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Why machine learning?

Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

Traditionally a tradeoff between cost, accuracy and transferability

Use machine learning to get around these limitations

3 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules



Why machine learning?

Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

Traditionally a tradeoff between cost, accuracy and transferability

Use machine learning to get around these limitations

3 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules



Mymachine learning wishlist

General applicability: suitable for all systems and all types of properties
Well-principled: incorporates structure and symmetries of physical laws
Not only a fancy interpolator: use ML to gain insights and understanding

ĤΨ = EΨ E (q) =
∑
ij

v (rij) + . . . , E (q) = ML (q| {qi ,Vi})
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Mymachine learning wishlist

General applicability: suitable for all systems and all types of properties
Well-principled: incorporates structure and symmetries of physical laws
Not only a fancy interpolator: use ML to gain insights and understanding

{Xi} ⇒ {xi} {xi} = argmin
∑
ij

[s (|Xi − Xj |)− s (|xi − xj |)]2
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MC, Tribello, Parrinello, PNAS (2011); Musil, [...],MC, Chem. Sci. (2018); http://interactive.sketchmap.org



A transferable ML model for
materials and molecules



A universal surrogate quantummodel

Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
Can it be made as accurate and general as the Schrödinger equation?
Kernels are the main ingredient. Think of them as scalar products
between structures, K (A,B) ∼ 〈A|B〉.
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Symmetry-adapted atom-density representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
∣∣X (ν)

〉
R̂
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Symmetry-adapted atom-density representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)
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leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
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Symmetry adapted representations & SOAP kernel

Most of the existing density-based representations and kernels emerge
as special cases of this framework
Not necessary to use position basis. Radial functions and spherical
harmonics→ SOAP power spectrum and kernel
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How well does this work?



100k molecules with coupled-clusters

CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k
training calculations
1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!
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0.14 kcal/mol
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Willatt, Musil,MC, PCCP (2018)

http://dx.doi.org/10.1039/C8CP05921G


Silicon surfaces - complexity in a simple material

More than just molecules: a SOAP-GAP model for Si can capture the dimer
tilt in Si(100)-2x1, and the delicate energy balance that determines the
stability of the Si(111) 7x7 DAS reconstruction
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Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

http://dx.doi.org/10.1126/sciadv.1701816


Accurate predictions for molecular crystals

Substituted pentacenes - model systems for molecular electronics

Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018)

http://dx.doi.org/10.1039/C7SC04665K


Recognizing active protein ligands

A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

http://dx.doi.org/10.1126/sciadv.1701816


More than interatomic potentials

Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials
Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
Accurate enough to do structure determination!
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Accuracy, efficiency and errors



Train set optimization to reduce errors
The train set should cover uniformly the relevant space

Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org
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Sparse representation for data efficiency

Symmetry-functions are hard to choose

Systematic expansions à la SOAP are huge and expensive

Solution: automatic feature selection based on CUR or FPS idea applied to
representation space
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Imbalzano, Anelli, Giofré, Klees, Behler,MC, JCP (2018)

http://dx.doi.org/10.1063/1.5024611


An accurate & inexpensive error estimation

Generate an ensemble of GPR models, and use distribution of predictions

y (X ) =
1

NRS

∑
i

y (i) (X ) , σ2 (X ) =
1

NRS − 1

∑
i

(
y (i) (X )− y (X )

)2
Verify accuracy by the distribution of errors P (|y (X )− yref (X )| |σ (X ))

Use maximum-likelihood to calibrate the uncertainty σ (X )→ ασ (X )γ−1
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Insights from machine learning



Understanding the range of interactions

Environment kernels can be built for different cutoff radii
Dimensionality/accuracy tradeoff, a measure of the range of interactions
A multi-scale kernel K (A,B) =

∑
i wiKi (A,B) yields the best of all worlds -

chemical accuracy on QM9 with∼ 5000 train structures
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A data-driven periodic table of the elements

How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Tensorial properties and beyond



