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Condensed Matter Physics: Atomistic simulations 

Molecular Dynamics Monte Carlo 

Trajectory Sampling 

Potential energy surface 

CONTEXT 

All the physics (and the chemistry) 

stands in the PES 



Accuracy 

Scaling (space and time) 
Accuracy 

Transferability 

Scaling (space and time) Avantages 

Disadvantages 

CONTEXT 

ab initio MD 

no analytical form for E. The potential 

is computed at each timestep from 

quantum chemistry methods. 

Classical MD 

 we postulate and analytical form 

of E. 



CONTEXT 

Classical Potentials 

Analytical forms are generally physically based. Example : 

Pair potential: 

Embedded Atom Method 

Bond Order Potential 

Rare gas 

Metals 

Chemistry 

ReaxFF 

All ! 



CONTEXT 

Fitting a potential reduces to minimizing a cost function relatively to a 

database.   

The cost function defines the difference between the reference value and 

the computed value (MSE) : 

Fitting Potentials 

Ex: fitting a LJ potential on the EOS of argon 

accuracy 𝐶 =  𝐸𝑖
𝑟𝑒𝑓

− 𝑉𝑖

2

𝑖

 



Multi objective 

functions and the 

Pareto surface 

Ex: Fitting Reax parameters (n>600) 

𝐶 = 𝑤1𝑀𝑆𝐸 𝑑𝐶−𝐶 + 𝑤2𝑀𝑆𝐸 ∆𝐻𝑓 + 𝑤3𝑀𝑆𝐸 𝐹𝑖 + ⋯ 

Multi objective function (noncommensurate quantities) 

The 𝑤𝑖  are arbitrary user-

defined parameters. 

Numerous “best 

parameters” sets 

The Pareto surface: impossible to 

improve one objective function 

without making another one 

worse. 

J.P. Larentzos, B.M. Rice, E.F.C. Byrd, N.S. Weingarten and J.V. Lill, JCTC, 11, 381 (2015) 

CONTEXT 



CONTEXT 

Evaluation of transferability: measure of robustness at conditions 

other than those used in the fitting process 

S.M. Rassoulinejad-Mousavi and Y. Zhang, Nature, 8, 2424 (2018) 

Example: EAM potential for Pt, from the NIST (National Institute of 

Standards and Technology) Interatomic Potentials Repository 

Evaluation of elastic constant at different temperatures 



CONTEXT 

Of course, size and time do matter, but the problem stands in the 

confidence of atomistic predictions 

   

Accuracy 

Molecular 
dynamics 

size 

time 

Exascale 

Coarse graining 

1012 

109 

106 

2018 

2010 

2000 

10-9 10-6 

How to increase the accuracy and 

transferability of interaction potential ? 

Machine Learning 

Potential 



LEARNING 

COMPUTING 

Compute 

(i.e. predict) 

Time integrator 

OUTLINE 

Regress 

Descriptors 



OUTLINE 

Database 

o Elements, transferability  

o Representation (interpolation vs extrapolation) 

o Sparsification 



The database control the predictive capacities of the 

potential: one potential only knows what it has learnt ! 

(very) large systems are 

envisioned but reference data 

(ab initio) are available only for 

small systems 

DATABASE 

Elements: C configurations of N atoms 

 

o Total energy 

o Forces on each atom 

o Total virial  

 

o 1 data 

o 3 N data 

o 6 data 

/ configuration 

Reference data should be 

representative 

• Unit cell deformation→ EOS and elasticity 

•  Supercell → phonons 

• Surface unit cell → surface energy 

• g-surface → screw dislocation 

• … 

 



Example: database for Tungsten 

DATABASE 

W.J. Szlachta, A.P. Bartok and G. Csanyi, Phys. Rev. B., 90, 104108, 2014.  



