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Description of a classical system

Positions q (configuration), momenta p = Mq̇ (M diagonal mass matrix)

Microscopic description of a classical system (N particles):

(q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ E

For instance, E = T ∗D = D × R
3N with D = R

3N or T
3N

More complicated situations can be considered... (constraints defining
submanifolds of the phase space)

Hamiltonian

H(q, p) =

N
∑

i=1

p2
i

2mi

+ V (q1, . . . , qN )

All the physics is contained in V

For instance, pair interactions V (q1, . . . , qN ) =
∑

1≤i<j≤N

v(|qj − qi|)

Edinburgh, march 2009 – p. 2/24



Extracting macroscopic properties: Statistical physics

Given the structure and the laws of interaction of the particles, what are
the macroscopic properties of the matter composed of these particles?

Equilibrium thermodynamic properties (pressure,. . . ):

〈A〉 =

∫

T∗D

A(q, p)µ(dq dp)

Choice of thermodynamic ensemble (probability measure dµ):
constrained maximisation of entropy

S(ρ) = −kB

∫

ρ ln ρ,

under the constraints ρ ≥ 0,

∫

ρ = 1,

∫

Ai ρ = Ai

The choice of the variables and the observables Ai (1 ≤ i ≤ m)
determines the ensemble
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Some examples: NVT, NPT ensembles

Canonical ensemble = measure on (q, p), average energy fixed A0 = H

µNVT(dq dp) = Z−1
NVT e−βH(q,p) dq dp,

where β is the Lagrange multiplier associated with the constraint

∫

T∗D

H(q, p) ρ(q, p) dq dp = E0

NPT ensemble = measure on (q, p, x), where x indexes volume changes

(for a fixed geometry). For instance, D =
(

(1 + x)LT

)3N

Average energy and average volume
∫

Vol(x) ρ(dq dp dx) fixed

Denoting by βP (pressure) the Lagrange multiplier of the volume
constraint,

µNPT(dx dq dp) = Z−1
NPT e−βPVol(x) e−βH(q,p)

1{q∈[L(1+x)T]3N} dx dq dp

Edinburgh, march 2009 – p. 4/24



Sampling the canonical ensemble: Overdamped Langevin dynamics

SDE on the configurational part only (momenta trivial to sample)

dqt = −∇V (qt) dt+ σdWt,

where (Wt)t≥0 is a standard Wiener process of dimension dN

Invariance of the canonical measure

ν(dq) = Z−1 e−βV (q) dq, Z =

∫

M

e−βV (q) dq

if steady state of Fokker-Planck equation ∂tψt = div

(

∇V ψt +
σ2

2
∇ψt

)

Fluctuation/dissipation relation σ =

√

2

β

Invariance + irreducibility (elliptic process):

lim
T→∞

1

T

∫ T

0

A(qt) dt =

∫

D

A(q) dν a.s.
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Satisfying constraints in average
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Formulation of the problem

Set some external parameter (temperature, pressure/volume) to obtain
the right value of a given thermodynamic property

For instance, vary the temperature in the canonical ensemble

Given some observable A, the problem then reads

Find T such that 〈A〉T = 0,

Since the momenta are straightforward to sample, there is no restriction in
considering A ≡ A(q)

In this case,

f(T ) = 〈A〉T =

∫

D

A(q)µT (dq),

µT (q) =
1

ZT

exp

(

−V (q)

kBT

)

, ZT =

∫

D

exp

(

−V (q)

kBT

)

dq,
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Physical motivation: Computation of the Hugoniot curve

Hugoniot curve = all admissible shocks E − E0 −
1

2
(P + P0)(V0 − V) = 0

Statistical physics reformulation?

Reference temperature T0, simulation cell Dc =
(

(1 + c)LT × (LT)2
)N

with c = 0 at the pole → vary the compression rate c =
|D|
|D0|

Consider the observable

Ac(q, p) = H(q, p) − 〈H〉|D0|,T0
+

1

2
(Pxx(q, p) + 〈P 〉|D0|,T0

)(1 − c)|D0|

where Pxx(q, p) =
1

|D|
N
∑

i=1

p2
i,x

mi

− qi,x∂qi,x
V (q)

For a given compression cmax ≤ c ≤ 1, find T ≡ T (c) such that

〈Ac〉|Dc|,T = 0
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Possible strategies

Finding a zero of the function f(T ) = 〈A〉T ... Several methods!

