull function)

Under assumption (A) and given p ∈ (0,+∞) and a number λ ∈ R, we say that h(z) is

a hull function for the problem (2.1), if and only if h ∈ L∞
loc(R) and satisfies






λhz = F (h(z − mp), ..., h(z + mp))

h(z + 1) = h(z) + 1

hz(z) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣

for all z ∈ R . (2.2)

Then we have the following characterization of the effective Hamiltonian:

Theorem 2.2. (Effective Hamiltonian versus hull function)

Under assumption (A) and given p ∈ (0,+∞), there exists a unique real number λ such

that there exists a hull function h (depending on p) satisfying (2.2). Moreover this real

number λ is denoted by F (p) and it defines a continuous function F : (0,+∞) → R.

2.2 The general homogenization result

We now consider the following problem satisfied by uε(t, x)






uε
t = F

([
uε(t, ·)

ε

]ε

m

)
for (t, x) ∈ (0,+∞) × R ,

uε(0, x) = u0(x) for x ∈ R ,

(2.3)

where, for some function v(x), we set

[v]
ε
m (x) = (v(x − mε), ..., v(x + mε)) .

Then we have the following homogenization result

Theorem 2.3. (Homogenization)

Under assumptions (I0)-(A), the solution uε to (2.3) converges uniformly on compact sets

of [0,+∞)×R to the unique viscosity solution u0 of (1.5), where the effective Hamiltonian

F is given in Theorem 2.2.

Remark 2.4. Theorem 1.1 is a corollary of Theorem 2.3, because of the following in-

equality uε − ε⌈K0⌉ ≤ uε ≤ uε, which follows from the comparison principle.
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Let us also mention that our result can be seen as a natural generalization of corre-

sponding homogenization results for Hamilton-Jacobi equations, whose literature is now

huge. Let us simply cite the pioneering paper of Lions, Papanicolaou, Varadhan [11].

Concerning the homogenization of equations with periodic terms in u/ε (which is the

case of the models considered in the present paper), only very few results exist. Let us

mention the recent result of Imbert, Monneau [9] and the one of Barles [3]. We can also

cite the work of Boccardo, Murat [4] on the homogenization of elliptic equations.

2.3 Ansatz for the proof of convergence

The proof follows the lines of the Evans’ perturbed test function method, that we do not

recall here. Let us only focus, at a formal level, on the additional difficulties raised by

the dependence of the non-linearity F on the oscillating variable u/ǫ.

To simplify, let us assume that u0 is C1 and that

p = u0
x(t0, x0), λ = u0

t (t0, x0) = F (p) .

Then the natural ansatz (which can be seen as the perturbed test function) is

ûε(t, x) = εh

(
u0(t, x)

ε

)

where h is the hull function.

When h is smooth enough (i.e. C1 here), then we can compute with z =
u0(t, x)

ε
:

ûε
t (t, x) − F

([
ûε(t, ·)

ε

]ε

m

(x)

)

= u0
t hz(u

0/ε) − F

([
h

(
u0(t, ·)

ε

)]ε

m

(x)

)

= (u0
t − λ) hz + F ([h(·)]pm(z)) − F

([
h

(
u0(t, ·)

ε

)]ε

m

(x)

)

= o(1) in a neighborhood of (t0, x0)

where we have used the equation satisfied by h to get the third line. For the fourth line,

we have used the fact that h(z) is Lipschitz continuous in z and that u0 is C1.

By perturbations, we understand that we can easily get sub and supersolutions in a small

neighborhood of (t0, x0). This can then be used to justify the limit equation.
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In the general case, we can not perform directly this computation. The difficulty is

due to the fact that h(z) may be discontinuous in the variable z. We can nevertheless

overcome this difficulty, by replacing the hull function h by a Lipschitz continuous su-

persolution or a Lipschitz continuous subsolution of the equation satisfied by the hull

function.