Example : GAP potential for Tungsten 

DATABASE 



Numerical potential for the bcc-hcp transition in Iron 

Cold curves 

DATABASE 

bcc-hcp transition Database 
• BCC 

 100 confs MC / 1000 

 24 confs deformations / 42 

 60 confs g-surface/100 

• HCP 

 20 confs cold curve / 20 

 100 confs MC / 1000 

 24 confs deformations / 42 

 60 confs g-surface/100 

• BCC-HCP 
 20 confs in e 

 20 confs in h 

g-surface 

dx 

dy 

Large deformation path 

along dense planes 



Extended database 

10 %  

90 %  

learning 

testing 

DATABASE 

Transferability: predictive capacity within the 

envelope defined by the database (interpolation) 

Monte Carlo in parameter 

space (a,b,c,a,b,g) 

Random deformation of the 

unitary cell with acceptance 

probability : 

Without MD 

With MD 

reference 

Phonon spectrum 

Increased transferability 



DATABASE 

Diamond cubic phase 
Volumetric deformation 

Shear deformation 

Normal deformation 

Liquid phase 
Ab initio simulations @ 1500 K, 3000 K 

Ge database 

Get a very good potential for diamond 

and liquid, but not for the melting 

temperature. 
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timestep

’thermo_1800_300’ u 1:6

Melting of Ge 
diamond 

Melting of Ge 
hexagonal 

Metastable phases 
Volumetric deformation for FCC, 

BCC, Simple cubic and A5 phases 

Hot crystal 
Ab initio simulations @ 800 K, 1000 K 

 

DATABASE 

Better agreement on the melting temperature 



Representation: database for Ge 

Each cartesian configurations is 
transformed in a feature space 

where atomic environment are represented 
by descriptors (here 55 Bispectrum 

components) 

Results are less separable. 

DATABASE 

PCA on the descriptors 
database (n=2) 

Non parametric regression method 
are usually successful in 

interpolation, but can be awful in 
extrapolation. The representation of 

the database could serve as a first 
diagnostic to prevent extrapolation. 

Representation of the database 

Interpolation vs extrapolation 



Representation: database for Fe 

DATABASE 

Sparse matrix 



DATABASE 

Sparsification: reduce the size of the database (𝐷 × 𝑁 matrix) 

Random sparsification : randomly delete configurations from the 

database until the desired size is achieved. 

SVD: compute the entropy of the matrix. 
Normalized spectrum (for k non-zero eigenvalues):  

𝑉𝑗 =
𝑢𝑗

2

 𝑢𝑖
2𝑘

𝑖=1

 

Compute the entropy of the matrix as: 𝑆 𝐴 = −
1

log 𝑘
 𝑉𝑗 log 𝑉𝑗

𝑘

𝑗=1

 

Then compute the entropy of the matrix 𝐴−𝑖  

Sort the configuration by entropy, and delete the smaller contributors.  

CUR decomposition: decomposition of 𝐴 = 𝐶𝑈𝑅, where  C is 

composed of columns of A and R of lines. Use SVD  to obtain a statistical 

weight associated to each column, used as delete probability. 

Max variance:  

• Start with a very small database 𝑎 ∈ 𝐴 

• Compute the distance between each elements of 𝑎 and 𝐶𝑖 ∈ 𝐴 

• Select the most distant element 𝐶𝑘and add it to 𝑎 



DATABASE 

The richer the database the better the potential 

 

BUT 

 

• Elements should be selected with a “physically” relevant criterion  

• Adding distinct elements increases the transferability of the potential but 

decreases its accuracy 

• Representation of the database: identify relevant (separated) domains, 

control extrapolation. 

• Scaling of the potential with the size of the database: optimize the ratio 

information/size 

 



But physics imposes some invariance on 

the energy: translation, permutation, 

rotation 

DESCRIPTORS 

3N Degrees of freedom Constant dimension 

N atoms  

(1 environment) 

Cartesian space 

o Symmetry functions 

o Matrices 

o Spectral expansions 

o Graphs 

o … 



Angular symetry functions 

Problem: ambuiguity of 

representations 

Comparison of configurations Comparison of descriptors vectors 

Radial symetry functions 

Example 1 : Symmetry functions 

J. Behler, , J. Chem. Phys., 134, 074106, 2011.  

DESCRIPTORS 

𝐺𝑖
4 = 21−𝜁  (1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁𝑒−𝜂(𝑅𝑖𝑗

2 +𝑅𝑖𝑘
2 +𝑅𝑗𝑘

2 )𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)𝑓𝑐(𝑅𝑗𝑘)

