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Microscopic origin of macroscopic dielectric properties (1)

In a dielectric material, the presence of an electric field causes the nuclear
and electronic charges to slightly separate, inducing a local electric dipole

This generates an induced response inside the material (reorganization of
the electronic density), screening the applied field
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Microscopic origin of macroscopic dielectric properties (2)

• Dielectric material: can polarize in presence of external fields

density electric field

external ν D, div D = 4πν
polarization δρ P, div P = 4πδρ

total ρ E, div E = 4πρ

D = E+ P

• Constitutive equation: εM = 3× 3 symmetric real matrix with εM > 1

D = εME ⇐⇒ P = (εM − 1)E = (1− ε−1
M )D

• Time-dependent fields: the response of the material is not
instantaneous, but given by a convolution with some response function.
With E(t) = −∇W (t) where W (t) is the macroscopic potential,

−div
(
εM(ω)∇Ŵ (ω)

)
= 4π ν̂(ω)
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Some background material
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Density operators for a finite system of N electrons in R
3

• Bounded, self-adjoint operator on L2(R3) such that 0 6 γ 6 1 and
Tr(γ) = N. In some orthonormal basis of L2(R3),

γ =
+∞∑

i=1

ni |φi 〉〈φi |, 0 6 ni 6 1,
+∞∑

i=1

ni = N

• For the Slater determinant ψ(x1, . . . , xN) = (N!)−1/2det(φi (xj))16i ,j6N ,

γψ =
N∑

i=1

|φi 〉〈φi |

• Electronic density ργ(x) =
+∞∑

i=1

ni |φi (x)|
2 with ργ > 0 and

ˆ

R3

ργ = N.

• Kinetic energy T (γ) =
1

2
Tr(|∇|γ|∇|) =

1

2

+∞∑

i=1

ni‖∇φi‖
2
L2(R3)
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The Hartree model for finite systems

• Hartree energy EHartree
ρnuc (γ) = Tr

(
−
1

2
∆γ

)
+

1

2
D(ργ − ρnuc, ργ − ρnuc)

where

D(f , g) =

ˆ

R3

ˆ

R3

f (x) g(x ′)

|x − x ′|
dx dx ′ = 4π

ˆ

R3

f̂ (k) ĝ(k)

|k |2
dk

is the classical Coulomb interaction, defined for f , g ∈ L6/5(R3), but which
can be extended to

C =
{
f ∈ S

′(R3)
∣∣∣ f̂ ∈ L1loc(R

3), | · |−1f̂ (·) ∈ L2(R3)
}

Variational formulation

inf
{
EHartree
ρnuc (γ), γ ∈ S(L2(R3)), 0 6 γ 6 1, Tr(γ) = N, Tr(−∆γ) <∞

}

• More general models of density functional theory: correction term Exc(γ)

[Sol91] J.-P. Solovej, Invent. Math., 1991
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Euler-Lagrange equations for the Hartree model

Nonlinear eigenvalue problem, εF Lagrange multiplier of Tr(γ) = N





γ0 =
+∞∑

i=1

ni |φi 〉〈φi |, ρ0(x) =
+∞∑

i=1

ni |φi (x)|
2,

H0φi = εiφi , 〈φi , φj〉 = δij ,

ni =





1 if εi < εF
∈ [0, 1] if εi = εF

0 if εi > εF

+∞∑

i=1

ni = N,

H0 = −
1

2
∆ + V 0,

−∆V 0 = 4π(ρnuc − ρ0).

