X (t)

X; (t)

| earning and Geometry for

Dynamical Systems:
Agent-based Systems & Diffusions on manifolds

Mauro Maggioni

Johns Hopkins University

CECAM - Coarse-graining with Machine Learning in molecular dynamics

Coord. 2 of

Coord. 2 of

) = [ [ LA
S /"r, -"._ - <>.<@ -/A{:'L'/"'.
g 3 =
e ™ ——— =M 6
3 —
: 7 3
: Q
<l {4
7777777777777777 >‘
L
S
L
o =
N\ = o )
— : .
S 0
o
‘ ‘ 0 e
Coord. 1 of x;(t) Coord. 1 of x;(t) —-150 -100 -50 0 50 100 150 NSF, AFOSR

d



Machine Learning & Physical Systems

Many physical systems have very high-dimensional state spaces, are governed
by a very large number of ODE’s (or SDE’s), which make them difficult to
analyze. Homogenization, mean-field approximation, renormalization theory
etc...are techniques to simplify such systems.

Physical systems with high-dimensional state spaces (e.g. many-particle sys-
tems) may exhibit behavior that is complex and high dimensional. Can Machine
Learning help extract useful reductions?

Challenges for ML: learning principles that transfer across physical systems;
incorporate existing physical knowledge or constraints.




Two stories

Learning interaction kernels of agent-based systems. Given trajectories
of a system of interacting agents, that may exhibit emergent behavior (e.g.
flocking), can we learn interaction kernels, in a flexible non-parametric fashion,
without being cursed by the high dimension of the state space?

Model reduction for stochastic processes (diffusions and Lengevin dy-
namics) on manifolds. Given the ability of sampling inital conditions and
short paths, learn a stochastic process on a manifold (with both the process and
the manifold being unknown) that approximates the original not only at short
time scales, but also at long time scales. Combination of manifold learning and
learning of SDE’s.

From https://www.youtube.com/watch?v=bb9ZTbYGRdc



Model Reduction

Many physical systems have very high-dimensional state spaces, are governed
by a very large number of ODE’s (or SDE’s), which make them difficult to
analyze. Homogenization, mean-field approximation, renormalization theory
etc...are techniques to simplify such systems.

Noise, stochasticity, ergodicity, separation of time scales, multiscale character-
istics help.

Wide variety of applications, from weather and atmosphere modeling, to molec-
ular dynamics, to quantum control




Model Reduction

Problem: given observations of the system (X;);>0 € R, whose trajectories
are determined by an unknown system S of ODE’s (or SDE’s) construct a map

o :RP — R a system S in R such that trajectories (X{)e>0 of S, when lifted
by ¢~ 1, are “close” to those of S.

e
-
§§§§§§
-------



(Partial) list of obstructions

- High-dimension D of state space.

. Complex dynamics.
. Metastability.
- Roughness.

Curse of dimensionality: estimation is difficult in D dimensions, for D large.
E.g. to approximate a Lip 1 function f on the unit cube [0,1]” to accuracy ¢
one needs at least O(1) points in each little cube of size €, and there O(e™ )
such (disjoint) cubes.

Assumption: “important aspects” of the dynamics, at least at time scales not
too small, are captured by a low-dimensional subspace/manifold in the state
space. Think: attractors, inertial manifolds... =r»

-
-
......



(Partial) list of obstructions

- High-dimension D of state space.

- Complex dynamics.

- Metastability.

- Roughness.

Dynamics may be complex, chaotic, highly dependent on initial conditions. In
that case even simulating the original system S is hard, except perhaps for very
short times.

Goal: interested in smooth, large time averages and functionals.



(Partial) list of obstructions

- High-dimension D of state space.

- Complex dynamics.

. Metastability.

- Roughness.

System S trapped for long times before ?
transitioning to different metastable states. ||

Goal: make S’ really fast to simulate. i
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(Partial) list of obstructions

- High-dimension D of state space.

- Complex dynamics.

- Metastability.

- Roughness.

Roughness forces small times in simulator

unless implicit schemes (expensive) are used. 2

Goal: (empirical) homogenization above

fine time scales can help.