𝑗,𝑘≠𝑗

 𝐺𝑖
2 =  𝑒

−𝜂 𝑅𝑖𝑗−𝑅𝑆

2

𝑓𝑐(𝑅𝑖𝑗)

𝑗

 

𝐷 =

𝐺1
2

𝐺2
2

…
𝐺𝑛

4

 



Example 2 : Gram matrix, coulomb matrix 

DESCRIPTORS 

Weyl theorem (1939)   a configuration can be represented by 

the scalar products of its radial vectors.   

Gram (or Weyl) matrix 

(symmetric) : 

G is invariant by rotation and reflection, but not by permutation 

To retain permutation invariance, one can retain the spectrum of this 

matrix (but it is then under complete) 

Over complete 

descriptor 

M. Rupp, A. Tkatchenko, K-R. Muller and O.A. 

Lilienfelf, Phys. Rev. Lett., 108, 058301, 2012.  



DESCRIPTORS 

The coulomb matrix can be seen as an entrywise non linear 

transformation of the Weyl matrix 

Similarity measure:  

ei are the ordered eigenvalues of M. 

D has the correct invariances but remains under complete, and the 

ordering of its eigenvalues hinders regularity (problem for derivative) 



Example 3 : Spherical power spectrum 

A.P. Bartók, M.C. Payne, and G. Csányi, Phys. Rev. B., 87, 184115, 2013.  

DESCRIPTORS 

Expansion of the density function on a basis of  

spherical harmonics and radial functions. 

spherical power 

spectrum 

𝜌𝑖 𝑟 =   𝑐𝑛𝑙𝑚
𝑖 𝑗

𝑔𝑛(𝑟)Υ𝑙𝑚(𝑟 )

𝑙,𝑚𝑗

 

It can be shown that the product 𝑝𝑛𝑛′𝑙 = 𝑐𝑛𝑙𝑚
† 𝑐𝑛′𝑙𝑚 

is rotational invariant 

𝑝𝑛𝑛′𝑙 =
8𝜋2

2𝑙 + 1
 𝑐𝑛𝑙𝑚

† 𝑐𝑛′𝑙𝑚

𝑚

 



Density of neighbor atoms at location r relative to a central atom i  

DESCRIPTORS 

Example 4 : SO4 bispectrum 

A.P. Bartók, M.C. Payne, and G. Csányi, Phys. Rev. B., 87, 184115, 2013.  

𝜌𝑖 𝑟 = 𝛿 𝑟 +  𝑓𝑐(𝑟𝑗)𝜔𝑗𝛿(𝑟 − 𝑟𝑗)

𝑟𝑗 <𝑅𝑐𝑢𝑡

 

The radial coordinate r is mapped on to a third angular coordinate 𝜃0 = 𝜃0
𝑚𝑎𝑥𝑟/

𝑅𝑐𝑢𝑡 . Each neighbor position (r, θ, φ) is mapped to (θ0, φ, θ), a point on the unit 3-
sphere. 
The natural basis for functions on the 3-sphere is formed by the 4D hyperspherical 
harmonics Um,m′ (θ0, θ, φ), defined for j = 0, 1/2,1,... and m,m′ = −j,−j+1,...,j−1,j . 
The density function defined on the 3-sphere can then be expanded using 4D 
hyperspherical harmonics: 
 

𝜌 𝑟 =    𝑢𝑚,𝑚′
𝑗

𝑈
𝑚,𝑚′
𝑗

𝜃0, 𝜙, 𝜃

𝑗

𝑚′=−𝑗

𝑗

𝑚=−𝑗

∞

𝑗=0

 



 
Because the neighbor density is a weighted sum of δ-functions, each expansion 
coefficient is a sum over discrete values of the corresponding basis function 
evaluated at each neighbor position : 

