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Microscopic origin of macroscopic dielectric properties (1)

In a dielectric material, the presence of an electric field causes the nuclear
and electronic charges to slightly separate, inducing a local electric dipole
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This generates an induced response inside the material (reorganization of
the electronic density), screening the applied field
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Microscopic origin of macroscopic dielectric properties (2)

e Dielectric material: can polarize in presence of external fields

‘ density ‘ electric field
external v D, divD = 4rv
polarization dp P, div P = 4xdp D=E+P J
total 0 E, divE =4np

e Constitutive equation: ¢y = 3 x 3 symmetric real matrix with ey > 1

D=ecyE <= P=(ew—-1)E=(1-¢,)D J

e Time-dependent fields: the response of the material is not

instantaneous, but given by a convolution with some response function.
With E(t) = —VW(t) where W/(t) is the macroscopic potential,

~div (em() VW (w)) = 47 5(w) J
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Outline

Some background material
@ Description of perfect crystals
@ Crystals with defects: static picture

Time evolution of defects in crystals: effective perturbations
@ Response to an effective potential
@ Linear response and definition of the polarization
@ Static polarization in some adiabatic limit

Time evolution of defects in crystals: nonlinear dynamics
@ Well-posedness of the nonlinear Hartree dynamics
@ Definition of the macroscopic dielectric permittivity

[CS12] E. Cances and G. Stoltz, A mathematical formulation of the random phase
approximation for crystals, accepted in Ann. I. H. Poincare-An. (arXiv 1109.2416)
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Some background material
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Density operators for a finite system of N electrons in R3

e Bounded, self-adjoint operator on L2(R3) such that 0 < v < 1 and
Tr(y) = N. In some orthonormal basis of L2(R3),

+oo +o00
v=_nilgi)¢il,  0<m<1, > m=N
i=1 i=1

e For the Slater determinant ¥(xi, ..., xy) = (N1)"Y/2det(di(x))1<ij<n,

N
Yo = Y1006
i=1

+0o0

e Electronic density p,(x) = Z ni|#i(x)|* with p, > 0 and py = N.
R3

i=1
—+00

. 1 1
e Kinetic energy T(v) = ETr(\VMVD =5 Z n,-HVqS,-H%z(Re,)
i=1
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The Hartree model for finite systems

1 1
e Hartree energy E%ﬁﬁtree(’y) =Tr <—2A’y> + ED(pq/ — P, py = ™)

D(fvg):/R3/R3WdXdX,:47r/R3f(k‘3(‘/g;(k)dk

is the classical Coulomb interaction, defined for f, g € L5/5(R3), but which
can be extended to

c={fe ' ®) |TeLh(®), |-[77() e 2R |

where

Variational formulation
inf {E%%ﬁtree(fy), v e S(LAR3)), 0< v < 1, Te(y) = N, Tr(—Aq) < oo}J

e More general models of density functional theory: correction term Ex.(7)

[Sol91] J.-P. Solovej, Invent. Math., 1991
Gabriel Stoltz (ENPC/INRIA) Beijing, June 2012 7/ 24



Euler-Lagrange equations for the Hartree model

Nonlinear eigenvalue problem, ep Lagrange multiplier of Tr(vy) = N

—+00

+o0o
=D mlenieil,  pOx) =D nilei(x)P,
i=1 i=1

HO(Z)I' :€i¢i7 <¢)I7¢j> :6117

1 if e < e —+00
nj = 6[0,1] ifg,'ZSF Z”i:N,

0 if &; > e i=1
1 . e ;

HO = —EA + VO, )
\ _Avo — 4_7T(pnuc _ pO)‘
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’70 = 1(—00,6F](H0)a

When ey < eny1 (gap): ¢ HO = —%A + VO
SAVO S ax(pe — g0),
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The Hartree model for crystals (1)
e Thermodynamic limit, periodic nuclear density ppcr, lattice R ~ (az)3

3
. . . . 27 . .
with unit cell T, reciprocal lattice R* ~ <Z> with unit cell T*
a

o
e Bloch-Floquet transform: unitary L?(R%) — f L%er(r) d

g
. 27)3/2 - .
=3 it RyeirteR) Tr)\ S Fa+ K)o
RER KeR*

@ Any operator commuting with the spatial translations 7 (R € R)

can be decomposed as (Af)q = Aqfy, and o(A) = U o(Ag)
qer*
@ Bloch matrices: Ak K/(q) = <eK,A eK/>L2 L(r) eK(x) =

FAV)(q+K)= > Axk(a)Fv(g+K')
K'eR*

‘r’71/2eiK-X

[CLLO1] I. Catto, C. Le Bris, and P.-L. Lions, Ann. I. H. Poincaré-An, 2001
[CDLO8] E. Cances, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
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The Hartree model for crystals (2)

Nonlinear eigenvalue problem

’Yger - 1( (%) SF]( per) pger = p?’ger’
1
0 0
Hper =—ZA+ Vper?