S

= B

g
saet

"

su rc: IPAM

1.5]

0.5/

-0.5

dXt — —VU(Xt) -+ dBt

1t

O_




Example: Molecular Dynamics

M. Rohrdanz, W. Zheng, MM,
C. Clementi, Journ. Chem. Phys.

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of
water molecules, is approximated by a Langevin system of stochastic equations

T =—-VU(x)+w
The set of configurations is a point cloud in R1?*3.
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Molecular Dynamics data for Alanine

R. Coifman, S. Lafon, MM, B. Nadler, Y. Kevrekidis, PNAS, JMMS, ACHA

Given simulated data, for very long M. Rohrdanz, W. Zheng, MM, C. Clementi, JCP
trajectories, we construct an empirical — _VU(z) + \f i
approximation to the generator of the
- E
Fokker-Planck, and compute its gfz _Zaa <_a g )p:_HFPp
eigenvalues/vectors to obtain a low- — Ovi \pOri  Ori
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| earning a Reduced Model

Stochastic systems of interest: high dimensional, ergodic, well-approximated
by first order Langevin equations on a low-dimensional manifold, at least at a
certain time/spatial scale.

Examples may include MCMC samplers, systems with fast variables,
molecular dynamics.

Given: ability to sample the effective state space; ability to obtain short paths
from a given initial condition; a spatial scale parameter for nomogenization,
Output: a fast simulator of the system, with large time guarantees.

Complex, expensive simulator, Simple, fast simulator, accurate
at very fine (time)scale at coarse/long (time)scale



Objectives

Assumption: SDE (Ito diffusion) on manifold M

WLl

Miles Crosskey

Given:

(i) ability to sample from some measure py on M

(ii) ability to call a stochastic simulator for the system S concentrated around
a manifold M of dimension d

(iii) parameter 0 > 0 representing the smallest spatial scale of interest
(iv) distance function p on the state space
Return:

(i) a fast, continuos-time and continuous-space simulator (ATLAS) with ac-
curacy at scale 6 and and with accuracy O(9) for large times

(ii) ATLAS is constructed using O(d/d*) paths of length O(6) from S, col-
lected in parallel, starting at O(6~%) locations sampled according to g

(iii) efficient storage mechanism for all paths



L arge time guarantees

Theorem M. Crosskey, MM|. Let M be a closed compact manifold, and sup-
pose X; 1s a stochastic process on M satisfying

with b, Lipschitz, and Y uniformly elliptic on M. Let ¢ the density of the
stationary measure of X;. Let 0 > 0 be small enough, and 7 > 0. By collecting
p > (172 + d)é—* paths of length O(J) from each of O(6~%) initial conditions
sampled from pg, AT LAS returns a stochastic process X, which has, with prob-
ability at least 1 —2e~" , the following properties. X, has a stationary measure,
with density ¢, such that

TV (dgq, @7;1(6&?)) < Célog(1/9).

Here ® is the map from M to the collection of approximate tangent spaces. It
is invertible for 0 small enough.

This result fits within the ideas that “short time accuracy implies long time accu-
racy’ when averaging occurs and there is an underlying large-scale smoothness
[J. Mattingly, A. Stuart, M. Tretyakov, E. Vanden-Eijnden, ...]



Sketch of construction

[




Sketch of construction

. Divide configuration space using a o-net; M unknown, we use only samples.

['adnetifr#yel = d(z,vy) >%
and for every x € M thereis y € I'
with d(x,y) < 6

Use cover trees to construct in
online fashion in O(C?Dnlogn)




Sketch of construction

. Divide configuration space using a o-net; M unknown, we use only samples.

Connect each y, € I' to its neighbors.
This connectivity will be used to transition
between local reduced simulators.

Also O(C%logn), and in parallel.




Sketch of construction

. Divide configuration space using a o-net; M unknown, we use only samples.

. Construct local Euclidean charts in each piece of partition

S

/

Use Multi-Dimensional Scaling @%f;/ %ré “
to obtain maps ®; from N ¢

neighborhood of y, € I /

to Cj C R? E%'& i %g; Dy 5%
Completely local calculation, | =+

Can use landmarks to speed up.




Sketch of construction

. Divide configuration space using a d-net; M unknown, we use only samples.
. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

P
A transition map between C}. and C}- ¢ N ¢ / ¢

is learned whenever k ~ k’.
We use linear maps S p : R — R%. i \C




Sketch of construction

. Divide configuration space using a o-net; M unknown, we use only samples.

. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

. Learn simulators on charts

In each chart we fit a constant coeflicient
Ito diffusion:

dX; = bdt + 5dB;

We estimate b and & by running

p paths of length O(9).