The bispectrum components are formed as the scalar triple products of the 
expansion coefficients (to insure rotational invariances) 

DESCRIPTORS 

𝑢𝑚,𝑚′
𝑗

= 𝑈
𝑚,𝑚′
𝑗

0 +  𝑓𝑐(𝑟𝑗)𝜔𝑗𝑈𝑚,𝑚′
𝑗

𝜃0, 𝜙, 𝜃

𝑟𝑗 <𝑅𝑐𝑢𝑡

 

𝐵𝑗1,𝑗2,𝑗 =  𝑢𝑚,𝑚′
𝑗 ∗

 𝐻
𝑗,𝑚2,𝑚2

′

𝑗,𝑚,𝑚′

𝑗,𝑚1,𝑚1
′

𝑢
𝑚1,𝑚1

′
𝑗1 𝑢

𝑚2,𝑚2
′

𝑗2

𝑚1,𝑚1
′  

𝑚2,𝑚2
′

𝑚,𝑚′

 

𝐻
𝑗,𝑚2,𝑚2

′

𝑗,𝑚,𝑚′

𝑗,𝑚1,𝑚1
′

  : Clebsch-Gordan coupling coefficients for the hyperspherical harmonics  



DESCRIPTORS 

Example 5 : Graphs 

1 

2 

3 

Molecule Graph Adjacent matrix 
Graphs are 

translational and 

rotational invariant 

Laplacian of a weighted graph  

The spectrum of the Laplacian (and adjacency) matrix is a graph invariant, that 

is, it is invariant to permutations in the indices of the vertices.  

G. Ferré, T. Haut, and K. Barros, J. Chem. Phys., 146, 114107, 2017.  



DESCRIPTORS 

Questions : accuracy vs CPU: mixing descriptors ? 

Example: 

A. Goryaeva, C. Marinica, and J-B Maillet Proc for NIMB, 2018 

Perspective/questions :  

o Coarse grained descriptor ? 

o Hybrid descriptor (adding invariant force field data into the descriptor) ? 

o …. 



o Neural network 

o Kernel method 

o linear 

Regress input output 

Ensemble of 

vectors of 

dimension D  

o energy 

o forces 

o virial 

REGRESSION METHOD 



Artificial neural networks are massively parallel interconnected networks of simple 

(usually adaptive) elements and their hierarchical organizations which are 

intended to interact with the objects of the real world in the same way as 

biological nervous system do.  

Neural 

Network 

Input 

signal 
Output 

signal 

NEURAL NETWORK 



Layer l 

weigths 

j 

Combining 

function 

Transfert 

function 

biais 

Layer l-1  

NEURON J 

NEURAL NETWORK 



Gaussian 
linear 

Sigmoid Hyperbolic 

tangent 

Transfert function guarantees the non linear behavior of the NN  

NEURAL NETWORK 



𝜕𝐶

𝜕𝑤𝑖𝑗
=

𝜕𝐶

𝜕𝑂𝑗
  
𝜕𝑂𝑗

𝜕𝐼𝑗
  

𝜕𝐼𝑗

𝜕𝑤𝑖𝑗
 

LEARNING: BACKPROPAGATION 

NEURAL NETWORK 

For each input (i.e. each configuration of the training database) a forward pass 

over the NN leads to the output 𝑦. The cost function is generally defined as : 

𝐶 =
1

2
 (𝐸 − 𝑦)2

𝑖

 

We want to minimize the cost function relatively to the parameters of the NN, 

i.e. to compute 
𝜕𝐶

𝜕𝑤𝑖𝑗
 

Apply the chain rule: 

Derivative of 

activation function 

Output of 

(previous layer) 

neuron i 

𝜕𝐶

𝜕𝑂𝑗
=

𝑦 − 𝐸 

 
𝜕𝐶

𝜕𝑂𝑙

𝜕𝑂𝑙

𝜕𝐼𝑙

𝜕𝐼𝑙
𝜕𝑂𝑗

=

𝑙

 
𝜕𝐶

𝜕𝑂𝑙

𝜕𝑂𝑙

𝜕𝐼𝑙
𝑤𝑗𝑙

𝑙

 Recursion relation = 

backpropagation 



NN: A 1D EXAMPLE 

NEURAL NETWORK 

Network: S-25H-25H-L 

Learning sample: 70  

Testing sample: 300  

 