2.4 Sketch of the construction of the hull function

Step 1: the Cauchy problem

We consider the following Cauchy problem

{
wτ = F ([w(τ, ·)]m) for (τ, y) ∈ (0,+∞) × R ,

w(0, y) = py for y ∈ R .
(2.4)

Because of the invariance of the problem by integer translations on w and the special

form of the initial condition (look at its 1
p
· Z translations in space), we see that

w(τ, y + 1/p) = w(τ, y) + 1 . (2.5)

Moreover, from the invariance by translations in y and the comparison principle, we can

deduce that

w(τ, y + y′) ≥ w(τ, y) for any y′ ≥ 0 . (2.6)

Step 2: heuristics

The behaviour of W (τ, y) = w(τ, y)−py can be essentially sketched by an ODE, obtained

by neglecting the y variable. One way to charicature the situation is for instance to choose

p = 0, which gives formally for W (τ, y) = W (τ):

Wτ = g(W ) with g(W ) = F (W, ...,W ) .

Here g is 1-periodic, and we can deduce that

|W (τ) − µτ | ≤ C for some µ ∈ R . (2.7)

Step 3: proof of the heuristics

In the general case, using the invariance by continuous translations in time, it is possible

to deduce, from the comparison principle, the existence for any p > 0 of a real number λ

such that

|w(τ, y) − py − λτ | ≤ C (2.8)

with C ∈ N a universal constant (we can choose C = 6). Here inequality (2.8) appears

to be a generalization of (2.7) for every p > 0.
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Step 4: construction of global solutions

Then, up to consider translations in time

wn(τ, y) = w(n + τ, y) − ⌊λn⌋

with n → +∞, we can build a global subsolution w∞ and a global supersolution w∞,

defined as follows

w∞ = lim sup
n→+∞

∗wn, w∞ = lim inf
n→+∞

∗wn

We can next apply the Perron’s method in order to define a solution w∞ as the smallest

supersolution which is above w∞ (and below w∞ + 2C). In particular w∞ still satisfies

(2.8) with the constant C replaced with another constant.

Step 5: identifying the hull function

We now simply define

w̃∞(τ, y) = inf
σ∈R

w∞(τ + σ, y − λσ/p) .

By construction, w̃∞ is still a supersolution which satisfies

w∞ ≤ w̃∞ ≤ w∞ .

By definition of w∞, we deduce that

w∞(τ, y) = w̃∞(τ, y) = h(py + λτ)

with h(z) = w̃∞(0, z/p). Similarly, it is possible to deduce from (2.5)-(2.6) the properties

of the hull function h.

3 Homogenization in the case of two-body interac-

tions

In the case of two-body interactions, we are interested in solutions of (1.1) with m = +∞

and in their collective behaviour as time goes to +∞.

First, the potential V has to have a suitable behaviour at infinity in order to give a

meaning to the sum of the interactions. Second, the system of ODE’s can be transformed

into a single PDE by the use of a cumulative distribution function. Then we can state

the homogenization result for system of ODE’s (Theorem 3.1 below). Next, we stress

the link with the case of short range interactions (i.e. a finite number m of neighbours)

studied above. We next explain how to get such a result. After making precise the

notion of viscosity solution we use, we construct correctors and we give the general
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homogenization result (Theorem 3.5 below). We conclude this section by explaining how

to extend these results to the physical (singular) case V (X) = − ln |X| and by giving

the main qualitative properties of the effective non-linearity defining the limit equation.

The effective non-linearity is important from the point of view of applications since it

governs the macroscopic behaviour of the material.

3.1 Assumptions

We will make the following additional assumption

(A’) Additional assumptions on the potential V :

We assume (A) and moreover the following properties

i)(Symmetry) V (−x) = V (x)

ii)(Vanishing force at infinity) V ′(y) → 0 as |y| → +∞

iii)(Behaviour at infinity) ∃R0 > 0, g0 ≥ 0, such that V ′′(y)y2 = g0 for |y| ≥ R0 .

Let us make a few comments on these assumptions. Assumption A’ii) claims that the

interaction vanishes at infinity, which is very natural. Assumption A’iii) on the behaviour

of the potential at infinity will guarantee the convergence of the serie in (1.1). Finally

assumption A’i) on the symmetry is also very natural for applications in physics, and

will be very helpful in the analysis. For instance, let us consider the dynamics of a finite

number N of particles. Then, using among other things assumption A’i), it is possible

to show that the minimal distance d(τ) between any pair of particles satisfies

d(τ) ≥ d(0)e−τ ||V ′′

0 ||L∞(R) .

