### Physics-Based Machine Learning for Materials and Molecules

Michele Ceriotti https://cosmo.epfl.ch

CECAM Discussion Meeting December 2018, CERMICS





#### http://cosmo.epfl.ch 🔰 Follow @COSMO\_EPFL





CCMX Competence Centre for Materials Science and Technology



#### **S.De, F.Musil, M.Willatt A.Grisafi, D.Wilkins,** A. Anelli, E. Engel, G. Imbalzano

G.Csányi, A.Bartók, C.Poelking, J.Kermode, N.Bernstein F.Paruzzo, A.Hofstetter, L.Emsley C.Corminboeuf, J.Behler, A.Paxton

#### Why machine learning?

- Statistical sampling requires large size and long time simulations, but also an accurate evaluation of electronic energy and properties
- Traditionally a tradeoff between cost, accuracy and transferability
- Use machine learning to get around these limitations



#### Why machine learning?

- Statistical sampling requires large size and long time simulations, but also an accurate evaluation of electronic energy and properties
- Traditionally a tradeoff between cost, accuracy and transferability
- Use machine learning to get around these limitations



### My machine learning wishlist

#### • General applicability: suitable for all systems and all types of properties

Well-principled: incorporates structure and symmetries of physical laws
 Not only a fancy interpolator: use ML to gain insights and understanding



# $\hat{\mathcal{H}}\Psi = E\Psi \quad E\left(\mathbf{q}\right) = \sum_{ij} v\left(r_{ij}\right) + \dots, \quad E\left(\mathbf{q}\right) = ML\left(\mathbf{q} \mid \{\mathbf{q}_{i}, V_{i}\}\right)$

### My machine learning wishlist

- General applicability: suitable for all systems and all types of properties
- Well-principled: incorporates structure and symmetries of physical laws
- Not only a fancy interpolator: use ML to gain insights and understanding



#### My machine learning wishlist

- General applicability: suitable for all systems and all types of properties
- Well-principled: incorporates structure and symmetries of physical laws
- Not only a fancy interpolator: use ML to gain insights and understanding



MC, Tribello, Parrinello, PNAS (2011); Musil, [...], MC, Chem. Sci. (2018); http://interactive.sketchmap.org

### A transferable ML model for materials and molecules

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



$$E(A_j) = \sum_i w_i K(A_j, A_i)$$

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



$$E(\mathcal{A}) = \sum_{i} w_{i}K(\mathcal{A},\mathcal{A}_{i})$$

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ∼ ⟨A|B⟩.



- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}ig
  angle_{\hat{R}}$



Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  ight
  angle_{\hat{m R}}$



$$\langle \mathbf{r} | \mathcal{A} \rangle = \sum_{i} g(\mathbf{r} - \mathbf{r}_{i}) | \alpha_{i} \rangle$$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- ullet Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- ullet Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  ight
  angle_{\hat{m R}}$

$$\int \mathrm{d}\hat{T} \left\langle \mathbf{r} \middle| \hat{T} \middle| \mathcal{A} \right\rangle = \sum_{i} \int \mathrm{d}\mathbf{t} \, g(\mathbf{r} + \mathbf{t} - \mathbf{r}_{i}) \left| \alpha_{i} \right\rangle = \sum_{\alpha} N_{\alpha} \left| \alpha \right\rangle$$
Willatt, Musil, Musi

- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- ullet Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  angle_{\hat{m k}}$



### $\int \mathrm{d}\hat{T} \, \left\langle \mathbf{r} \right| \hat{T} \left| \mathcal{A} \right\rangle \left\langle \mathbf{r}' \right| \hat{T} \left| \mathcal{A} \right\rangle = \int \mathrm{d}\mathbf{r}' \left\langle \mathbf{r}' \right| \mathcal{A} \right\rangle \left\langle \mathbf{r}' + \mathbf{r} \right| \mathcal{A} \right\rangle$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields ( $\nu$  + 1)-body correlation functions  $|\mathcal{X}^{(\nu)}\rangle_{\hat{R}}$

$$\langle \mathbf{r} | \mathcal{A}^{(2)} \rangle_{\hat{T}} = \sum_{ij} | \alpha_i \alpha_j \rangle g(\mathbf{r} - \mathbf{r}_{ij})$$

$$= \sum_j | \alpha_j \rangle \langle \mathbf{r} | \mathcal{X}_j \rangle$$

$$\langle \mathbf{r} | \mathcal{X}_1 \rangle$$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  ight
  angle_{\hat{m R}}$