NEURAL NETWORK 

Risk: under and overfitting 



NEURAL NETWORK 

LJ potential EAM potential 



NEURAL NETWORK 

Validation in molecular dynamics  



NEURAL NETWORK 

Validation: energy conservation  



NEURAL NETWORK 

Characteristics: 

 - numerically stable 

 - efficient parallelization 

 - compatible GPU … 

Questions :  

 - fitting on forces ? No backpropagation 

for derivatives, optimization in large dimensions ? 

 - control of the error in prediction : 

interpolation vs extrapolation (see database) 



Kernel estimation: 

A similarity measure K defines an approximation space H  

 

 

Defining a distance between configuration  

 

 

use a kernel method 

For a new x, we want to choose y such that (x,y) be similar to the elements of 

the database. For the similarity measure we take K(x,x’). 

KERNEL METHOD 

Building an approximation of f from a database (𝑥𝑖 , 𝑦𝑖) 

𝑓 𝑥 =  𝛼𝑖𝐾(𝑥, 𝑥𝑖)

𝑖

 



K is a similarity measure between x and x’: it measures the correlation 

with 

KERNEL METHOD 

𝑓 𝑥 =  𝛼𝑖𝐾(𝑥, 𝑥𝑖)

𝑖

 

𝐽 𝑓 =
1

𝑛
 𝑓 (𝑥𝑖) − 𝑦𝑖

2
𝑛

𝑖=1

+ 𝜆 𝑓 
ℋ

 

Ingredient for RKHS : 

 Kernel K 

 Reproducing Kernel Hilbert Space ℋ 

 Database (𝑥𝑖 , 𝑦𝑖)
𝑛 , 𝑦𝑖 = 𝑓(𝑥𝑖) 

We define 𝐽(𝑓) as a cost to minimize: 

Representer theorem: the minimum of 𝐽(𝑓 )𝑓 ∈ℋ can be written as : 

𝛼 = 𝐾 + 𝑛𝜆𝐼 −1𝑦 

Note: the CPU scales with the number 

of elements in the database 



A bayesian approach allows to compute the variance 

associated with the prediction 

KERNEL METHOD 

𝜎2 𝑥 = 𝜎0
2 − 𝑣𝑇𝐾−1𝑣 

𝑣 =

𝑣1…
𝐾(𝑥, 𝑥𝑖)

…
𝑣𝑛

 
Example 𝑓 𝑥 =

cos 5𝑥+ 𝑥−4.5 2

5
− 1 



Bypassing the use of descriptor: SOAP 

KERNEL METHOD 

𝐒 𝛒𝟏, 𝛒𝟐 =  𝛒𝟏 𝐫 𝛒𝟐 𝐫 𝐝𝐫
ℝ𝟑

 

K 𝝆𝟏, 𝝆𝟐 =
𝒌 𝝆𝟏,𝝆𝟐

𝒌 𝝆𝟏,𝝆𝟏 𝒌 𝝆𝟐,𝝆𝟐

𝝃

 

The key point in fitting a PES is 

the similarity measure 𝐾(𝐶1, 𝐶2) 
𝐾(𝐶1, 𝐶2) should have propert 

invariances, and smoothness 

Similarity: 

A.P. Bartók, M.C. Payne, and G. Csányi, Phys. Rev. B., 87, 184115, 2013.  