In particular, this property avoids any meeting of particles in finite time (even in the

case of an infinite number of particles).

3.2 Homogenization in terms of the cumulative distribution func-

tion

Given the position of the particles with Ui < Ui+1, we will replace the function u of

Section 2 with the following cumulative distribution function defined as follows

ρ(τ, Y ) =
∑

i≥0

H(Y − Ui(τ)) +
∑

i<0

(H(Y − Ui(τ)) − 1) , (3.1)

where H(Y ) = 1{Y ≥0} is the Heaviside function. In Section 4, we will see that this

function ρ can be used very easily to extend the model to the dynamics of curves.
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In order to make precise the initial positions of the particles, let us consider a function

ρ0 which satisfies the following assumption:

(I0’) Initial condition

ρ0 ∈ W 2,∞(R) and ρ′0 ≥ 0 .

We point out that the W 2,∞ regularity appears to be a technical assumption.

For ε > 0, we then define the initial positions Ui of (a finite number Nε of) particles by

considering

ρ(0, Y ) = ⌊ε−1ρ0(εY )⌋ ,

where ⌊·⌋ is the floor integer part. Obviously, for non constant initial data ρ0, the number

Nε of particles goes to infinity as ε goes to zero.

We define the following function which describes the rescaled positions of the particles

ρε(t,X) = ερ
(
ε−1t, ε−1X

)
. (3.2)

In the limit ε = 0, we will see that the effective equation is the following non-local

Hamilton-Jacobi equation






ρ0
t = H(ρ0

X , πg0I1ρ
0) for (t,X) ∈ (0,+∞) × R ,

ρ0(0,X) = ρ0(X) for X ∈ R ,

(3.3)

where the function H will be defined later and I1 is a singular integral operator (see

below). Notice that ρ0
X can be interpreted as the macroscopic density of particles.

For any function v(X), the operator I1 is defined in the Fourier space by

Î1v(ξ) = −|ξ|v̂(ξ) .

It can be seen as the half-Laplacian I1 = −(−∆)
1
2 . A notion of viscosity solution for

equation (3.3) can be defined (see [6]), using the following Lévy-Khintchine expression

of I1w in the real space:

(I1w)(X) =
1

π

∫

R

dZ

Z2

{
w(X + Z) − w(X) − w′(X) Z 1{|Z|≤1}

}
. (3.4)

We have the following homogenization result:

Theorem 3.1. (Homogenization with two-body interactions)

Under assumption (I0’)-(A’), there exists a continuous function H(q, L), which is non-

decreasing in the variable L. Moreover the function ρε converges uniformly on compact

sets of [0,+∞) × R to the unique viscosity solution ρ0 of (3.3).
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3.3 Short range interactions and relation with the nearest neigh-

bors case

The case of short range interactions corresponds to the case where g0 = 0 in assumption

A’iii). A simple example is for instance the case of a potential V with compact support.

In the general case of short range interactions, the effective equation (3.3) is local and

can be written

ρ0
t = H(ρ0

X) with H(q) = H(q, 0) .

Remark also that ρ(τ, Ui) = i and then (up to forget the particular conditions (I0) and

(I0’) that we imposed on the initial conditions), we see that

ρε(t, uε(t, x)) = x for x = kε with k ∈ Z .

Therefore passing formally to the limit, we see that

ρ0(t, u0(t, x)) = x

which is a meaningful relation between the point of view of Section 2 and the one of

the present section. Joint to the equation (1.5) satisfied by u0, we deduce the following

relation between the two effective Hamiltonians that we obtained

H(q) = −qF (1/q) .

3.4 Notion of viscosity solution

We start by writting the equation satisfied by the cumulative distribution function

ρ(τ, Y ). It is possible to see that ρ satisfies

ρτ = |∇Y ρ| {c(Y ) + M [ρ(τ, ·)](Y )} for (τ, Y ) ∈ (0,+∞) × R (3.5)

where for any function w(Y ), the non-local operator M is defined as

M [w](Y ) =

∫

R

dZJ(Z)E (w(Y + Z) − w(Y ))

and E is a variant of the floor integer part, defined as follows

E(ρ) = k −
1

2
if k ≤ ρ < k + 1 for k ∈ Z .