7

- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



 $\left\langle nn'l \middle| \mathcal{X}^{(2)} \right\rangle_{\hat{R}} = \sum_{m} \left\langle nlm \middle| \mathcal{X} \right\rangle \left\langle n'lm \middle| \mathcal{X} \right\rangle$ 

- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel



Bartók, Kondor, Csányi, PRB (2013)

## How well does this work?

### 100k molecules with coupled-clusters

- CCSD(T) Energetics on the QM9 114k *useful* predictions based on 20k training calculations
- 1kcal/mol error for predicting CCSD(T) based on PM7 geometries; 0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!



Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)

#### 100k molecules with coupled-clusters

- CCSD(T) Energetics on the QM9 114k useful predictions based on 20k training calculations
- 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
   0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

#### 100k molecules with coupled-clusters

- CCSD(T) Energetics on the QM9 114k useful predictions based on 20k training calculations
- 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
   0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!



Willatt, Musil, MC, PCCP (2018)

#### Silicon surfaces - complexity in a simple material

 More than just molecules: a SOAP-GAP model for Si can capture the dimer tilt in Si(100)-2x1, and the delicate energy balance that determines the stability of the Si(111) 7x7 DAS reconstruction



#### Accurate predictions for molecular crystals

- Substituted pentacenes model systems for molecular electronics
- Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels



Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018)

#### Recognizing active protein ligands

- A SOAP-REMatch-based KSVM classifies active and inactive ligands with 99% accuracy; non-additive model is crucial!
- Sensitivity analysis help identify the active "warhead" and could guide drug design and optimization



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

Physics-Based Machine Learning for Materials and Molecules

#### More than interatomic potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

Accurate enough to do structure determination!



Paruzzo, Hofstetter, Musil, De, MC, Emsley, Nature Comm. (2018); http://shiftml.org

#### More than interatomic potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
- Accurate enough to do structure determination!



Paruzzo, Hofstetter, Musil, De, MC, Emsley, Nature Comm. (2018); http://shiftml.org

#### More than interatomic potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
- Accurate enough to do structure determination!



Paruzzo, Hofstetter, Musil, De, MC, Emsley, Nature Comm. (2018); http://shiftml.org

Physics-Based Machine Learning for Materials and Molecules

## Accuracy, efficiency and errors

#### Train set optimization to reduce errors

- The train set should cover uniformly the relevant space
  - Farthest point sampling is a simple, constructive strategy to optimize the training set, opening doors to active learning



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org Physics-Based Machine Learning for Materials and Molecules

#### Train set optimization to reduce errors

- The train set should cover uniformly the relevant space
  - Farthest point sampling is a simple, constructive strategy to optimize the training set, opening doors to active learning



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org Physics-Based Machine Learning for Materials and Molecules

#### Sparse representation for data efficiency

- Symmetry-functions are hard to choose
- Systematic expansions à la SOAP are huge and expensive
- Solution: automatic feature selection based on CUR or FPS idea applied to representation space



Imbalzano, Anelli, Giofré, Klees, Behler, MC, JCP (2018)

#### An accurate & inexpensive error estimation

• Generate an ensemble of GPR models, and use distribution of predictions

$$y(\mathcal{X}) = \frac{1}{N_{RS}} \sum_{i} y^{(i)}(\mathcal{X}), \qquad \sigma^{2}(\mathcal{X}) = \frac{1}{N_{RS} - 1} \sum_{i} \left( y^{(i)}(\mathcal{X}) - y(\mathcal{X}) \right)^{2}$$

Verify accuracy by the distribution of errors P (|y (X) - y<sub>ref</sub> (X)| |σ (X))
 Use maximum-likelihood to calibrate the uncertainty σ (X) → ασ (X)<sup>γ-1</sup>