Rotationally invariant kernel: 

k 𝛒𝟏, 𝛒𝟐 =  𝑺(𝝆𝟏, 𝑹 𝝆𝟐)
𝒏
𝐝𝑹  

𝜌 𝑟 =  𝑒−𝛼 𝑟−𝑟𝑖
2

𝑖

=   𝑐𝑙,𝑚(𝑟)𝑌𝑙,𝑚(𝑟 )

𝑙,𝑚𝑖

 

Expansion of the neighbor density: 

SOAP kernel: 



Functional Representation of Atomic Configuration 

Similarity: 

KERNEL METHOD 

𝑑2(𝐶1, 𝐶2)2= 𝜌1 − 𝜌2 𝐿2
2 =  (𝜌1 − 𝜌2)2

ℝ3
 𝑆 𝜌1, 𝜌2 =  𝜌1𝜌2

ℝ3
 

𝜌1 − 𝜌2 𝐿2
2 = 𝑆 𝜌1, 𝜌1 − 2𝑆 𝜌1, 𝜌2 +𝑆 𝜌2, 𝜌2  

𝑆 𝜌1, 𝜌2 =
8(𝜋𝜎2)

3
2

𝑛1𝑛2
  exp −

(𝑞𝑖 − 𝑞′𝑗)
2

4𝜎2

𝑛2

𝑗=1

𝑛1

𝑖=1

 

G. Ferré, J.-B. Maillet, and G. Stoltz, J. Chem. Phys., 143, 104114, 2015.  

Distance between 2 configurations: 

Gaussian case 

Finding the best rotation: simulated 

anneling in the space defined by the 

rotation angles vs systematic exploration. 

The minimum corresponds to the shortest 

distance 

 

Distance between 2 configurations 

in a LJ liquid 

Too costly for MD applications 



KERNEL METHOD 

Comparison kernel-NN for EAM 

potential database (descriptor: 

symmetry functions) 

Kernel function: 

𝑘 𝑥, 𝑦 = 𝑒
− 

𝑥−𝑦 2

2𝜎2  



Iron : there is no classical potential that describes both 

plasticity and phase transition 

KERNEL METHOD 

SOAP kernel 



hcp 

C11 C12 C44 

ref 259.8 154.2 141.7 

Pot Num 226.1 138.3 143.4 

C11 C12 C33 C44 C66 

ref 611.6 149.5 566.4 200.9 231.1 

Pot Num 646.8 159.7 593.5 206.8 243.6 

bcc 

bcc-hcp transition TB 

GAP 

KERNEL METHOD 

J.-B. Maillet, C. Denoual andG. Csányi, APS-SCCM Proc, 2017. 



atom energy 

total energy 

force 

virial 

SNAP POTENTIAL: descriptor : Bispectrum SO4 (𝑩𝒌)  

LINEAR REGRESSION 

𝐸𝑖 = 𝛽0 +  𝛽𝑘𝐵𝑘
𝑖

𝐾

𝑘=1

 

𝐸𝑡𝑜𝑡 = 𝑁𝛽0 +   𝛽𝑘𝐵𝑘
𝑖

𝐾

𝑘=1

𝑁

𝑖=1

= 𝑁𝛽0 +  𝛽𝑘  𝐵𝑘
𝑖

𝑁

𝑖=1𝑘=1

 

𝑭𝑖 = −𝜷 ∙  
𝑑𝑩𝑗

𝑑𝒓𝑖

𝑁

𝑗=1

 

𝑾 = −𝜷 ∙  𝒓𝑖⨂  
𝑑𝑩𝑗

𝑑𝒓𝑖

𝑁

𝑗=1

𝑁

𝑖=1

 

A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker. J. Comput. Phys., 285 :316, 2015.  



FITTING SNAP POTENTIAL 

For each configuration in the database, we want: 

1 

3N 

6 

LINEAR REGRESSION 

𝐸𝑆𝑁𝐴𝑃 = 𝑁𝛽0 +  𝛽𝑘  𝐵𝑘
𝑖

𝑁

𝑖=1

= 𝐸𝐷𝐹𝑇

𝑘=1

 

 
⋮ 

 

𝑭𝑆𝑁𝐴𝑃
𝑖 = −  𝛽𝑘  

𝑑𝑩𝑗

𝑑𝒓𝑖

𝑁

𝑗=1

= 𝐹𝑖
𝐷𝐹𝑇

𝑘=1

 

 
⋮ 

 

𝑾𝑺𝑵𝑨𝑷 = −  𝛽𝑘  𝒓𝑖⨂  
𝑑𝑩𝑗

𝑑𝒓𝑖

𝑁

𝑗=1

𝑁

𝑖=1

= 𝑊𝐷𝐹𝑇

𝑘=1

 



Set of linear equations: 

The matrix equation is solved for b using QR factorization (no inversion). 