Machine-learning for tensors

In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs

k (X ,X ′)↔ 〈y (X ) ; y (X ′)〉 , so k
(
ŜX , Ŝ ′X ′

)
↔
〈
y
(
ŜX
)

; y
(
Ŝ ′X ′

)〉
Properties that are invariant under Ŝ must be learned with a kernel that
should be insensitive to the operation

k
(
ŜX , Ŝ ′X ′

)
= k (X ,X ′)

How about machine-learning tensorial properties T? The kernel should be
covariant to rigid rotations - need a symmetry-adapted framework

kµν (X ,X ′)↔ 〈Tµ (X ) ;Tν (X ′)〉 → kµν

(
R̂X , R̂′X ′

)
= Rµµ′kµ′ν′ (X ,X ′)R′νν′
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Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csányi, &MC, PRL (2018)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


λ−SOAP: a SO (3) compliant kernel

Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components
Tλ, corresponding to the representations of SO (3)
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

k (X ,X ′) =

∫
dR̂ κ

(
X , R̂X ′

)
, κ (X ,X ′) =

∣∣∣∣∫ ψX (x)ψX ′ (x)dx
∣∣∣∣2

10.1103/PhysRevLett.120.036002
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µ

(
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= Dλ

µµ′

(
R̂
)
T λ
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Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components
Tλ, corresponding to the representations of SO (3)
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities
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Molecular polarizabilities at the CCSD level

DFT is not very accurate for the dielectric response. Train a ML model on
the QM7 dataset with CCSD accuracy
The model can extrapolate to much large compounds (up to aciclovir
C8H11N5O3) with better-than-DFT accuracy
Atom-centered environment decomposition of α and the DFT error
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Learning the dielectric response of water

The SA-GPR framework, and the λ-SOAP kernel, works as well for bulk
systems
The dielectric constant involves non-additive effects. ML improves
dramatically by learning a proxy that is approximately additive

Clausius-Mossotti: α = (ε− 1)(ε+ 2)−1V
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A transferable model of the electron density

Write the density in atom-centered terms. Use a φk ≡ RnY l
m expansion.

F (ρ) =

∫
dr

∣∣∣∣∣∑
ik

cikφk (r− ri)

∣∣∣∣∣
2

+ η |c|2 , cinlm =
∑
jm′

xjnlmk
l
mm′

(
Xi ,Xj

)
Machine-learn directly the full density (non-orthogonal basis is tricky!)

Highly transferable: learn on C4, predict on C8

27 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules

Marzari, Vanderbilt, PRB 1997



A transferable model of the electron density

Write the density in atom-centered terms. Use a φk ≡ RnY l
m expansion.

F (ρ) =

∫
dr

∣∣∣∣∣∑
ik

cikφk (r− ri)

∣∣∣∣∣
2

+ η |c|2 , cinlm =
∑
jm′

xjnlmk
l
mm′

(
Xi ,Xj

)
Machine-learn directly the full density (non-orthogonal basis is tricky!)

Highly transferable: learn on C4, predict on C8

27 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf,MC, arxiv.org/abs/1809.05349



A transferable model of the electron density

Write the density in atom-centered terms. Use a φk ≡ RnY l
m expansion.

F (ρ) =

∫
dr

∣∣∣∣∣∑
ik

cikφk (r− ri)

∣∣∣∣∣
2

+ η |c|2 , cinlm =
∑
jm′

xjnlmk
l
mm′

(
Xi ,Xj

)
Machine-learn directly the full density (non-orthogonal basis is tricky!)

Highly transferable: learn on C4, predict on C8

27 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf,MC, arxiv.org/abs/1809.05349



My wishlist - revisited

General applicability: suitable for all systems and all types of properties
‘‘Nearsightedness’’ of electronic matter ↔ local environment decomposition
Excellent perfomance on benchmark DBs, accurate & cheap error estimate
Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity,
silicon & molecular crystals, NMR shieldings in solids
Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, . . .

Not only a fancy interpolator: use ML to gain insights and understanding
Structure-energy-property maps based on the kernel distance
Understand the nature of chemical interactions by dissecting the ML model
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(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/