AV = 4r( = ) [ [ =N

More explicit expressions using the Bloch decomposition

1 \q!
(Hper) g = —5A—iq-V+ -+ Vo =

“+o00
(’Yger)q = Z 1{5,,,q<51:}‘u” q><”n q’
n=1

Fermi level obtained from N = |F*| Z Hgel™ | eng <ecrll
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The Hartree model for crystals (3)

The spectrum of the periodic Hamiltonian is composed of bands

o(H) = U [Z;,Zﬂ , Y, =minepgq, Z;,*‘ = MaxXeéng
n>1 gelr* qer*

Assume in the sequel that g =% | — %7, > 0 (insulator)

t t i

1
Insulator / Conductor ’
semi-conductor [* q

N=2 N=3
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Defects in crystals

e Nuclear charge defect ppit + v, expected ground state v = 'yger +Qy

e A thermodynamic limit shows that @, can be thought of as some defect
state embedded in the periodic medium

. _ 1
Q.= argmin {Tio (1,Q) = | oI ")+ ;D(paura)}
QReQ R3
7’chr < Q <1 7’chr

where, defining Q= = vgernger and QT+ =(1- fyger)Q(l — 7ger),
0={Q =0 (1-8)1Qee; (1-4)120*(1-n)"c6 |

e Generalized trace Tro(Q) = Tr(Q*) + Tr(Q~ ")

e Density pg € L2(R3)NC

[HLSO05] C. Hainzl, M. Lewin, and E. Séré, Commun. Math. Phys., 2005 (and subsequent works)

[CDLO08] E. Cancgs, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
[CL10] E. Cances and M. Lewin, Arch. Rational Mech. Anal., 2010
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Time evolution of defects
in crystals:

effective perturbations
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Defects in a time-dependent setting

Formal thermodynamic limit: state v(t) = 'yger + Q(t), Hamiltonian

Hy(t) = Hper + ve(po(t) = v(1)),  ve(o) = 0% |-

: : el
and dynamics (von Neumann equation) ld;Y

. = [HY,]

Classical formulation: nonlinear dynamics

idigt) = [HO: + ve(pq(ey — ¥(£)), V0 + Q(2)]

. 0 )
Denote Up(t) = e~ !#er the free evolution.

Mild formulation for an effective potential v(t)

Q(t) = Up(t)QUp(t)* — i/ot Uo(t — s)[v(s),’yger + Q(s)]Uo(t — s)* ds
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Well-posedness of the mild formulation

If initially Q(0) € Q, the Banach space allowing to describe local defects
in crystals, does Q(t) € Q7

[CS12, Proposition 1]

The integral equation has a unique solution in CO(R+, Q) for Q%€ 9 and
v =v.(p) with p € LI (R4, L>(R3)NC).

In addition, Tro(Q(t)) = Tro(Q°), and, if —yger <QRU<1-— WSer: then
_Vger < Q(t) <1l- VSer'

This result is based on a series of technical results
@ boundedness of the potential: v € LL (R, L®(R3))

1
@ stability of time evolution: BHQ”Q < || Uo(t)QUo(t)* |0 < BlIRllo

@ commutator estimates with 79, : Hi[V”Yger]HQ < Ceoml||V]|er
@ commutator estimates in Q: [|i[vc(0), Qlllg < Ceom,allelli2rcl|Rllo
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Dyson expansion and linear response

Response at all orders (formally): Q(t) = Up(t)Q°Uo(t)* + Z Qn,v(
Qu(©)= i [ Ul = 3) [W(9) s + U )oouo( )] Uole — 5)" s,
Qn(t) = —i/t Uo(t — s) [v(s), @n-1,v(s)] Uo(t —s)*ds for n>2

Obtained by plugoging the formal decomposition into the integral equation

[CS12, Proposition 5]
Under the previous assumptions, Q,, € CO(R;, Q) with Tro(Qn,(t)) =0,

1 0
@nul®)l0 < 5212 ”Q< / lo(s Hmcds)

The formal expansion therefore converges in Q, uniformly on any compact
subset of R, , to the unique solution in CO(R, Q) of the integral equation.

