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Why machine learning?

o Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

o Traditionally a tradeoff between cost, accuracy and transferability
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Why machine learning?

o Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

o Traditionally a tradeoff between cost, accuracy and transferability
e Use machine learning to get around these limitations

A ‘machine learning”
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My machine learning wishlist

o General applicability: suitable For all systems and all types of properties
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My machine learning wishlist

o General applicability: suitable for all systems and all types of properties
o Well-principled: incorporates structure and symmetries of physical laws
e Not only a fancy interpolator: use ML to gain insights and understanding
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MC, Tribello, Parrinello, PNAS (2011); Musil, [...], MC, Chem. Sci. (2018); http://interactive.sketchmap.org
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A transferable ML model For
materials and molecules



A universal surrogate quantum model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?
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A universal surrogate quantum model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?

E(A) = Z wiK (A}, A))
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A universal surrogate quantum model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?
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A universal surrogate quantum model

e Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties

e Can it be made as accurate and general as the Schrodinger equation?

o Kernels are the main ingredient. Think of them as scalar products
between structures, K (A, B) ~ (A|B).
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |.A)

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |.A)
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Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |A)
o Physical symmetries are recovered by integration over group

de <r’T‘A> =

i Jdtg(r+t—ri) o) =3, Nola)
Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |.A4)
e Physical symmetries are recovered by integration over group
e Use tensor products to reduce information loss
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Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |.A)
o Physical symmetries are recovered by integration over group

e Use tensor products to reduce information loss

° |A(")>? leads naturally to atom-centered decomposition

<P‘A(2)>T B Zij |aiag) g(r — I'w>
TR \&

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-adapted atom-density representations

o Structural representation based on a decorated atom-density vector |.A4)
e Physical symmetries are recovered by integration over group

e Use tensor products to reduce information loss

° |A(”)>? leads naturally to atom-centered decomposition

o Rotational average yields (v + 1)-body correlation functions | X)),

""* [dR <r }%‘Xj> <r' }?‘X]>
J i (x| &|2;) — (r]2) S (] 2®)
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Symmetry adapted representations & SOAP kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

r) =2 9(r—ry)

(X, X') = (X[X') ~ [4(r)
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Symmetry adapted representations & SOAP kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

o

(nlm|X;) = [ dx () Rn(r) Yy, (F)
Bartok, Kondor, Csanyi, PRB (2013)
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Symmetry adapted representations & SOAP kernel

o Most of the existing density-based representations and kernels emerge
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o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel
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Symmetry adapted representations & SOAP kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel
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How well does this work?



100k molecules with coupled-clusters

o CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k
training calculations

Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)
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100k molecules with coupled-clusters

o CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k

training calculations
o 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;

0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!
+CCpm7  -0-AByycc  *CCorr  ~-Aprrcc
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DFT geometry
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1 1 1 | R | 1 1 1 | R |
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n. train
De, Bartok, Csanyi, MC, PCCP (2016);
Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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100k molecules with coupled-clusters

o CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k
training calculations

o 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!
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http://dx.doi.org/10.1039/C8CP05921G

Silicon surfaces - complexity in a simple material

o More than just molecules: a SOAP-GAP model for Si can capture the dimer
tilt in Si(100)-2x1, and the delicate energy balance that determines the
stability of the Si(111) 7x7 DAS reconstruction
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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http://dx.doi.org/10.1126/sciadv.1701816

Accurate predictions for molecular crystals

e Substituted pentacenes - model systems for molecular electronics
e Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels
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Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018)
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http://dx.doi.org/10.1039/C7SC04665K

Recognizing active protein ligands

o A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

e Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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http://dx.doi.org/10.1126/sciadv.1701816

More than interatomic potentials

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
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Paruzzo, Hofstetter, Musil, De, MC, Emsley, Nature Comm. (2018); http://shiftml.org
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More than interatomic potentials

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

e Accurate enough to do structure determination!
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More than interatomic potentials

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

e Accurate enough to do structure determination!
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Accuracy, efficiency and errors