FITTING SNAP POTENTIAL 

LINEAR REGRESSION 

 𝐵𝑗
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𝛽

𝑁
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𝛼
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 ∙
𝛽0

𝜷
=

𝐸𝐷𝐹𝑇

⋮
𝐹𝑖,𝛼

𝐷𝐹𝑇

⋮
𝑊𝛼,𝛽

𝐷𝐹𝑇

 

 

𝑨 ∙ 𝜷 = 𝒚 



Linear regress the bk coefficients to fit 
reference values (i.e. snap does all the job) :  

‘Pure’ SNAP 

‘reference’ + SNAP 

Use a reference potential (for example 2 
body) to account for the main part of the 
energy and forces, then linear regress the bk 
coefficients to fit the difference between DFT 
and reference potential values. The reference 
potential stabilizes the dynamic. 

FITTING SNAP POTENTIAL 

LINEAR REGRESSION 

𝐸𝑠𝑛𝑎𝑝 = 𝐸𝐷𝐹𝑇 − 𝐸𝑅𝐸𝐹 

𝒚 =

𝐸𝐷𝐹𝑇 − 𝐸𝑟𝑒𝑓

⋮

𝐹𝑖,𝛼
𝐷𝐹𝑇 − 𝐹𝑖,𝛼

𝑟𝑒𝑓

⋮

𝑊𝛼,𝛽
𝐷𝐹𝑇 − 𝑊𝛼,𝛽

𝑟𝑒𝑓

 

 

𝐸𝑠𝑛𝑎𝑝 = 𝐸𝐷𝐹𝑇 



This works nicely (not an optimization problem), but results are 
not optimum due to differences in the nature of the reference 
points (Esolid vs Eliquid vs Ssolid vs Fliquid…) 
Use weights as hyper parameters of the model 

Use of a differential evolution algorithm to optimize the weights. 

FITTING A PURE SNAP POTENTIAL FOR Ge 

In practice the database is splitted into groups (crystal, liquid, metastable) with associated 
weights (for E,F,W). The weighted matrix equation is solved in the same way, and the 
weightvector is optimized. 

LINEAR REGRESSION 

• Buid the A matrix = bispectrum coefficients 
• Build the y vector = DFT – reference potential values 
• Solve the 𝑨. 𝜷 = 𝒚 equation for b. The coefficients b are the SNAP coefficients. 

𝝎 ∙ 𝑨 ∙ 𝜷 = 𝝎 ∙ 𝒚 



DIFFERENTIAL EVOLUTION 

Goal : minimize a function f relatively to its parameters {x}. No need 
of gradient evaluation 

LINEAR REGRESSION 

• Start with a population of sets of parameters {x}i 

 
• Each set of the population is mutated as:      

 
{𝑥}𝑖,𝑚𝑢𝑡𝑎𝑛𝑡= {𝑥}𝑏𝑒𝑠𝑡 + ({𝑥}𝑗−{𝑥}𝑘) 

 
• Each parameter of the mutant replace the original one 

with a recombination probability (given as an input) 
 

• The fitness (i.e. cost function) is evaluated for the new 
candidate. The new candidate replaces the old one if 
better.  



Questions: Efficient optimization method in more dimensions ? 