Moreover we have

J = V ′′ on R\ {0} and c(Y ) = V ′
0(Y ) − f . (3.6)
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In order to prove the homogenization result (Theorem 3.1), we need a good notion of

viscosity solution for equation (3.5). To this end, we need to introduce some notation.

Recall that for a function ρ, the function ρ∗ denotes its upper semi-continuous enve-

lope, and ρ∗ denotes its lower semi-continuous envelope. Recall that by definition of E,

we have E∗ = E, while

E∗(ρ) = k −
1

2
if k < ρ ≤ k + 1 for k ∈ Z .

Then, M∗ = M and M∗ denotes the operator M with E replaced with E∗. Remark

in particular that we may have M∗[ρ(τ, ·)](Y0) > M∗[ρ(τ, ·)](Y0) if ρ is constant in a

neighborhood of Y0.

Definition 3.2. (Viscosity solution)

A upper semi-continuous (resp. lower semi-continuous) function ρ : [0,+∞)×R → R is a

viscosity subsolution (resp. supersolution) of (3.5) if for any point (t0, Y0) ∈ (0,+∞)×R

and any test function φ ∈ C2([0,+∞) × R) such that ρ − φ attains a maximum (resp. a

minimum) at the point (t0, Y0), then we have

φt(t0, Y0) ≤ |∇Y φ(t0, Y0)| {c(Y0) + M∗[ρ(t0, ·)](Y0)} , (3.7)

(resp. φt(t0, Y0) ≥ |∇Y φ(t0, Y0)| {c(Y0) + M∗[ρ(t0, ·)](Y0)} ) . (3.8)

A function ρ is a viscosity solution of (3.5), if ρ∗ is a subsolution and ρ∗ is a supersolu-

tion.

Remark that in this definition, we use the operator M∗ for subsolutions and M∗ for

supersolutions. This definition is an adaptation of the definition introduced by Slepčev in

[12], and allows us to get the stability (by passage to the limit) of the solutions. Indeed,

loosely speaking, we can say that the viscosity inequalities (3.7) and (3.8) are the less

restrictive ones we can require, because we always have M∗ ≤ M∗.

In particular, even if it is not completely straightforward, it is possible to check that

the function ρ defined in (3.1) is indeed a discontinuous viscosity solution of (3.5).

3.5 The correctors

For any q ∈ R and v : R → R, let us define

Mq[v](Y ) =

∫

R

dZ J(Z) {E (v(Y + Z) − v(Y ) + qZ) − qZ} .
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Definition 3.3. (Corrector)

Under assumption (A’) and given q, L ∈ R and a number µ ∈ R, we say that v : R → R

is a corrector, if and only if v ∈ L∞(R) and satisfies






µ = |q + ∇Y v| {c(Y ) + L + Mq[v](Y )}

v(Y + 1) = v(Y )

q(q + (∇Y v)(Y )) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣

for all Y ∈ R . (3.9)

Then we have the following characterization of the effective Hamiltonian:

Theorem 3.4. (Effective Hamiltonian versus the corrector)

Under assumption (A’) and given q, L ∈ R, there exists a unique real number µ such that

there exists a corrector (depending on q, L) satisfying (3.9). Moreover the real number µ

is denoted by H(q, L) and this defines a continuous function H : R × R → R, which is

moreover non-decreasing with respect to its second variable L.

The construction of the corrector is similar to the one of the hull function (see Sub-

section 2.4). Remark also that the correctors may be discontinuous (in particular for

µ = 0 which corresponds to the case of the pinning of particles).

Interpretation of the corrector in terms of particles

Let us now consider the function

ρ(τ, Y ) = µτ + qY + v(Y ) .

Assume for instance that q > 0. Then from the last inequality in (3.9), we know that

ρ(τ, Y ) is non-decreasing in Y . Assume moreover that µ 6= 0. Then from the equation

satisfied by the corrector, we deduce that ρ(τ, Y ) is increasing in Y . We then define the

particles of positions Ui(τ) by the relation

ρ(τ, Ui(τ)) = i .

Then we can check that these particles have the dynamics corresponding to the two-body

interactions. Moreover, by construction, we have

Ui(τ + 1/µ) = Ui−1(τ) .