Turns out we need p = O(dé~*) in order
to obtain accuracy 0.
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Sketch of construction

. Divide configuration space using a o-net; M unknown, we use only samples.

W(lz|)

. Construct local Euclidean charts in each piece of partition

. Construct connections between charts

. Learn simulators on charts L

. Glue simulators

R
ATLAS til’le Step: N W (Ja)
Tz + DAL+ TLAB 4 ¢

€T < W(Qf) : =
k' = argmin,, ||z — Pr(y1)|] S E%’& |

Xr — Tk’k/(x)




L arge time guarantees

Theorem M. Crosskey, MM|. Let M be a closed compact manifold, and sup-
pose X; 1s a stochastic process on M satisfying

with b, Lipschitz, and Y uniformly elliptic on M. Let ¢ the density of the
stationary measure of X;. Let 0 > 0 be small enough, and 7 > 0. By collecting
p > (172 + d)é—* paths of length O(J) from each of O(6~%) initial conditions
sampled from pg, AT LAS returns a stochastic process X, which has, with prob-
ability at least 1 —2e~" , the following properties. X, has a stationary measure,
with density ¢, such that

TV (dgq, @7;1(6&?)) < Célog(1/9).

Here ® is the map from M to the collection of approximate tangent spaces. It
is invertible for 0 small enough.

This result fits within the ideas that “short time accuracy implies long time accu-
racy’ when averaging occurs and there is an underlying large-scale smoothness
[J. Mattingly, A. Stuart, M. Tretyakov, E. Vanden-Eijnden, ...]



Examples: 2-D
Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt
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Examples: 2-D

Measure of error:
[pe(z,-) — e, ')HLl(M) ;

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.
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Examples: 12,500-D

Brownian motion in a potential well

dXt — —VU(Xt) —|— dBt

obtained by mapping the 2-d rough potential to a (2-d) manifold in R1%:°00,

endowed with L! distance, where each point is an image of a circle with center
at the location corresponding to the 2-d example.

.0 =0.2
. to=4-10"2 = 800 steps
. 230 charts

. p=2-10° samples per chart




Examples: 12,500-D

Brownian motion in a potential well

dXt — —VU(Xt) -+ dBt

obtained by mapping the 2-d rough potential to a (2-d) manifold in R1%:°00,

endowed with L! distance, where each point is an image of a circle with center
at the location corresponding to the 2-d example.
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Examples: 12,500-D

Measure of error:
Hpt(xa ) — ﬁt(x7 )HLl(./\/l) )

where p;(z,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.
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Examples: 82-D, chaotic

Noise may arise from ensembles of deterministic chaotic processes. Multiscale
ODE with a scale e:

(f = ef(X{) +9(Y)), X5=u
Yy = h(Y?) Yo=y

If the dynamics for Y; alone admits an invariant measure p, and E,|9] = O(e),
then the above behaves like the SDE dX, = b(X;)ds + o(X;s)dBs, on the
timescale s = €t in the limit € — 0. For fixed ¢, difficult to simulate directly due
to the timescale separation.

We choose Y;=Lorentz '96 with 80 dimensions, and X; € R? so that there are

two limit cycles consisting of two concentric circles. 3

e = 0.1
. 0 = 0.18 = 240 steps




Examples: 82-D, chaotic

Measure of error:
|pe(, ) — De(x, )| L1 (m)

where p;(x,-) is the probability of being at - starting from x according to S and
similarly for p.

Look at the above, binned according to a partition associated with the net,
averaged of x, as a function of ¢, aver all timescales.
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Conclusions

ATLAS

decouples the ability of sampling in any way from interesting
regions from the ability of getting a reduced model

learns locally and in parallel model reduction by sampling short
paths

learns maps to stitch together the local models

reduced simulator has correct large-time statistics (guaranteed
for stationary distribution)

Extensions:

Multiscale: choose scale and dimension adaptively.

Fully online mode with exploration

Molecular Dynamics

Generalize theory to other large-time functionals [transition rates
and beyond], and other notions of closeness in

Hypoellipticity (e.g. second order Langevin); noj et st o e equations e
homogeneous systems, MCMC

numerical scheme.



Two stories

Learning interaction kernels of agent-based systems. Given trajectories
of a system of interacting agents, that may exhibit emergent behavior (e.g.
flocking), can we learn interaction kernels, in a flexible non-parametric fashion,
without being cursed by the high dimension of the state space?