When εN < εN+1 (gap):





γ0 = 1(−∞,εF](H
0),

H0 = −
1

2
∆ + V 0,

−∆V 0 = 4π(ρnuc − ρ0),
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The Hartree model for crystals (1)

• Thermodynamic limit, periodic nuclear density ρnucper , lattice R ≃ (aZ)3

with unit cell Γ, reciprocal lattice R∗ ≃

(
2π

a
Z

)3

with unit cell Γ∗

• Bloch-Floquet transform: unitary L2(R3) →

 ⊕

Γ∗
L2per(Γ) dq

fq(x) =
∑

R∈R

f (x + R) e−iq·(x+R) =
(2π)3/2

|Γ|

∑

K∈R∗

f̂ (q + K ) eiK ·x

Any operator commuting with the spatial translations τR (R ∈ R)

can be decomposed as (Af )q = Aqfq, and σ(A) =
⋃

q∈Γ∗

σ(Aq)

Bloch matrices: AK ,K ′(q) = 〈eK ,AqeK ′〉L2per(Γ), eK (x) = |Γ|−1/2eiK ·x

F(Av)(q + K ) =
∑

K ′∈R∗

AK ,K ′(q)Fv(q + K ′)

[CLL01] I. Catto, C. Le Bris, and P.-L. Lions, Ann. I. H. Poincaré-An, 2001
[CDL08] E. Cancès, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
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The Hartree model for crystals (2)

Nonlinear eigenvalue problem




γ0per = 1(−∞,εF](H
0
per), ρ0per = ργ0per ,

H0
per = −

1

2
∆ + V 0

per,

−∆V 0
per = 4π(ρnucper − ρ0per),

ˆ

Γ
ρ0per =

ˆ

Γ
ρnucper = N

More explicit expressions using the Bloch decomposition

(
H0
per

)
q
= −

1

2
∆− iq · ∇+

|q|2

2
+ V 0

per =
+∞∑

n=1

εn,q|un,q〉〈un,q|

(
γ0per

)
q
=

+∞∑

n=1

1{εn,q6εF}|un,q〉〈un,q|

Fermi level obtained from N =
1

|Γ∗|

+∞∑

n=1

|{q ∈ Γ∗ | εn,q 6 εF}|
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The Hartree model for crystals (3)

The spectrum of the periodic Hamiltonian is composed of bands

σ(H) =
⋃

n≥1

[
Σ−
n ,Σ

+
n

]
, Σ−

n = min
q∈Γ∗

εn,q, Σ+
n = max

q∈Γ∗
εn,q

Assume in the sequel that g = Σ−
N+1 − Σ+

N > 0 (insulator)

εF

εF

Insulator /
semi-conductor

Conductor

N = 2 N = 3

qΓ∗

ε1,q

ε2,q
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Defects in crystals

• Nuclear charge defect ρnucper + ν, expected ground state γ = γ0per + Qν

• A thermodynamic limit shows that Qν can be thought of as some defect
state embedded in the periodic medium

Qν = argmin
Q ∈ Q

−γ0per 6 Q 6 1− γ0per

{
Tr0

(
H0
perQ

)
−

ˆ

R3

ρQ(ν ⋆ | · |
−1) +

1

2
D(ρQ , ρQ)

}

where, defining Q−− = γ0perQγ
0
per and Q++ = (1− γ0per)Q(1− γ0per),

Q =
{
Q∗ = Q, (1−∆)1/2Q ∈ S2, (1−∆)1/2Q±±(1−∆)1/2 ∈ S1

}

• Generalized trace Tr0(Q) = Tr(Q++) + Tr(Q−−)

• Density ρQ ∈ L2(R3) ∩ C

[HLS05] C. Hainzl, M. Lewin, and E. Séré, Commun. Math. Phys., 2005 (and subsequent works)
[CDL08] E. Cancès, A. Deleurence and M. Lewin, Commun. Math. Phys., 2008
[CL10] E. Cancès and M. Lewin, Arch. Rational Mech. Anal., 2010
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Time evolution of defects
in crystals:

effective perturbations
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Defects in a time-dependent setting

Formal thermodynamic limit: state γ(t) = γ0per + Q(t), Hamiltonian

Hv
γ (t) = H0

per + vc(ρQ(t)− ν(t)), vc(̺) = ̺ ⋆ | · |−1

and dynamics (von Neumann equation) i
dγ

dt
= [Hv

γ , γ]

Classical formulation: nonlinear dynamics

i
dQ(t)

dt
=

[
H0
per + vc(ρQ(t) − ν(t)), γ0per + Q(t)

]

Denote U0(t) = e−itH0
per the free evolution.