This means that the dynamics of those particles is 1/|µ|-periodic, and after one period,

each particle takes the place of its nearest neighbor (on the left if µ > 0 and on the right

if µ < 0). Remark also that for any irrational q, there is no reason to have any kind of

spatial periodicity in the particle positions Ui.
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3.6 The general homogenization result

We now consider the following problem satisfied by ρε(t,X):






ρε
t = |∇Xρε| {c(X/ε) + Mε[ρε(t, ·)](X)} for (t,X) ∈ (0,+∞) × R ,

ρε(0, x) = ρ0(X) for X ∈ R ,

(3.10)

where, for some function w(X), we set

Mε[w](X) =

∫

R

dZJ(Z)E

(
w(Y + εZ) − w(Y )

ε

)
.

Then we have the following homogenization result:

Theorem 3.5. (Homogenization)

Under assumptions (I0’)-(A’), the solution ρε to (3.10) converges uniformly on com-

pact sets of [0,+∞) × R to the unique viscosity solution ρ0 of (3.3), where the effective

Hamiltonian H is given in Theorem 3.4.

The proof of Theorem 3.5 can be done using the ansatz ρ̂ε(t,X) = ρ0(t,X)+εv(X/ε)

as a good approximation of ρε. The main point is that the non-local term can be

essentially split in two parts:

Mε[ρ̂ε(t, ·)](X) ≃ L + Mp[v](X/ε)

with p = ρX(t,X) and L = πg0I1[ρ
0(t, ·)](X). This essentially allows us to recover the

cell equation for the corrector (see (3.9)).

Remark also that Theorem 3.1 can be seen as a corollary of Theorem 3.5 as in Remark

2.4.

3.7 Extension to the case V (X) = − ln |X|

We have the following homogenization result:

Theorem 3.6. (Homogenization in the case V (X) = − ln |X|)

Assume that V (X) = − ln |X| and V0 satisfies Ai). Then there exists an effective Hamil-

tonian H(q, L). This is a continuous function which is moreover non-decreasing in L.

Then, under the additional assumption (I0’), the function ρε defined in (3.2) converges

uniformly on compact sets of [0,+∞) × R to the unique viscosity solution ρ0 of (3.3).
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This result is the analogue of Theorem 3.1 in the more singular case of a logarithmic

two-body potential. It can be proven that the effective Hamiltonian H is well-defined as

the limit as δ goes to zero, of Hamiltonians Hδ corresponding to approximations Vδ of

V . These approximations Vδ are chosen in such a way that assumptions (A’) are satisfied

for any δ > 0. Nevertheless, remark that we do not know if there exist correctors in the

limit case δ = 0.

Theorem 3.7. (Qualitative properties of H)

Under the assumptions of Theorem 3.6 with f = 0, the function H : R
2 → R satisfies

the following properties:

1. (Orowan law) If V0 ≡ 0 then H(q, L) = qL for q > 0.

2. (Bound) We have

∣∣∣∣
H(q, L)

|q|
− L

∣∣∣∣ ≤ ‖V ′
0‖∞ for (q, L) ∈ (0,+∞) × R.

3. (0-plateau property) If V ′
0 6≡ 0, then there exists r0 > 0 (only depending on

‖V ′
0‖∞) such that:

H(q, L) = 0 for (q, L) ∈ Br0
(0) ∩ (0,+∞) × R.

The proofs of the previous properties are essentially based on the comparison principle

applied at the approximate level Hδ for δ > 0. The Orowan law is well-known in the

framework of the flow rule in elasto-visco-plasticity. The 0-plateau property shows us

the existence of a threshold for the driving force f of the model. Basically, if this driving

force is not large enough, then the dislocations are pinned in the material, and there is

no macroscopic motion, i.e. H = 0. The typical profile of H as a function of L is given

on figure 2.

4 Extension to dislocation dynamics described by the

motion of curves

4.1 The modelling

In the physical application to dislocation dynamics, the dislocations are general curves,

not necessarily straight lines as in Subsection 1.1. In the special case where all these

dislocation curves are contained in a single plane and have the same physical properties

16



L

H
_

Figure 2: Sketch of the graph of the map L 7→ H(q, L)

(namely the same Burgers vector), then we can represent these curves (Γk)k∈Z as level

sets of a single function ρ:

Γk =
{
z ∈ R

N , ρ(z) = k
}

.