Model reduction for stochastic processes (diffusions and Lengevin dy-
namics) on manifolds. Given the ability of sampling inital conditions and
short paths, learn a stochastic process on a manifold (with both the process and
the manifold being unknown) that approximates the original not only at short
time scales, but also at long time scales. Combination of manifold learning and
learning of SDE’s.

From https://www.youtube.com/watch?v=bb9ZTbYGRdc



[ earning of Interaction Rules
for agent-based systems

Given trajectories of dynamical system of interacting agents, learn the interac-
tion rules. Applications: biological systems, particle systems.

Further goals: hypothesis testing for agent-based systems; transfer learning:
agents on networks; collaborative and competitive games; learning dictionary
for complex dynamical systems.

Lots of recent interest

in ML for learning

ODE’s and PDE’s

e.g. M. Fornasier, N. Kutz,
Y. Kevrekidis, R. Ward...

Newton:
“That force by which
the moon is held back
in its orbit is that very
force which we T
usually call ‘gravity’.” s Nas

From https://www.youtube.com/watch?v=glhn7WmXWVY From https://www.youtube.com/watch?v=bb9ZTbYGRdc




Learning of Interaction Rules (%
for agent-based systems S

Given observations of the positions of agents {x;} , at different times {tl}l .
and /or for different initial conditions {x("™ (0) %:1, evolving for example ac-
cording to

Zfb % — xir||) (xir — %;)

we want to learn ¢. Different limits: N — 400 (mean-field limit, joint work
with M. Fornasier and M. Bongini), M — 400 (joint current work with F. Lu,
M. Zhong and S. Tang). | |

Interesting extensions to:
- higher-order systems,

- stochastic systems,

- agents of different types,
- varylng environment.

Coord. 2 of x;(t)
Coord. 2 of x;(t)
L)

Coord. 2 of x;(t)

N

Coord. 2 of %x;(t)
N

Second-order prey-predator model. T T TCoord 1ofxi(t) ) " Coord. 1of %:(t)
Left: true trajectories; Right: trajectories with learned interactions.



The Mean-field Iimit

Rewriting

Z¢ HXZ—XZ H ( /—XZ)— %Z@/(Hxi—xi’u)(xi_xi/)

—[|x —xu|]

we see this is the gradient flow of the energy Jny (X) = 5% ZZ =1 P(]xi —xir|]).

Considering the measure p” (t) = ~ 27],\;1 Ox,(t), We may let N — 400 to obtain
(under suitable regularity assumptions on ®) the mean field equations

Opp(t) = =V - ((— q)/‘(,u ”H) * u@)) u(t)) , w(0) = po -

This is also a gradient flow for the energy J(¢) = [paxa P(||x —y||)dp(x)du(y)
on the space of probability measures with Wasserstem distance.

This was studied in Inferring Interaction Rules from QObservations of Evolutive
Systems I: The Variational Approach, M. Bongini, M. Fornasier, M. Hansen,
and MM, M3S, 2017



[ earning the Interaction Kernel

Observations: {(x;,%;)(™) (tl)}rf\;f,’l]\f1,m:1> where x("™)(0) ~ po for some po on

R?. Note that each state of the system is in R%.
All we want however is the one-dimensional interaction kernel ¢ in the equations

i (1) = 3 o[l () = X)) (xi (1) = xi(0)).

-~

7yt (t)

Fix the time scale |0, T]. We introduce the measure on R defined by
L N
P%(T) - = @ 21:1 = x (0)~pao [Zi,z”:l,i<i’ 5mi/(tz)(r)]'

o

Example. The Lennard Jones force is the 200 [

derivative of the potential 400 |
o\ 12 o\ — True 1

VLJ(T) - 46 ((?) B (?) ) | - -Il_-earned

Right figure: In blue the LJ ¢, 8007 |

superimposed to an empirical estimate of p%,  -1000

for a system of NV = 7 agents, and L,T small.  -1200

1 1.5 2 2.5 3
r, pairwise distances

3.5



Example: L-J kernel and p7

Example. The Lennard Jones force is the
derivative of the potential

N\ 12 -\ 6
Vis(r) =4e(()"” - (2)°).
Right figure: In blue the LJ ¢,
superimposed to an empirical estimate of pk,

for a system of V = 7 agents, and L, T small.