Mild formulation for an effective potential v(t)

Q(t) = U0(t)Q
0U0(t)

∗ − i

ˆ t

0
U0(t − s)[v(s), γ0per + Q(s)]U0(t − s)∗ ds
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Well-posedness of the mild formulation

If initially Q(0) ∈ Q, the Banach space allowing to describe local defects
in crystals, does Q(t) ∈ Q?

[CS12, Proposition 1]

The integral equation has a unique solution in C 0(R+,Q) for Q0 ∈ Q and
v = vc(ρ) with ρ ∈ L1loc(R+, L

2(R3) ∩ C).

In addition, Tr0(Q(t)) = Tr0(Q
0), and, if −γ0per 6 Q0 6 1− γ0per, then

−γ0per 6 Q(t) 6 1− γ0per.

This result is based on a series of technical results

boundedness of the potential: v ∈ L1loc(R+, L
∞(R3))

stability of time evolution:
1

β
‖Q‖Q 6 ‖U0(t)QU0(t)

∗‖Q 6 β‖Q‖Q

commutator estimates with γ0per:
∥∥i[v , γ0per]

∥∥
Q
6 Ccom‖v‖C′

commutator estimates in Q: ‖i[vc(̺),Q]‖Q 6 Ccom,Q‖̺‖L2∩C‖Q‖Q
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Dyson expansion and linear response

Response at all orders (formally): Q(t) = U0(t)Q
0U0(t)

∗ +
+∞∑

n=1

Qn,v (t)

Q1,v (t)= −i

ˆ t

0
U0(t − s)

[
v(s), γ0per + U0(s)Q

0U0(s)
∗
]
U0(t − s)∗ ds,

Qn,v (t) = −i

ˆ t

0
U0(t − s) [v(s),Qn−1,v (s)]U0(t − s)∗ ds for n > 2

Obtained by plugging the formal decomposition into the integral equation

[CS12, Proposition 5]

Under the previous assumptions, Qn,v ∈ C 0(R+,Q) with Tr0(Qn,v (t)) = 0,

‖Qn,v (t)‖Q 6 β
1 + ‖Q0‖Q

n!

(
C

ˆ t

0
‖ρ(s)‖L2∩C ds

)n

.

The formal expansion therefore converges in Q, uniformly on any compact
subset of R+, to the unique solution in C 0(R+,Q) of the integral equation.
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Definition of the polarization (1)

• Aim: Justify the Adler-Wiser formula for the polarization matrix

• Damped linear response: standard linear response as η → 0

Q
η
1,v (t) = −i

ˆ t

−∞
U0(t − s)

[
v(s), γ0per

]
U0(t − s)∗e−η(t−s) ds

polarization operator χη0 :

{
L1(R, C′) → C 0

b (R, L
2(R3) ∩ C)

v 7→ ρQη

1,v

linear response operator E η = v
1/2
c χ0v

1/2
c acting on L1(R, L2(R3))

〈f2,E
ηf1〉L2(L2) =

ˆ

R

〈Ft f2(ω),E
η(ω)Ft f1(ω)〉L2(R3) dω

Bloch decomposition: for a.e. (ω, q) ∈ R× Γ∗ and any K ∈ R∗,

Ft,x (E
ηf ) (ω, q + K ) =

∑

K ′∈R∗

E
η
K ,K ′(ω, q)Ft,x f (ω, q + K ′)

[Adler62] S. L. Adler, Phys. Rev., 1962
[Wiser63] N. Wiser, Phys. Rev., 1963
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Definition of the polarization (2)

[CS12, Proposition 7]

The Bloch matrices of the damped linear response operator E η read

E
η
K ,K ′(ω, q) =

1Γ∗(q)

|Γ|

|q + K ′|

|q + K |
T
η
K ,K ′(ω, q),

where the continuous functions T η
K ,K ′ are uniformly bounded:

