

ParisTech







## Molecular simulation and the numerical microscope

#### Gabriel STOLTZ

gabriel.stoltz@enpc.fr

Journées scientifiques Inria, Bordeaux, juin 2018

## Computational Statistical Physics

• Predict macroscopic properties of materials from their microscopic description

- Microstate
  - positions  $q = (q_1, \dots, q_N)$  and momenta  $p = (p_1, \dots, p_N)$

• energy of the system 
$$H(q,p) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i}$$

- (almost) all the physics is in the choice of V...
- Macrostate
  - described by a probability measure  $\mu$
  - constraints fixed exactly or in average (number of particles, volume, energy)
- **Properties:** static (equation of state, heat capacities, etc) and dynamical (transport coefficient, transition pathway, etc)

#### Examples of molecular systems (1)



**Ubiquitin (protein):** structure? conformational changes?  $\rightarrow$  In silico drug design

Gabriel Stoltz

#### Examples of molecular systems (2)

#### What is the melting temperature of Argon?



(a) Solid Argon (low temperature)

(b) Liquid Argon (high temperature)

#### Examples of molecular systems (3)

Equation of state of Argon: density as a function of pressure, T = 300 K (comparison with data of *National Institute of Standards and Technology*)



Explore extreme conditions of matter...

#### Some orders of magnitude...

- Physical quantities
  - distances  $\sim 1~\text{\AA} = 10^{-10}~\text{m}$
  - energy per particle  $\sim k_{\rm B} T \sim 4 \times 10^{-21}$  J at 300 K
  - $\bullet$  atomic masses  $\sim 10^{-26}~{\rm kg}$
  - typical times  $\sim 10^{-15}~{\rm s}$
  - number of particles  $\sim \mathcal{N}_{A} = 6.02 \times 10^{23}$
- "Standard" simulations
  - 10<sup>6</sup> particles ["heroic": 10<sup>9</sup> particles and more]
  - total time: (fraction of) ns ["heroic": (fraction of)  $\mu s$ ]
- Analogy to understand what such large numbers represent...
  - about 10<sup>22</sup> moles of water on Earth
  - $10^6$  moles of water  $\sim 1~\text{m}^3$

### Aims of computational statistical physics

#### • "Numerical microscope"

- gaining some insight into physical mechanisms at the atomic scale
- From the press release for the Nobel prize in Chemistry 2013 (Karplus/Levitt/Warshel)

Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments.

• Computation of average properties (static)

$$\langle A 
angle = \int_{\mathcal{E}} A(q,p) \, \mu(dq \, dp)$$

Computation of high dimensional integrals

- $\mu$  is a probability measure
- A is the observable

Gabriel Stoltz

### High performance computations

- About 40 % of running time in scientific computing centers devoted to molecular simulation (quantum + classical)
- Parallelization strategies...
  - spatial decomposition to compute forces and energies (every step)
  - time is intrinsically sequential...
- Our scientific approach relies on
  - testing new algorithms in home-made codes (e.g. SIMOL, co-developed with Inria)
  - implementing successfuls methods in codes targeted to specific applications (NAMD for computational biology, LAMMPS and STAMP for materials science, ...)

# Numerical microscope

#### Hamiltonian dynamics and its integration (1)

• Integrate the dynamics of the system, and vizualize it...

Hamiltonian dynamics: fixed energy H(q, p) = E

$$\left\{ egin{array}{l} dq_t = M^{-1} p_t \, dt, \ dp_t = - 
abla V(q_t) \, dt \end{array} 
ight.$$

- Many qualitative properties (time-reversibility, volume preservation, ...)
- Numerical integration
  - standard theory: fixed integration time,  $\Delta t 
    ightarrow 0$
  - longtime integration with  $\Delta t > 0$  fixed requires a dedicated treatment

#### Hamiltonian dynamics and its integration (2)

• Explicit Euler scheme {

$$\left( \begin{array}{l} q^{n+1} = q^n + \Delta t \ M^{-1} p^n \ p^{n+1} = p^n - \Delta t \ 
abla V(q^n) \end{array} 
ight)$$

• Symplectic Euler scheme

$$\left\{ egin{array}{l} q^{n+1} = q^n + \Delta t \ M^{-1} p^n \ p^{n+1} = p^n - \Delta t \ 
abla V(q^{n+1}) \end{array} 
ight.$$

• Mathematical understanding through backward numerical analysis Interpret the numerical solution of the exact problem as the exact solution of a modified problem

Here, for symplectic Euler: the numerical trajectory lies on the orbits of a modified Hamiltonian dynamics

$$H_{\Delta t}(q,p) = H(q,p) + \frac{\Delta t}{2} p^T M^{-1} \nabla V(q) + O(\Delta t^2)$$

# Computation of average properties (static)

#### Thermodynamic properties

• Canonical measure (Boltzmann-Gibbs): fixed volume and temperature T

$$u(dq dp) = Z^{-1} e^{-H(q,p)/(k_{\mathrm{B}}T)} dq dp, \qquad Z = \int_{\mathcal{E}} e^{-H/(k_{\mathrm{B}}T)}$$

Low energy states are more and more likely with lower temperatures

Langevin dynamics (friction  $\gamma > 0$ )

$$\begin{cases} dq_t = M^{-1} p_t \, dt, \\ dp_t = -\nabla V(q_t) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2\gamma k_{\rm B} T} \, dW_t \end{cases}$$

• Ergodic averages 
$$\frac{1}{t} \int_0^t A(q_s, p_s) \, ds \xrightarrow[t \to +\infty]{} \langle A \rangle = \int_{\mathcal{E}} A \, d\mu$$

• Discretization of the stochastic differential equation  $\rightarrow$  stability, bias, ... Emphasis here as well on **longtime properties** (invariant measure)

#### The actual mathematical challenge: metastability



Energetic vs. entropic barriers  $\rightarrow$  Variance reduction techniques, e.g. modifying  $-\nabla V$ 

Gabriel Stoltz

# Computation of dynamical properties

#### Transport coefficients

• Nonequilibrium driving mimicking macroscopic experimental setups, for instance additional non-gradient force

Langevin dynamics with  $q \in \mathbb{T}^d$  (magnitude of the forcing  $\eta$ )

$$\left\{ egin{array}{l} dq_t = M^{-1} p_t \, dt, \ dp_t = (- 
abla V(q_t) + eta F) \, dt - \gamma M^{-1} p_t \, dt + \sqrt{2 \gamma k_{
m B} T} \, dW_t \end{array} 
ight.$$

 $\bullet$  Linear response of an appropriate flux, here mobility  $\alpha$ 

$$\alpha = \lim_{\eta \to} \frac{\mathbb{E}_{\eta}(F^{T}M^{-1}p)}{\eta} = \frac{1}{k_{\mathrm{B}}T} \int_{0}^{+\infty} \mathbb{E}_{0}\left[\left(F^{T}M^{-1}p_{t}\right)\left(F^{T}M^{-1}p_{0}\right)\right] dt$$

• Variance reduction difficult since invariant measure is not known... and depends non-trivially on the dynamics!

Reference for all this talk: T. LELIÈVRE AND G. STOLTZ, Partial differential equations and stochastic methods in molecular dynamics, *Acta Numerica* **25**, 681-880 (2016)