Example (cont’d). The measure p% does
depend on L and 7'

With the same system as above,

we consider here L and 1T’ large.

p% is much more concentrated,

due to the system approaching equilibrium..

-1000 |

-1200 4

-1OOOW

1200

Many short time trajectories learning

07\
-200 - //,

-400 -

-600 - — True
-— Learned

-800 -

1 1.5 2 2.5 3 3.5
r, pairwise distances

Single large time trajectory learning

07\
-200 - //,

-400 -

600 - — True |
-— Learned

-800 -

1 1.5 2 2.5 3 3.5
r, pairwise distances



The estimator

Observations: {(x;,x;)(t;) é\]:’?,l:v for M different I1C’s, from

i (1) = 3 (i (8) = xi (D1 G () = x,(8)) = £ (xi(1)).

When the ¢;’s are equi-spaced in time, we consider the estimator @, s 3 mini-
mizing over some set of functions H the empirical error functional

1 R m (m) 2
Er,m(p) == TMN Z HXz (t1) — fSO(Xz' (tl))‘ ;
l,m,i=1

over ¢ € H, a simple hypothesis space of functions on R, with dimension n
which will be chosen dependent on M:

} = in & .
OL M. arg min LM ()

For H linear subspace, this is a least squares problem (Gauss, Legendre). Coer-
civity constant is related to smallest singular value of matrix in the LS problem.



Coercivity condition

1 "R L) (m) 2
ELu(p) = 5= > 15" (1) — £.™ (0))][",
[, m,1=1

; = n & .
OL M. arg min LM ()

We shall assume that the unknown interaction kernel ¢ is in the admissible class

Krs:={peC'(R,): suppy C 0, R],sup,.co gy lo(r)] + |¢'(r)] < S}
Coercivity condition: Vo : ¢(-)- € L?(p%), for 0 < ¢, < (N —1)/N?

| L,N ;o ,
enllo() gy = 777 20 Bll g 2 ol me )]

[,i=1

Lemma. Coercivity = unique minimizer of limp;_, 1. £ () over ¢ € H



Main Theorem

Theorem. Let {#,,},, be a sequence of subspaces of L*°[0, R], with dim(H,,) <
con and inf ey, |@(-) — @()|| Lo (jo,r)) < c1in™?, for some constants cop, c1,5 > 0.

It exists, for example, if ¢ is s-Holder regular. Choose n, = (M/log M )Tlﬂ
then for some C' = C(cg, c1,cr, R, S)

log M PEES]
A :

Bl B0t () - ~6() - [ 2gupy) < € (

- The good: Rate in M is optimal, in fact even optimal in the case of

regression, where we would be given (r,,, ¢(r,))M_,.

- The bad: no dependency on L.

Learning rate

5-5‘\ ® e‘rrors‘

-6 - [ ] \ — slope -0.36
Example. The Lennard Jones kernel 5o .
. . . . . 2.7 °
i1s not admissible, yet since particles rarely g .
get very close to each other, we obtain a 5 Y
convergence rate close to optimal. 5/ ~J

-9 w w w w w w w w
12 13 14 15 16 17 18 19 20 21
log,(M)



Errors on trajectories

Proposition. Assume &(|| - ||)- € Lip(R%), with Lipschitz constant Crip. Let

X (t) and X(t) be the solutions of systems with kernels ¢ and ¢ respectively,
started from the same initial condition. Then for each trajectory

. on (. 2
sup [|X(t) — X(1)||* < 2T C/ HX(t) - fq;(X(t))H dt
te[0,T] 0

and on average w.r.t. the distribution pg of initial conditions:

E,[ sup [X(t) —X(®)[] < C(T, Crip)VN|o(-) - —=6() - | 22(p) -

te[0,T]

where C(T, CLip) is a constant depending on 7" and Ctip,.



Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.

i (t) = Z i Dk, (T3 (£)) 73550 (1)

1 1 1 1 1 1
0 0
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r (pairwise distance) r (pairwisé distance)



Examples: multi-type agents

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.

N

K.,
i (t) = Z Nz Dk, (Tiqr ()74 (8)
ir=1

—d12

o
[

I,12

\\
St
Coord. 2 of x;(t)
Coord. 2 of x;(t)
I
¥ o

T 0.06
I,M22]

S
Coord. 2 of x;(t)
SN
Coord. 2 of x;(t)
—
5o

r (pairwise distance) | r (pairwise distance) - Coord. 1 of x;(t) Coord. 1 of x;(t)
true learned

Example 1st order Prey-Predator system. Left: the interaction kernels and
p1’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Examples: multi-type agents + noise

We may extend to first order agent systems with multiple types of agents, with
different interaction kernels for each directed pair of interactions.