Assume that there exists an interval IA
T = [TA

min, T
A
max], a temperature

T ∗ ∈ (TA
min, T

A
max), and constants a, α > 0 such that

∀T ∈ IA
T , 〈A〉T = 0α ≤ 〈A〉T − 〈A〉T∗

T − T ∗
≤ a

Newton strategy: requires the computation of the derivative, either
through f ′(T ) ∝ 〈AH〉T − 〈A〉T 〈H〉T , or through finite differences.
Difficult to converge in both cases

New thermodynamic ensemble = (unknown) ergodic limit of dynamics
such as























q̇ = M−1p

ṗ = −∇V (q) − ξp

ξ̇ = ν2A(q, p)

Aref

Edinburgh, march 2009 – p. 9/24



Alternative strategy

Notice that the (deterministic) dynamics T ′(t) = −γ 〈A〉T (t) is such that
T (t) → T ∗

On the other hand, the dynamics

dqt = −∇V (qt) dt+
√

2kBT dWt

is ergodic for the canonical measure µT (q) dq = Z−1 exp

(

−V (q)

kBT

)

Approximate the equilibrium canonical expectation by the current one:







dqt = −∇V (qt) dt+
√

2kBT (t) dWt,

T ′(t) = −γ E(A(qt)),

Notice that (T ∗, µT∗) is invariant

Extensions possible: T ′(t) = −γ(t)f
(

E(A(qt))
)

with γ(t) > 0
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Partial differential equation reformulation

Nonlinear PDE on the law ψt of the process qt















∂tψ = kBT (t)∇ ·
[

µT (t)∇
(

ψ

µT (t)

)]

= kBT (t) ∆ψ + ∇ · (ψ∇V ),

T ′(t) = −γ
∫

D

A(q)ψ(t, q) dq

(1)

Theorem 1 (Short time existence/uniqueness) Assume that the observable
A ∈ C3(D) and V ∈ C2(D). For a given initial condition (T 0, ψ0), with T 0 > 0

and ψ0 ∈ H2(D), ψ0 ≥ 0,

∫

D

ψ0 = 1, there exists a time τ ≥ T 0

2γ‖A‖∞
> 0

such that (1) has a unique solution (T, ψ) ∈ C1([0, τ ],R) × C0([0, τ ],H2(D)).

In particular, the temperature remains positive

Proof = Schauder fixed-point theorem using a mapping T 7→ ψT 7→ g(T )
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Longtime convergence

Convergence results for initial conditions close to the fixed-point

Total entropy E(t) = E(t) +
1

2
(T (t) − T ∗)2, where the reference measure

in the spatial entropy is time-dependent:

E(t) =

∫

D

h (f)µT (t), f =
ψ

µT (t)
.

For instance, relative entropy estimates h(x) = x lnx− x+ 1 ≥ 0

If E(t) → 0 then T (t) → T ∗ and ψ → µT∗

It holds

E′(t) = −kBT (t)

∫

D

h′′(f) |∇f |2 µT (t) +
T ′(t)

kBT (t)2

∫

D

. . . µT (t)

First term bounded by −ρE(t) using some functional inequality,
remainder small when γ small enough (since T ′(t) ∝ γ)
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Precise convergence result

Assumption 1 There exists an interval ILSI
T = [TLSI

min , T
LSI
max] such that

{µT }T∈ILSI

T
satisfies a logarithmic Sobolev inequality with uniform constant 1/ρ:

∫

D

h(f)µT ≤ 1

ρ

∫

D

|∇f |2
f

µT .

Theorem 2 Consider an initial data (T 0, ψ0) with ψ0 ∈ H2(D), ψ0 ≥ 0,
∫

D

ψ0 = 1, and associated entropy E(0) ≤ E∗, where

E∗ = inf

{

1

2
(TA

min − T ∗)2,
1

2
(TA

max − T ∗)2,
1

2
(TLSI

min − T ∗)2,
1

2
(TLSI

max − T ∗)2
}

.