Train set optimization to reduce errors

e The train set should cover uniformly the relevant space
o Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Train set optimization to reduce errors

e The train set should cover uniformly the relevant space
o Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org
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Sparse representation for data efficiency

o Symmetry-functions are hard to choose

o Systematic expansions a la SOAP are huge and expensive

e Solution: automatic feature selection based on CUR or FPS idea applied to
representation space
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Imbalzano, Anelli, Giofré, Klees, Behler, MC, JCP (2018)
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http://dx.doi.org/10.1063/1.5024611

An accurate & inexpensive error estimation

o Generate an ensemble of GPR models, and use distribution of predictions
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Musil, Willatt, MC arxiv.org/abs/1809.07653
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An accurate & inexpensive error estimation

o Generate an ensemble of GPR models, and use distribution of predictions

y(x) = NLRSZy(") (X), o (X)= NRS1_1 > (v (X)—y(?f))2

o Verify accuracy by the distribution of errors P (|y (X) — Yrer (X)| |0 (X))
o Use maximum-likelihood to calibrate the uncertainty o (X) — ao (X)"™"
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Musil, Willatt, MC arxiv.org/abs/1809.07653
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Insights from machine learning



Understanding the range of interactions

o Environment kernels can be built for different cutoff radii
o Dimensionality/accuracy tradeoff, a measure of the range of interactions
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Understanding the range of interactions

o Environment kernels can be built for different cutoff radii

o Dimensionality/accuracy tradeoff, a measure of the range of interactions

o Amulti-scale kernel K (A, B) = Y_; w;K; (A, B) yields the best of all worlds -
chemical accuracy on QM9 with ~ 5000 train structures
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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A data-driven periodic table of the elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

21 Michele Ceriotti https://cosmo.epfl.ch Physics-Based Machine Learning for Materials and Molecules



A data-driven periodic table of the elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

H) = 0.5]M) +0.1](}) + 0.2 |®)
IC) =0.2|A) +0.8](}) +0.3|®)
|0) =0.1]/4) +0.1|(}) + 0.6 |@)
. .
F 5 ¥
o A ®

4

Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartok
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A data-driven periodic table of the elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >~ , u,,|J). Optimize coefficients

e Dramatic reduction of the descriptor space, more effective learning. ..

—e— Reference -#-- d;=2 —e— Standard SOAP
1.0 —— d;=1 —— dj=4—% Multi-kernel

0.3

Test MAE (eV / atom)

250 500 1k 3k 6k
Number of training structures

Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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A data-driven periodic table of the elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

e Dramatic reduction of the descriptor space, more effective learning. ..

e ... and as by-product get a data-driven version of the periodic table!

B C N O F Ne

Al Si P S Cl Ar

Ga Ge As Se Br Kr
In Sn Sb Te 1 Xe
Tl Pb Bi

willatt, Musil, MC, PCCP (2018)
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Tensorial properties and beyond



Machine-learning for tensors

o In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs

k(X,X) < (y(X):y (X)), sok (fsx, fs’x/) o <y (32() Ly (sx)>

o Properties that are invariant under S must be learned with a kernel that
should be insensitive to the operation

k (32(,3/)(’) = k(X,X)

e How about machine-learning tensorial properties T? The kernel should be
covariant to rigid rotations - need a symmetry-adapted framework

ko (X, X) & (T, (X): T, (X)) = Ky, (ivc, k’x’) = Rk (X, X)R,,,
R0

%

Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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http://dx.doi.org/10.1103/PhysRevLett.120.036002

A—SOAP: a SO(3) compliant kernel

o Recall the definition of SOAP, based on the atom-density overlap
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Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: a SO(3) compliant kernel

o Recall the definition of SOAP, based on the atom-density overlap
e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)
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Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: a SO(3) compliant kernel

o Recall the definition of SOAP, based on the atom-density overlap

e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

(X, X /dR (X RX’)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: a SO(3) compliant kernel

24

o Recall the definition of SOAP, based on the atom-density overlap

e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

(X, X /dR (XRX)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

(X, X /dR (X RX’)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: a SO(3) compliant kernel

o Recall the definition of SOAP, based on the atom-density overlap

e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

(X, X /dR (XRX)
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A—SOAP: a SO(3) compliant kernel

o Recall the definition of SOAP, based on the atom-density overlap

e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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Molecular polarizabilities at the CCSD level

o DFT is not very accurate for the dielectric response. Train a ML model on
the QM7 dataset with CCSD accuracy