N
: Rk,
i (t) = N Phik., (T30 (0))735 ()
. K; 7
2T
—~ T — ~ . T
= T < . = ( = U
: N : s
S o< S - =~
™ ( N o i < 2T
= =
:
O O T
| | | | L0
o o T T
_?2"2 1 “ ) 1 " )
Tar sz :f / ey Z.:f 7 / pa
A S A 5 P4 :
=" A
O | O | T
‘ , Py > - T . . b 5 g : : : L L L . : -0
r (pairwise distance) r (pairwise distance) Coord. 1 of x;(t) Coord. 1 of %;(t)
true learned

Example 1st order Prey-Predator system 4 noise: multiplicative noise ~
+Unif[—3, 1] is added to observed positions and velocities.



Examples: multi-type agents + scaling N

We may extend to first order agent systems with multiple types of agents, with

different interaction kernels for each directed pair of interactions.
o gl

Kg., " - L&~
Bi(t) = Y e O ®)

° — 3
-—

LY — b
-_— —

Coord. 2 of x;(t)
}
)

Coord. 2 of x;(t)

0.08

Coord. 2 of x;(t)
)
| / /|
Coord. 2 of x;(t)
|

18

r (pairwise distance) ~ Coord. 1of x;(t) l ‘ 7 ~ Coord. 1 of x;(t)
true learned

r (pairwise distance)

Example 1st order Prey-Predator system. Left: the interaction kernels and
p1’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Examples 2Nd order systems
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Example 2nd order Prey-Predator system. Left: the interaction kernels and
pi’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Example with environment (phototaxis)
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Example 2nd order Phototaxis model, which includes an environment modeling
light, interacting with the agents. Left: the interaction kernels and p7’s. Right:
trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



lesting hypotheses for agent systems
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Example We want to test it a 2nd order system is driven by energy or alignment
interactions. Left: we learn a general model (with both types of interaction)

on a system with only energy interaction terms: we obtain QASA s =
learning on a system with only alignment term yields ¢

E%O

0. Right:

Example We want to test if a system is governed by 1st or 2nd order interac-

tions. We are able to tell the
difference reliably, by testing
the predictions of the learned
models on trajectories.

True Learned as 1°t order | Learned as 2"< order
15t order 0.039 + 0.16 28 + 21
2md order 3.1 +0.99 0.58 + 0.89




Conclusions

- Learning agent-based type system may be performed efficiently, nonpara-
metrically, at least in special cases, notwithstanding the high-dimensional
state space.

- Important generalizations: 1st- and 2nd-order, multi-type; more general
interaction kernels.

- Hypothesis testing; transter learning; dictionary learning for dynamical
systems.

- Many open problems. E.g.: quantifying information needed for learning;
stochasticity; hidden variables; general interaction kernels; ...

- Many applications: biological systems, particle systems, learning forces in
molecular systems, ...

Inference of interaction laws in systems of agents from trajectory data , F. Lu, S. Tang, M. Zhong, MM



Wenjing Liao (now Asst. Prof.
GAtech). Multiscale approximation
to manifolds, dictionary learning;
regression on manifolds.

| Stefano Vigogna: regression on
e® manifolds, learning high-
% dimensional functions with known

James Murphy (soon Asst. Prof.
Tufts U.). Hyper-spectral imaging,
clustering, medical data analysis.

Ming Zhong. Learning of agent-
W based dynamical systems.

Paul Escande. Multiscale
compression of non homogeneous
blurring kernels for imaging;
learning of maps; multi-modal
data; shape analysis.

.. Sam Gerber (now at tech
» company). Multiscale optimal
L transportation; visualization of

Sui Tang. Learning of agent-
s based dynamical systems, in
Euclidean space and on graphs.
Signal processing, phase retrieval.

+ ECG data (modeling and prediction)

+ Cardiac MRI data for arrhythmia and sudden cardiac death
risk assessment

+ Learning in metric spaces, for example for images and
multi-model data

+ Zero-shot learning for detection of novel image classes

THANK YOU!
www.math.jhu.edu/~mauro
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