Then, there exists γ0 > 0 such that, for all 0 < γ ≤ γ0, (1) has a unique solution
(T, ψ) ∈ C1([0, τ ],R) × C0([0, τ ],H2(D)) for all τ ≥ 0, and the entropy
converges exponentially fast to zero: There exists κ > 0 (depending on γ) such
that E(t) ≤ E(0) exp(−κt). In particular, the temperature remains positive at all
times, and it converges exponentially fast to T ∗.
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Some comments

The convergence rate is larger when

E(0) is smaller (the dynamics starts closer from the fixed point and/or
closer from a spatial local equilibrium)

the slope of the function T 7→ 〈A〉T is steeper around T ∗

ρ is larger (the relaxation of the spatial distribution of configurations at
a fixed temperature happens faster)

The proof relies on the estimates

E′(t) ≤ −
(

ρkBT (t) − 2|T ′(t)| ‖V ‖∞
kBT (t)2

)

E(t) +
2
√

2|T ′(t)|‖V ‖∞
kBT (t)2

√

E(t)

|T ′(t)| ≤ γ
(

a |T (t) − T ∗| + ‖A‖∞
√

2E(t)
)

so that a Gronwall inequality can be shown to hold for E upon choosing γ
small enough
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Numerical results

Multiple replica implementation (interacting only through the update of
their common temperature)

In many codes, ergodic limits for a single replica are easier to implement:































dqt = −∇V (qt) dt+
√

2kBTt dWt,

dTt = −γ









∫ t

0

A(qs) δTt−Ts
ds

∫ t

0

δTt−Ts
ds









dt,

(Remark) In both cases, the temperature is now random

Obtain orders of magnitude for γ by some recasting the problem in
non-dimensional terms

In the Hugoniot case, d
(

Tt

Tref

)

= − At(Tt)

NkBTref
ν dt
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Choice of γ
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Temperature as a function of time (in reduced units) for different values of the
frequency ν (in s−1), for a system of size N = 4, 000, and a fixed compression
c = 0.62. Pole: T0 = 10 K, ρ0 = 1.806 × 103 kg/m3 (so that P0 ≃ 0).
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Hugoniot curve (reduced units)
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Adaptive computation of free energy
differences
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Metastability (1)

Numerical discretization of the overdamped Langevin dynamics:

qn+1 = qn − ∆t∇V (qn) +

√

2∆t

β
Gn

where Gn ∼ N (0, IddN ) i.i.d.

X coordinate

y 
co

or
di
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te
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Projected trajectory in the x variable for ∆t = 0.01, β = 8.
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Metastability (2)

Although the trajectory average converges to the phase-space average,
the convergence may be slow...

Slowly evolving macroscopic function of the microscopic degrees of
freedom: reaction coordinate ξ(q) ∈ R

m with m≪ N

Two origins : energetic or entropic barriers (in fact, free energy barriers)

x coordinate

y 
co

or
di

na
te

(a) Entropic barrier.
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(b) Associated trajectory.

Edinburgh, march 2009 – p. 20/24



Metastability (3)

Assume the free energy F associated with the slow direction x has been
computed, and sample the modified potential V(x, y) = V (x, y) − F (x).

x coordinate

y 
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or
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Projected trajectory in the x variable for ∆t = 0.01, β = 8.

Many more transitions! The variable x is uniformly distributed.

Reweighting with weights e−βF (x) to compute canonical averages

Compute efficiently the free energy?
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Adaptive dynamics (1)

Simplified setting: q = (x, y) and ξ(q) = x ∈ R so that

F (x2) − F (x1) = −β−1 ln

(

ψeq(x2)

ψeq(x1)

)

, ψeq(x) =

∫

e−βV (x,y) dy

Notice that the mean force F ′(x) =

∫

∂xV (x, y) e−βV (x,y) dy
∫

e−βV (x,y) dy

The dynamics dqt = −∇V (qt) dt+

√

2

β
dWt is metastable, contrarily to











dqt = −∇
(

V (qt) − F (ξ(qt))
)

dt+

√

2

β
dWt

F ′(x) = Eµ

(

∂xV (q)
∣

∣

∣
ξ(q) = x

)

Replace equilibrium expectations by F ′(t, x) = E

(

∂xV (qt)
∣

∣

∣ ξ(qt) = x
)
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Adaptive dynamics: convergence

Nonlinear PDE on the law ψ(t, q):































∂tψ = div
[

∇
(

V − Fbias(t, x)
)

ψ + β−1∇ψ
]

,

F ′
bias(t, x) =

∫

D

∂xV (x, y)ψ(t, x, y) dy
∫

D

ψ(t, x, y) dy

.

Stationary solution ψ∞ ∝ e−β(V −F◦ξ)

Simple diffusion for the marginals ∂tψ = ∂xx ψ

Decomposition of the total entropy H(ψ |ψ∞) =

∫

D

ln

(

ψ

ψ∞

)

ψ

into a macroscopic contribution (marginals in x) and a microscopic one
(conditioned measures)

Convergence of the microscopic entropy provided some uniform
logarithmic Sobolev inequality holds for the conditioned measures
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