LINEAR REGRESSION 

Differential evolution 

Optimization of 6 

weights for a snap 

potential on Iron  



LINEAR REGRESSION 

WORKFLOW 

Conf 1 

Conf 2 

• Energy, Stress 

• Coordinates 

• Forces 

DFT database 

•   

•   

•   

LAMMPS 

Fit snap 

coefficients 

Optimize 

weights 

Change 

cutoff 

Evaluate 

potential 

Training 

report 
Evaluation 

report 

Extract DFT energy, stress and forces 

Run LAMMPS, parse outputs 

One JSON file for 

each configuration 
Compute bispectrum 

coefficients and derivatives 

Build matrices 

Regression 

Differential 

evolution 



LINEAR REGRESSION 

SNAP Ge (best potential so far) 

Method Vacancy formation energy (eV) 

DFT 2.33 

Tersoff 3.72 

SNAP 1.64 

Method Surface energy (111) (eV/Å2) 

DFT 0.07 

Tersoff 0.205 

SNAP 0.076 

Coexistence melting point calculation 

SNAP melting point ~ 700 K 

Tersoff melting point ~ 2560 K 



“adjusting/optimizing” the weights  

Infinity of different potentials 

LINEAR REGRESSION 



CONCLUSION 

o Accuracy versus transferability ? 

o Infinity of potential (database, weights): rationalization of the choice (use Pareto ?). 

o 2 step process: learning and computing 

Can we mix the 2 (on the fly or active learning) ? How can we integrate a “memory” in 

regression method without redoing all the learning job (pre-conditioned learning) 

o Control the error of the prediction for dynamic 

o Can we integrate the invariance into the regression method – so we could use 

simpler descriptors 

 



QUESTIONS 

Thank you ! 

? 



Quantum mechanics 

Molecular dynamics 

Continuum description 

Navier-Stokes 
equations 

Venn diagram illustrating the  hierarchy 
of frameworks for describing a fluid, in 

terms of their theoretical validity in 
parameter space 

K. Kadau, J.L. Barber, T.C. Germann, B.L. Holian and B.J. Alder, Phil. Trans. R. Soc. A (2010) 368, 1547. 

Venn diagram illustrating the  
hierarchy of frameworks for describing 

a fluid, in terms of their space-time 
domain of applicability 

B.L. Holian, C.W. Patterson, M. Mareschal, and E. Salomons, Phys. Rev. E. 47, r24 (1993). 

B.L. Holian, M. Mareschal, and R. Ravelo, Phys. Rev. E. 83, 026703 (2011). 

CONTEXT 

Navier-Stokes equations 

Molecular 
dynamics 

length 

time QM 
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Ge ZBL+SNAP POTENTIAL 

Correlations 

Energy Force Stress 

LINEAR REGRESSION 



Configuration type Nconfigs Natoms Energy (8.9 meV/atom) Force (0.30 eV/Å) Stress (0.89 GPa) 

Diamond EOS 41 8 (1e4, 1e6, 500) 

[573513] 

(9.63 meV/atom) 

- (1e2, 1e5, 1) [53797] 

(0.61 GPa) 

Diamond Deform 246 8 (1e4, 1e6, 500) 

[597205] 

(5.45 meV/atom) 

(1e2, 1e4, 1) [4125] 

(0.17 eV/Å) 

(1e2, 1e5, 1) [6920] 

(0.16 GPa) 

BCC, FCC, SC EOS 164 2/4/1/4 (1e4, 1e6, 500) 

[561968] 

(9.81 meV/atom) 

- (1e2, 1e5, 1) [41018] 

(2.5 GPa) 

Diamond @ 800K 100 216 (1e4, 1e6, 500) 

[544007] 

(12.25 meV/atom) 

(1e2, 1e4, 100) 

[9637] 

(0.12 eV/Å) 

(1e2, 1e5, 100) [61534] 

(0.27 GPa) 

Diamond @ 1000K 100 216 (1e4, 1e6, 500) 

[544007] 

(12.25 meV/atom) 

(1e2, 1e4, 100) 

[9637] 

(0.12 eV/Å) 

(1e2, 1e5, 100) [61534] 

(0.27 GPa) 

Liquid @ 1500K 100 216 (1e4, 1e6, 500) 

[626644] 

(4.61 meV/atom) 

(1e1, 1e4. 1) [885] 

(0.29 eV/Å) 

- 

Bounds and weight 

in objective function Weight after optimization Error reported in 

Molybdenum SNAP 

Mean absolute error 

for this category 

LINEAR REGRESSION 