For our physical application, we have N = 2, but we will write the model in all dimension

N . Each dislocation Γk creates a stress field, whose resolved shear component (the

resolved Peach-Koehler force) computed at the point y ∈ R
N can be written with a good

approximation as: {
(J − δ0) ⋆ 1{ρ(·)≥k}

}
(y) , (4.1)

where the kernel J satisfies proper assumptions (see below). The typical profile of the

stress given in (4.1) is represented on figure 3. We see that the (discontinuous) profile

represented on figure 3 is a kind of regularization of the function −1/x1.

(J − δ0) ⋆ 1{x∈R2, x1>0}

x1

Figure 3: Typical profile for the Peach-Koehler force created by a dislocation straight

line.
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We make the following assumptions on the kernel J :





J ∈ W 1,1(RN ), J(−z) = J(z) ≥ 0,

∫

RN

J = 1

∃ R0 > 0 and ∃ g ∈ C0(SN−1), g > 0 such that J(z) =
1

|z|N+1
g

(
z

|z|

)
for |z| ≥ R0.

(4.2)

On the one hand, the first line of (4.2) allows us to recover a profile as in figure 3. On

the other hand, the second line of (4.2) is related to the long range interactions between

curves. This can be seen as a generalization of the relation (3.6) under assumption A’iii).

Then, in the framework of linear elasticity, the total stress can be seen as the sum of

the contributions of each dislocation Γk given in (4.1). It is possible to see that the sum

of these contributions, computed at the point y, can be rewritten as follows

M [ρ](y) =

∫

RN

dzJ(z)E (ρ(y + z) − ρ(y)) .

We also assume that these dislocations are distributed in a periodic landscape with

some obstacles. The effective stress field created by these obstacles is represented by a

function c(y) satisfying

c is Lipschitz continuous and Z
N -periodic.

Then the total stress at a point y can be expressed as

Vν(y) = c(y) + M [ρ](y) .

Assuming that each dislocation curve Γk move with the normal velocity equal to the

shear stress Vν , we see that the evolution equation satisfied by the function ρ(τ, y), whose

level sets represent the dislocations, can be written as follows (as a simple generalization

of equation (3.5)):

ρτ = |∇yρ| {c(y) + M [ρ(τ, ·)](y)} for (τ, y) ∈ (0,+∞) × R
N . (4.3)

4.2 Homogenization of the dynamics of curves in interaction

We are interested in the behaviour at large scale of solutions of equation (4.3). This is

equivalent to consider for small ε > 0 the function

ρε(t, x) = ερ

(
t

ε
,
x

ε

)
.

Imposing for instance the following initial condition

ρε(0, x) = ρ0(x) ,
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we will see, in the limit ε → 0, that the effective equation is

{
∂tρ

0 = H
(
∇ρ0, I1[ρ

0(t, ·)]
)

in (0,+∞) × R
N ,

ρ0(0, x) = ρ0(x) on R
N ,

(4.4)

where H is a continuous function and I1 is an anisotropic Lévy operator of order 1

associated with the function g appearing in (4.2). It is defined for any function w ∈

C2
b (RN ) by

I1[w](x) =

∫

RN

dz

|z|N+1
g

(
z

|z|

) {
(w(x + z) − w(x) − z · ∇xw(x) 1{|z|≤1})

}

which is a generalization of the half-Laplacian defined in (3.4). This Lévy operator I1

only keeps the memory of the long range interactions between dislocations, as the effec-

tive Hamiltonian H keeps the memory of the short range interactions.

Then we have the following result:

Theorem 4.1. (Homogenization of dislocation curves)

Under the previous assumptions, there exists a continuous function H : R
N ×R → R such

that H(q, L) is non-decreasing in L. If we assume moreover that ρ0 ∈ W 2,∞(RN ), then

the function ρε converges locally uniformly, as ε → 0, to the unique viscosity solution ρ0

of (4.4).

This result can be proven in the framework of viscosity solutions. The proof is similar

to the one of Theorem 3.5 in the one-dimensional case.
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