—o— CCSD —— DFT —%— A
10
0.2 1
w
3 g
2
S 0.1 -
i 2
g 30
0.051 ®
’ 2
0.031

1k 2k 5k
Number of training structures

Wwilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349
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Molecular polarizabilities at the CCSD level

o DFT is not very accurate for the dielectric response. Train a ML model on

the QM7 dataset with CCSD accuracy

e The model can extrapolate to much large compounds (up to aciclovir
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5 POPULAR DRUGS
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Molecular polarizabilities at the CCSD level

o DFT is not very accurate for the dielectric response. Train a ML model on
the QM7 dataset with CCSD accuracy

e The model can extrapolate to much large compounds (up to aciclovir
CgH11N503) with better-than-DFT accuracy

El
309 . ML x A oy st 55
506 ° ® DFT S\MW
o o o o a o ow
0.370% R e - el
r; 0 X°Bjigm,gggugggggguxgcgg 9385 e RuSagageagalas i
~<
5 Method RMSE
0.6 N, HN_CODH o a9 1g
YUY e /\/\ CCSD/DFT 0.573
— SNTON o, x
203/ " A o, 00 CCSD/ML 0.304
~ o ° 8 x° 0005004000,
5 oo “M Ego,gigx <y 5503 00 °° ooofee0cats DFT/ML 0.403
[ x> X% o o x % xx-Oox X0 Xo
e P N S B A(CCSD-DFT)/ML  0.212
I @ P x
<. ° \NH, HaN~CO0H| \\OVOR P
0.3 ‘\N ~NH \/\/ \( \D
| A ~( Z
0.6 e Y
' 10 20 30 40 50

Molecule index

Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349
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Molecular polarizabilities at the CCSD level

o DFT is not very accurate for the dielectric response. Train a ML model on
the QM7 dataset with CCSD accuracy

e The model can extrapolate to much large compounds (up to aciclovir
CgH11N503) with better-than-DFT accuracy

e Atom-centered environment decomposition of o and the DFT error
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Wilkins, Grisafi, Yang, Lao, DiStasio, MC, arxiv.org/abs/1809.05349
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Learning the dielectric response of water

o The SA-GPR framework, and the A\-SOAP kernel, works as well for bulk

systems
e The dielectric constant involves non-additive effects. ML improves

dramatically by learning a proxy that is approximately additive
—— €0 e —— Qe By

‘IO_1 E

RMSE (a.u.)

4

1072F<+

10 102
training points

Clausius-Mossotti: a = (¢ — 1)(e +2) 'V

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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http://dx.doi.org/10.1103/PhysRevLett.120.036002

A transferable model of the electron density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
+ "7 |c|2 I Cin[m = Z X_/n[mk,[-nm/ (X,’ X))

jm’

f@:/m

> b (r—r))
ik

e Machine-learn directly the full density (non-orthogonal basis is tricky!)

Marzari, Vanderbilt, PRB 1997
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A transferable model of the electron density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
+ "7 |c|2 I Cin[m = Z X_[n[mk,[nm/ (XH .X))
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e Machine-learn directly the full density (non-orthogonal basis is tricky!)
o Highly transferable: learn on C4, predict on C8

ML - QM

T = 1.41%
(e,) = 1.40%

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349
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A transferable model of the electron density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
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e Machine-learn directly the full density (non-orthogonal basis is tricky!)
o Highly transferable: learn on C4, predict on C8

QM ML ML — QM

€= 1.81%
<€p> =1.83%

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349
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My wishlist - revisited

o General applicability: suitable for all systems and all types of properties

“Nearsightedness” of electronic matter <+ local environment decomposition

Excellent perfomance on benchmark DBs, accurate & cheap error estimate

o Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity,
silicon & molecular crystals, NMR shieldings in solids

o Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, . . .

o Notonly a fancy interpolator: use ML to gain insights and understanding

o Structure-energy-property maps based on the kernel distance
o Understand the nature of chemical interactions by dissecting the ML model

(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/
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