v
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Definition of the polarization (1)

e Aim: Justify the Adler-Wiser formula for the polarization matrix

e Damped linear response: standard linear response as  — 0

t
Q{]’V(t) - _i/ Uo(t o S) [V(S), 7ger] UO(t - 5)*6—77(1'—5) ds

—00

LYR,C’ R, LA(R3)NC
@ polarization operator xg : ( ’ 3 : Pb"( | ( ) )
Ql,v

o linear response operator &7 = va/?yove!? acting on LL(R, L2(R3))

(f2, EM1) 1212 2/<ftf2(w)7Cg’"(w)ftfl(w»p(m) dw
R

@ Bloch decomposition: for a.e. (w,q) € R x * and any K € R*,

/
Fex (EMF) (w,q+K) = > & lw, q) Feuf(w, g+ K')
K'eR*
[Adler62] S. L. Adler, Phys. Rev., 1962
[Wiser63] N. Wiser, Phys. Rev., 1963
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Definition of the polarization (2)

[CS12, Proposition 7]

The Bloch matrices of the damped linear response operator & read

1r(q) g + K|
@(oT] ’ = T ’ ) )
K’K (qu) “-| |q_|_ K| K (w q)

where the continuous functions T;}  are uniformly bounded:

—iK iK'
= ][ (Um,g's € " Ungiq >L%er<”n,q+q/7 "l g) 12 Ler dq
K k(@ q E :
. Engtq — Emg — W — 1N

(thesumisover I< n< N<mand1l<m<N<n)

e The Bloch matrices of the standard linear response are recovered as
n — 0, the convergence being in .%/(R x R3)

e Static polarizability (w = 0) recovered in some adiabatic limit
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Time evolution of defects
in crystals:

nonlinear dynamics
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Time-dependent Hartree dynamics for defects

Well-posedness of the mild formulation

For v € L} (R4, L2(R3)) N WE (R4, C), and =104 < Q° < 1 — Y, with
Q° € Q, the dynamics

Q(e) = Uo(6)Q°Un(2)" i [ Un(e=9) 1oty QL) i e5) 0

has a unique solution in C°(Ry, Q). For all t > 0, Tro(Q(t)) = Tro(Q°)
and _Vger < Q(t) < 1- ’Yger'

e |dea of the proof: (i) short time existence and uniqueness by a
fixed-point argument; (ii) extension to all times by controlling the energy

£(t, Q) = Tro(H2.,Q) — Dlpa. (1)) + 5 D(0a. pa)

e Classical solution well posed under stronger assumptions on Q°, v
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Macroscopic dielectric permittivity (1)

Starting from Q° = 0, the nonlinear dynamics can be rewritten as

Q(t) = Ql,vc(prl/)(t) + 62,vc(pQ71/)(t)

In terms of electronic densities: [(1+ £)(v — pg)] (t) = v(t) — ra(t)

Properties of the operator £
For any 0 < Q < g, the operator £ is a non-negative, bounded,
self-adjoint operator on the Hilbert space

o = {0 € 2(R,0) |supp(Fix0) € [-2,9] x R?},

endowed with the scalar product

Q _—
F X 7k F X ,k
(02, 01)12(c) :47r/ tx02(w, k) Fex01(w, k)

dw dk.
—q Jr3 | k|2

Hence, 1 + £, considered as an operator on %4, is invertible.
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Macroscopic dielectric permittivity (2)

e Linearization: given v € 74, find p, such that (1+ L)(v — p,) = v

e Homogenization limit: spread the charge as v, (t, x) = n3v(t,nx) and
consider the rescaled potential

W(t,x) =0 ve(vy — pu,) (£.77 %)
When £ = 0, the potential is W, = v.(v)
[CS12, Proposition 14]

The rescaled potential W,/ converges weakly in Hq to the unique solution
W, in Hq to the equation

—div (en(@)V [FeW] (w, ) = 47 [Fer] (w,°)

where ep(w) (for w € (—g, g)) is a smooth mapping with values in the
space of symmetric 3 x 3 matrices, and satisfying eni(w) > 1.

e The matrix eyj(w) can be expressed using the Bloch decomposition
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Perspectives
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Perspectives and open issues

e Metallic systems (no gap: many estimates break down)
e Longtime behavior of the defect

e Influence of electric and magnetic fields (rather than a local perturbation
as was the case here)

e Interaction of electronic defects with phonons (lattice vibrations)

e GW methods (the polarization matrix enters the definition of the
self-energy)
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