T
η
K ,K ′(ω, q) =

∑  

Γ∗

〈um,q′ , e
−iK ·x un,q+q′〉L2per〈un,q+q′ , e

iK ′·xum,q′〉L2per
εn,q+q′ − εm,q′ − ω − iη

dq′

(the sum is over 1 6 n 6 N < m and 1 6 m 6 N < n)

• The Bloch matrices of the standard linear response are recovered as
η → 0, the convergence being in S ′(R× R

3)

• Static polarizability (ω = 0) recovered in some adiabatic limit
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Time evolution of defects
in crystals:

nonlinear dynamics
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Time-dependent Hartree dynamics for defects

Well-posedness of the mild formulation

For ν ∈ L1loc(R+, L
2(R3)) ∩W

1,1
loc

(R+, C), and −γ0per 6 Q0 6 1− γ0per with
Q0 ∈ Q, the dynamics

Q(t)=U0(t)Q
0U0(t)

∗−i

ˆ t

0
U0(t−s)

[
vc(ρQ(s)−ν(s)),γ

0
per+Q(s)

]
U0(t−s)∗ds

has a unique solution in C 0(R+,Q). For all t ≥ 0, Tr0(Q(t)) = Tr0(Q
0)

and −γ0per 6 Q(t) 6 1− γ0per.

• Idea of the proof: (i) short time existence and uniqueness by a
fixed-point argument; (ii) extension to all times by controlling the energy

E(t,Q) = Tr0(H
0
perQ)− D(ρQ , ν(t)) +

1

2
D(ρQ , ρQ)

• Classical solution well posed under stronger assumptions on Q0, ν
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Macroscopic dielectric permittivity (1)

Starting from Q0 = 0, the nonlinear dynamics can be rewritten as

Q(t) = Q1,vc(ρQ−ν)(t) + Q̃2,vc(ρQ−ν)(t)

In terms of electronic densities: [(1 + L)(ν − ρQ)] (t) = ν(t)− r2(t)

Properties of the operator L

For any 0 < Ω < g , the operator L is a non-negative, bounded,
self-adjoint operator on the Hilbert space

HΩ =
{
̺ ∈ L2(R, C)

∣∣∣ supp(Ft,x̺) ⊂ [−Ω,Ω]× R
3
}
,

endowed with the scalar product

〈̺2, ̺1〉L2(C) = 4π

ˆ Ω

−Ω

ˆ

R3

Ft,x̺2(ω, k)Ft,x̺1(ω, k)

|k |2
dω dk .

Hence, 1 + L, considered as an operator on HΩ, is invertible.
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Macroscopic dielectric permittivity (2)

• Linearization: given ν ∈ HΩ, find ρν such that (1 + L)(ν − ρν) = ν

• Homogenization limit: spread the charge as νη(t, x) = η3ν(t, ηx) and
consider the rescaled potential

W η
ν (t, x) = η−1vc(νη − ρνη)

(
t, η−1x

)

When L = 0, the potential is W η
ν = vc(ν)

[CS12, Proposition 14]

The rescaled potential W η
ν converges weakly in HΩ to the unique solution

Wν in HΩ to the equation

−div
(
εM(ω)∇ [FtWν ] (ω, ·)

)
= 4π [Ftν] (ω, ·)

where εM(ω) (for ω ∈ (−g , g)) is a smooth mapping with values in the
space of symmetric 3× 3 matrices, and satisfying εM(ω) > 1.

• The matrix εM(ω) can be expressed using the Bloch decomposition
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Perspectives
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Perspectives and open issues

• Metallic systems (no gap: many estimates break down)

• Longtime behavior of the defect

• Influence of electric and magnetic fields (rather than a local perturbation
as was the case here)

• Interaction of electronic defects with phonons (lattice vibrations)

• GW methods (the polarization matrix enters the definition of the
self-energy)
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