Musil, Willatt, MC arxiv.org/abs/1809.07653

Physics-Based Machine Learning for Materials and Molecules

#### An accurate & inexpensive error estimation

• Generate an ensemble of GPR models, and use distribution of predictions

$$y(\mathcal{X}) = \frac{1}{N_{RS}} \sum_{i} y^{(i)}(\mathcal{X}), \qquad \sigma^{2}(\mathcal{X}) = \frac{1}{N_{RS} - 1} \sum_{i} \left( y^{(i)}(\mathcal{X}) - y(\mathcal{X}) \right)^{2}$$

- Verify accuracy by the distribution of errors  $P(|y(\mathcal{X}) y_{ref}(\mathcal{X})| |\sigma(\mathcal{X}))$ .
- Use maximum-likelihood to calibrate the uncertainty  $\sigma\left(\mathcal{X}
  ight)
  ightarrowlpha\sigma\left(\mathcal{X}
  ight)^{\gamma-1}$



Musil, Willatt, MC arxiv.org/abs/1809.07653

## **Insights from machine learning**

#### Understanding the range of interactions

- Environment kernels can be built for different cutoff radii
- Dimensionality/accuracy tradeoff, a measure of the range of interactions
- A multi-scale kernel K (A, B) = ∑<sub>i</sub> w<sub>i</sub>K<sub>i</sub> (A, B) yields the best of all worlds chemical accuracy on QM9 with ~ 5000 train structures



Bartók, De, Kermode, Bernstein, Csányi, MC, Science Advances (2017)

#### Understanding the range of interactions

- Environment kernels can be built for different cutoff radii
- Dimensionality/accuracy tradeoff, a measure of the range of interactions
- A multi-scale kernel K (A, B) = ∑<sub>i</sub> w<sub>i</sub>K<sub>i</sub> (A, B) yields the best of all worlds chemical accuracy on QM9 with ~ 5000 train structures



Bartók, De, Kermode, Bernstein, Csányi, MC, Science Advances (2017)

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle,\,|O\rangle,\ldots$
- Expand each ket in a finite basis,  $|\alpha\rangle = \sum_J u_{\alpha J} |J\rangle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
   . . . and as by-product get a data-driven version of the periodic table!

$$\begin{aligned} |\mathbf{H}\rangle &= 0.5 |\bigstar\rangle + 0.1 |\bigstar\rangle + 0.2 |\bigstar\rangle \\ |\mathbf{C}\rangle &= 0.2 |\bigstar\rangle + 0.8 |\bigstar\rangle + 0.3 |\bigstar\rangle \\ |\mathbf{O}\rangle &= 0.1 |\bigstar\rangle + 0.1 |\bigstar\rangle + 0.6 |\bigstar\rangle \end{aligned}$$

Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartók

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



Willatt, Musil, MC, PCCP (2018)

## **Tensorial properties and beyond**

#### Machine-learning for tensors

 In a Gaussian Process framework, the kernel represents correlations between properties. This must be reflected in how it transforms under symmetry operations applied to the inputs

$$k(\mathcal{X},\mathcal{X}') \leftrightarrow \langle y(\mathcal{X}); y(\mathcal{X}') \rangle, \text{ so } k\left(\hat{S}\mathcal{X}, \hat{S}'\mathcal{X}'\right) \leftrightarrow \left\langle y\left(\hat{S}\mathcal{X}\right); y\left(\hat{S}'\mathcal{X}'\right) \right\rangle$$

• Properties that are *invariant* under  $\hat{S}$  must be learned with a kernel that should be insensitive to the operation

$$k\left(\hat{S}\mathcal{X},\hat{S}'\mathcal{X}'\right)=k\left(\mathcal{X},\mathcal{X}'\right)$$

• How about machine-learning tensorial properties **T**? The kernel should be *covariant* to rigid rotations - need a symmetry-adapted framework

 $k_{\mu\nu}\left(\mathcal{X},\mathcal{X}'\right)\leftrightarrow\left\langle \mathsf{T}_{\mu}\left(\mathcal{X}\right);\mathsf{T}_{\nu}\left(\mathcal{X}'\right)\right\rangle \rightarrow\,k_{\mu\nu}\left(\hat{\mathsf{R}}\mathcal{X},\hat{\mathsf{R}}'\mathcal{X}'\right)=\mathsf{R}_{\mu\mu'}k_{\mu'\nu'}\left(\mathcal{X},\mathcal{X}'\right)\mathsf{R}_{\nu\nu'}'$ 



Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csányi, & MC, PRL (2018)

Physics-Based Machine Learning for Materials and Molecules

#### • Recall the definition of SOAP, based on the atom-density overlap

- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$T_{\mu}^{\lambda}\left(\hat{R}\left(\mathcal{X}
ight)
ight)=\mathcal{D}_{\mu\mu^{\prime}}^{\lambda}\left(\hat{R}
ight)T_{\mu^{\prime}}^{\lambda}\left(\mathcal{X}
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}\,D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}\,D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}\,D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathsf{d}\hat{R} D_{\mu\nu}^{\lambda}\left(\hat{R}\right) \kappa\left(\mathcal{X},\hat{R}\mathcal{X}'\right)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}\,D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- DFT is not very accurate for the dielectric response. Train a ML model on the QM7 dataset with CCSD accuracy
- The model can extrapolate to much large compounds (up to aciclovir  $C_8H_{11}N_5O_3)$  with better-than-DFT accuracy
- Atom-centered environment decomposition of lpha and the DFT error



Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349

- DFT is not very accurate for the dielectric response. Train a ML model on the QM7 dataset with CCSD accuracy
- The model can extrapolate to much large compounds (up to aciclovir C<sub>8</sub>H<sub>11</sub>N<sub>5</sub>O<sub>3</sub>) with better-than-DFT accuracy

• Atom-centered environment decomposition of lpha and the DFT error



Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349

#### Physics-Based Machine Learning for Materials and Molecules

- DFT is not very accurate for the dielectric response. Train a ML model on the QM7 dataset with CCSD accuracy
- The model can extrapolate to much large compounds (up to aciclovir  $C_8H_{11}N_5O_3)$  with better-than-DFT accuracy

• Atom-centered environment decomposition of  $\alpha$  and the DFT error



| Method                 | RMSE  |
|------------------------|-------|
| CCSD/DFT               | 0.573 |
| CCSD/ML                | 0.304 |
| DFT/ML                 | 0.403 |
| $\Delta$ (CCSD-DFT)/ML | 0.212 |

Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349

- DFT is not very accurate for the dielectric response. Train a ML model on the QM7 dataset with CCSD accuracy
- The model can extrapolate to much large compounds (up to aciclovir  $C_8H_{11}N_5O_3)$  with better-than-DFT accuracy
- ullet Atom-centered environment decomposition of lpha and the DFT error



Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349

#### Learning the dielectric response of water

- The SA-GPR framework, and the  $\lambda\text{-}\mathsf{SOAP}$  kernel, works as well for bulk systems
- The dielectric constant involves non-additive effects. ML improves dramatically by learning a proxy that is approximately additive



Clausius-Mossotti: 
$$lpha=(arepsilon-1)(arepsilon+2)^{-1}V$$

#### A transferable model of the electron density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

Machine-learn directly the full density (non-orthogonal basis is tricky!)
Highly transferable: learn on C4, predict on C8



Marzari, Vanderbilt, PRB 1997

#### A transferable model of the electron density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

- Machine-learn directly the full density (non-orthogonal basis is tricky!)
- Highly transferable: learn on C4, predict on C8



Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349

#### A transferable model of the electron density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

- Machine-learn directly the full density (non-orthogonal basis is tricky!)
- Highly transferable: learn on C4, predict on C8



Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349

#### My wishlist - revisited

• General applicability: suitable for all systems and all types of properties

- "Nearsightedness" of electronic matter  $\leftrightarrow$  **local** environment decomposition
- Excellent perfomance on benchmark DBs, accurate & cheap error estimate
- Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity, silicon & molecular crystals, NMR shieldings in solids
- Huge potential of a **SA-GPR framework to learn tensors** electric multipoles and response, but also densities, Hamiltonians, . . .

• Not only a fancy interpolator: use ML to gain insights and understanding

- Structure-energy-property maps based on the kernel distance
- Understand the nature of chemical interactions by dissecting the ML model



(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/